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What Grid Cells Convey about Rat Location
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We characterize the relationship between the simultaneously recorded quantities of rodent grid cell firing and the position of the rat. The
formalization reveals various properties of grid cell activity when considered as a neural code for representing and updating estimates of
the rat’s location. We show that, although the spatially periodic response of grid cells appears wasteful, the code is fully combinatorial in
capacity. The resulting range for unambiguous position representation is vastly greater than the �1–10 m periods of individual lattices,
allowing for unique high-resolution position specification over the behavioral foraging ranges of rats, with excess capacity that could be
used for error correction. Next, we show that the merits of the grid cell code for position representation extend well beyond capacity and
include arithmetic properties that facilitate position updating. We conclude by considering the numerous implications, for downstream
readouts and experimental tests, of the properties of the grid cell code.
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Introduction
The brain uses diverse schemes to encode information. For ex-
ample, oculomotor neurons and head direction neurons both
encode continuous one-dimensional (1-D) variables but in very
different ways: oculomotor neurons encode the horizontal angle
of gaze in vertebrates through a rate-proportional code, all firing
together at rates that increase linearly with temporal deflections
of the eye (Lopez-Barneo et al., 1982). Neurons in the rodent
subiculum encode where the animal is facing by firing when its
head points in a narrow angular range, with different neurons
tuned to different head directions (Taube et al., 1990). In insects,
antennal lobe neurons encode the identity of odors with distrib-
uted, temporally evolving patterns of firing, whereas Kenyon cells
of the mushroom body encode similar information using a more
sparse, static response (Perez-Orive et al., 2002). Hippocampal
place cells encode a rat’s whereabouts by firing only when the rat
is within a neighborhood of a particular location, with the pre-
ferred location varying from cell to cell (O’Keefe and Nadel,
1978).

In contrast with place cells, so-called grid cells, neurons in the
dorsolateral band of the medial entorhinal cortex (dMEC), fire
whenever the rat, moving freely in a two-dimensional (2-D) en-

closure, is on any vertex of a virtual triangular lattice overlaid on
the surface of the enclosure (Fyhn et al., 2004; Hafting et al.,
2005). The position-dependent firing of these cells, as well as the
fact that entorhinal cortex is the primary cortical input to the
hippocampus (which plays an important role in spatial memory
and navigation) suggest that grid cells may be involved in encod-
ing an internal estimate of rat position (Mittelstaedt and Mittel-
staedt, 1980; Whishaw and Maaswinkel, 1998; Etienne and Jef-
fery, 2004; Hafting et al., 2005; Burak and Fiete, 2006; Fuhs and
Touretzky, 2006).

However, the spatially periodic nature of grid cell firing is
puzzling: the activity of a cell does little to specify the rat’s loca-
tion, because it fires when the rat is near any of the vertices of the
virtual lattice. Furthermore, the periodicity of any of the grids is
not large enough to provide unambiguous information about rat
position: a rat may forage over distances of 100 m to 1 km in the
wild (Recht, 1988; Miller and Clesceri, 2002; Russell et al., 2005),
whereas the measured lattice periods are no more than 1–10 m. It
appears profligate at best or impossible at worst, to represent a
large-ranging, nonperiodic variable such as rat position by a set of
periodically repeating variables, each with very small periods.
Furthermore, if dMEC is the idiothetic path integrator, as has
been hypothesized (Hafting et al., 2005; Burak and Fiete, 2006;
Fuhs and Touretzky, 2006; McNaughton et al., 2006), it must
represent position with high resolution to minimize the accumu-
lation of rounding off errors. These observations provoke ques-
tions about exactly how much positional information is unam-
biguously stored within the grid cells, why it is coded the way it is,
and the ways in which such information may be used by down-
stream areas.

Here we consider the representational properties of the grid
cell response, considered as a code for position. Our purpose is
not to provide a theory or model of how grid cell activity patterns
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are generated as the rat moves around (for such studies, see Burak
and Fiete, 2006; Fuhs and Touretzky, 2006; McNaughton et al.,
2006). Rather, we take as given the simultaneous experimental
measurements of rat position and neural activity and characterize
the relationship between the two recorded quantities. This char-
acterization allows us to understand the properties of capacity,
arithmeticity, and robustness of position representation in grid
cells. It also suggests possibilities and limits for the readout of
entorhinal cortical codes by the hippocampus.

A shorter, preprint version of this article has been published
previously (Burak et al., 2006).

Materials and Methods
In this section, we define some central concepts, establish terminology,
and outline the experimental findings on which the results of this work
are based.

Representation schemes
On what basis does the brain select one specific encoding scheme from
among various candidate possibilities? A simple analogy, from the nu-
meral representation of integers, demonstrates that different schemes
can have intrinsically different storage and computational properties.

Capacity. Integers may be written in any base-b positional numeral
system (e.g., b � 2 for binary, b � 10 for decimal, etc.) or more generally
may be represented in systems that do not use a fixed base at all. One such
scheme is to represent the number 8 by eight ticks. This scheme, known
as a unary code, requires an alphabet of exactly one coding symbol or
letter (a tick), but the number of repetitions of that element (“word
length”) needed to represent a number grows in direct proportion to its
size: representational capacity grows only linearly with word length. By
comparison, base-b positional numeral systems have a major advantage
over this scheme: an alphabet of b letters can be combined into words of
length N to represent integers from 0 to b N � 1, a range that increases
exponentially as a function of the word length N (Table 1). These exam-
ples demonstrate that representational capacity can vary dramatically
with the choice of encoding scheme.

“Arithmeticity.” The choice of encoding scheme can also determine
whether it is possible (and, if so, how easy it is) to extract metric infor-
mation from a number or to perform arithmetic operations on it. In the
unary encoding scheme, it is easy to compare the sizes of two numbers
directly from their representations. These tasks are also relatively easy in
the positional fixed-base numeral system. In contrast, consider a scheme
in which each number is represented by a unique, distinct letter (similar
to a neural “grandmother cell” code), or a combinatorial “label” scheme
in which each number is represented by a name or label, a combination of
letters with no metric structure. In either case, it is impossible to judge the
relative sizes of the represented numbers without an explicit lookup table
(Table 1).

The ability to simply and algorithmically perform basic arithmetic
operations such as addition or multiplication of numbers within the
representational scheme is another arithmetic property of an encoding
scheme. The roman numeral system approaches the compactness of a

fully combinatorial code and allows for relatively easy magnitude com-
parison; however, it is not possible to write simple rules for computing
the sum of two numbers within this system. The situation is worse for
combinatorial labels. In contrast, fixed-base numeral systems enable
arithmetic operations such as addition and multiplication of pairs of
large numbers using simple rules (increment, carry) to produce a result
in the same base (Table 1).

In these examples, the choice of an encoding scheme had profound
implications for representational capacity and arithmeticity. Similarly,
the specific choice made for the representation of a variable in the brain
is likely to be informative about the constraints and functional priorities
underlying the local neural computation and its downstream uses.

From the point of view of position representation, capacity is impor-
tant if the range of positions to be represented is large and if the required
resolution is high. Arithmeticity is important if the representation is used
to perform incremental position updating as the rat moves around, an
intrinsically arithmetic operation on the metric quantity of position.

Salient properties of grid cells
In recent experiments (Fyhn et al., 2004; Hafting et al., 2005), rats foraged
in 2-D enclosures searching for randomly scattered food pellets while rat
position and the activity of single neurons in dMEC was monitored.

Single cell. Single-neuron activity, when plotted as a function of rat
position, forms a triangular lattice. An individual neuron fires whenever
the rat is in the neighborhood of any vertex of an imagined regular
triangular lattice, overlaid on the explored space (Fig. 1 A, left). The
radius of each of the periodically arranged firing fields is quite large,
extending over one-fifth to one-third of the lattice period.

Because the rat repeatedly visits the same location using different
routes, which elicits a similar position-based grid cell response, the activ-
ity of grid cells is independent of the rat’s path.

The periodicity of the grid is reported to be independent of the shape
or size of the enclosure in which the rat is running (Fig. 1 A, right) (Haft-
ing et al., 2005) [although temporary rescaling may be observed if a
familiar enclosure is suddenly resized (Barry et al., 2007)]. The periodic
response tiles the entire explored area without noticeable distortion of
the lattice close to the boundaries of the enclosure. Based on these obser-
vations, we assume that a similar response will also be observed in far
larger enclosures than used so far in experimental assays.

Cell population, single lattice. Neighboring neurons in dMEC all re-
spond to rat position with the same lattice period (�) and orientation but
typically differ in their relative spatial phases (Hafting et al., 2005) (Fig.
1 B). Together, these neurons cover all possible lattice phases. In other
words, at any rat position, some subset of these neurons is active, the
identity of which can specify the phase of the rat’s position within a unit
cell of the lattice.

As a population, all the neurons with the same period cannot specify
anything about which unit cell the rat is in. The observed population
response is identical for all positions separated by any integer multiple of
the lattice period along either principal lattice direction (Fig. 1 D).

Mathematically, the information represented by the entire local neural
population may be described simply as a 2-D phase within a unit cell of
the triangular lattice. Later, we assume that this phase can only be ascer-
tained up to a certain accuracy, related to the size of the firing field at each
vertex.

Cell population, multiple lattices. Neurons separated by larger distances
along dMEC have different lattice periods (Fig. 1C). The smallest mea-
sured period (at the dorsal end) is �30 cm, whereas the largest measured
period (halfway to the ventral boundary) is �70 cm (Hafting et al., 2005).
By extrapolating (linearly or exponentially) the monotonic trend in lat-
tice periods up to the ventral boundary, the largest lattice period may be
1–10 m.

The radius of the firing field at each lattice vertex scales in direct
proportion to the lattice period, so that the larger period lattice responses
look like globally stretched versions of the responses of cells with smaller
periods.

Table 1. Capacity and �arithmeticity� of the modulo code: comparison with other
systems

“Capacity” refers to how capacity scales. “Algorithmic rules” refers to the ability to represent and compute the
corresponding quantities or inequalities (x, x � y, and x � y) with simple rules and without a lookup table.
“Carry-free” refers to whether arithmetic operations may be performed without carrying over information from one
register to the next. “Narrow range” refers to whether different registers represent similar size scales. The last two
criteria only apply to representational schemes with register structures and algorithmic rules for representing
arithmetic operations. �, Yes; X, no; �, not applicable .

Fixed-base
Modulo

Roman numeral

Algorithmic rules for: 
rep(x) x+y

Unary

Representation Capacity 

~N
~eN

~eN
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Results
To summarize all the observations in Materials and Methods,
dMEC decomposes the 2-D vector of instantaneous, time-
varying rat position into a set of time-varying 2-D periodic vari-
ables, or phases. Each phase is ambiguous about rat position up to
all translations in the infinite plane by any integer multiple of the
period of that lattice, �, along the principal lattice directions.

Formal mathematical description in one dimension
For simplicity, we consider below a purely 1-D analog of the
dMEC representation, described above. Our conclusions on

arithmeticity carry over directly to the 2-D case, and we believe
our conclusions on capacity will, too (see Discussion). In the 1-D
analog, the identity of the active subpopulation within each lat-
tice population � represents a 1-D phase �� given by the
following:

��� x� � x mod ��. (1)

where x is the rat’s internal estimate of its position in space. When
the space is filled with sensory cues, x is essentially the rat’s true
location; if the rat has been moving about in a landmark-free
space, x may be a relatively poor estimate of its location. As short-
hand in what follows, we will frequently refer to x as the rat’s
position, although by x we always mean the rat’s internal estimate
of its position; similarly, we will refer to the rat’s estimate of its
position by the shorthand of “the rat’s position.” �� is the lattice
period of lattice �. The symbol mod represents the modulo op-
eration, which is the remainder after integer division of x by ��

(Fig. 1E), and, without loss of generality, the phases have been
defined to be 0 at x � 0.

Because there are N different neural populations with differ-
ent lattice periods (�1, �2,. . . �N), each position x is represented in
dMEC by the set of phases �� � (x mod �1, x mod �2,. . . x mod
�N), which can be read out as the identity of the active subpopu-
lation within each lattice (Fig. 1D,E).

Interestingly, the representation of a quantity by a set of re-
mainders (phases) after modulo division with a fixed set of mod-
uli (lattice periods), as is happening in dMEC, constitutes an
unusual yet well known numeral system for the representation of
numbers, called the residue number system (RNS) (Soderstrand
et al., 1986). Although it may seem like a strange concept that the
brain might implement a formal numeral system to represent
position, position is after all a metric quantity and one that must
be updated arithmetically as the rat moves. We will see that the
modulo code for position shares some of the best features of the
base-b numeral systems for the representation of numeric quan-
tities (Table 1) and has additional properties that are more ad-
vantageous in the neurobiological context.

Capacity
The one-to-many mapping from phase to position (Fig. 1D,E),
described in Materials and Methods and formalized above,
means that the phase obtained from the population response of
any single lattice is far from a unique specification of rat position.
Assuming no additional dMEC functionality beyond the experi-
mentally observed modulo responses, summarized above, and
without reference to any specific upstream readout or decoding
scheme, we ask whether the set of phases �� � (�1(x), �2(x),. . .
�N(x)) � (x mod �1, x mod �2,. . . x mod �N) is sufficient for
uniquely specifying rat position x and over what range.

Capacity of idealized modular position code
Let us first consider an idealized situation, in which position x
and the lattice periods �� are restricted to be whole numbers and
the phases ��(x) are known without uncertainty. We will later
relax these assumptions. In this case, the properties of represent-
ing a number by its modulo remainders are analytically known.
The Chinese remainder theorem (CRT) can be used to prove that
a modular representation with a relatively small number of mod-
uli (lattice periods) uniquely specifies the input number (posi-
tion) over a large range (Burak and Fiete, 2006; Gorchetchnikov
and Grossberg, 2007).

As an example, consider a simple system with two moduli or
periods, �1 � 3 and �2 � 4. As x increases progressively from 0,
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Figure 1. Schematic of mathematically salient grid cell properties. A, Single-cell activity.
Left, The firing response of one dMEC neuron as a function of real-space rat position, obtained by
summing the response of the cell over time while the rat explores a circular enclosure. Red, Cell
firing. White, Cell quiescent. The cell fires when the rat visits the vicinity of any vertex of a virtual
regular triangular lattice tiling space. The lattice is characterized by its period (blob spacing),
angular orientation (lattice rotation), and phase (lattice translations, which are unique up to
one unit cell). Gray diamonds, Unit cells of the lattice. Right, The lattice period is reported to be
independent of the size or shape of the enclosure. B, The responses of neighboring cells (red,
blue, and green) share a single lattice period and angular orientation. Their firing only differs by
lattice translations or phase. C, At larger separations in dMEC, the responses of different neurons
have different spatial periods. D, The instantaneous rat position (left) corresponds to the firing
of one set of neurons (blue) in a dMEC lattice. The firing of these cells specifies rat position as a
phase within any unit cell of the population lattice (right), but not which unit cell the rat is in. E,
One-dimensional analog: the rat may be at location x0 or at any location x0 � m�, separated by
integer multiples (m) of � (lattice period) from that location, consistent with the phase corre-
sponding to the firing of the “blue” cell.
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�1(x) repeatedly cycles through the values {0, 1, 2}, whereas �2(x)
cycles through {0, 1, 2, 3}. Starting at x � 0, where (�1(x), �2(x))
� (0, 0), the values of the two phases taken as a pair do not repeat
until x � 12, where (�1, �2) � (0, 0) again. This simple system
with N � 2 can represent 12 distinct positions.

In fact for any number N of lattices, the CRT guarantees that
the modulo phases uniquely represent any position in the range
from 0 up to

D � LCM ���|� � 1...N	 � 1 � ��
��1

N

��� � 1, (2)

where LCM refers to the least common multiple. The second
equality holds if the lattice periods �� are co-prime, i.e., they
share no common factors. For the set of five moduli �� � (13, 15,
16, 17, 19), any number in 0 � 1,007,759 is uniquely specified by
its residues or phases, with 1,000,000, for instance, represented by
the phases �� � (1, 10, 0, 9, 11). As in the base-10 numeral system,
where a number as large as 1,000,000 can be represented by just
six registers, here five moduli are sufficient to represent a similar
range.

If, as in dMEC, all the lattice periods are of similar magnitude
(�� � �), the total system capacity according to Equation 2 scales
as �N . Thus, capacity scales combinatorially in the number of
lattices, and the efficiency of encoding a number (position) as a
set of phases or modulo remainders is as high as storing it in any
base-b positional numeral system, where the size of the largest
encodable number (
b N) also grows exponentially with the
number N of registers.

Capacity of grid cells
In reality, lattice periods and rat position are not dimensionless
integers: they are real-valued quantities for which there is no
notion of LCM or co-primeness. Thus, we generalize to the case
in which the lattice periods ��, rat position x, and lattice phases
are arbitrary real numbers (we continue to consider rat displace-
ments in one dimension). In addition, we assume that the width
of the firing fields at each lattice vertex and the stochasticity in-
herent in neural firing contribute to uncertainty in the exact
phase, so that the firing phase of the dMEC population is only
known to finite precision. Results on capacity based on modular
arithmetic and the Chinese remainder theorem no longer apply
under these conditions. In this more realistic case, what is the
capacity of grid cells, and how does it scale?

The exact real-valued phases are still denoted by ��(x) � x
mod ��. Because the responses of neurons with larger lattice
periods resemble uniformly stretched versions of the smaller pe-
riod lattices (Hafting et al., 2005), the width of the neural firing
fields and thus the phase uncertainty ��� is a constant fraction of
the lattice period �� for all lattices. We denote the period-
independent scaled phase uncertainty, which is attributable to
the width of the neural firing fields at each vertex and is between
0 and 1, by �� � ���/��. This error represents the intrinsic error
in the ability of an ideal observer to readout the actual grid phase
�� and should not be confused with errors attributable to path
integration inaccuracies, which produce a mismatch between x,
the rat’s internal estimate of its position, and its true position.

If �� � (6.3, 11.9, 15.4) cm, the phases do not exactly repeat
anywhere in (0, 2356.2) cm, which might naively be thought of as
the capacity of the system. However, if the phases are known only
up to an uncertainty of 1 cm, the range of distances that can be
unambiguously represented is actually much smaller: after an
excursion of 108 cm, the phases are (0.9,0.9,0.2) cm, indistin-

guishable from their values at the origin. Thus, phase uncertainty
can reduce the capacity precipitously, but it remains unclear
whether capacity with phase uncertainties is combinatorial.

By analogy with the integer case, we may estimate the capacity
with phase uncertainties �� as follows. Because each lattice has
approximately 1/�� distinguishable states, the effective number
of states for all N lattices is (1/��)N. The code is fully combina-
torial if the phases visit all these possible states while position is
continuously incremented, before returning to a previously vis-
ited state. The step size to transition from one phase state to
another is approximately ��� (if all lattice spacings are of the
same order of magnitude). This counting argument suggests an
upper bound for capacity,

Dest � �� 1

���
N�1

, (3)

which is only a crude estimate because the phase uncertainties
were not treated in a precise manner. Nevertheless, Equation 3
provides a useful benchmark for comparison with the more rig-
orous results that follow. It indicates that, in a combinatorial
code, the capacity should increase algebraically with decreasing
phase uncertainty �� and should increase exponentially with the
number of lattices N .

To determine coding capacity precisely, we define the follow-
ing distance measure d between the phase vectors �� and �� �:

d��� ,�� �� �

max
� �min� 1

��
��� � ����, 1 �

1

��
��� � ������. (4)

So long as at least one component of the phases differs by more
than the phase uncertainty ��, the distance d � ��, and the
corresponding positions can be differentiated by the phase code.
Conversely, if all the components in the difference are smaller
than the phase uncertainty, then d 
 �� and the phases and
associated positions are not distinguishable. The capacity D, or
the uniquely representable range, is the smallest distance between
any two positions x, x� for which the corresponding phases �� and
��� obey d(�� and ���) 
 ��.

In contrast to the integer case, there is no analytic expression
for how D depends on the set of lattice spacings and on ��. We
therefore evaluate D numerically. The formula for d only involves
the difference between the two phases: d(�, ��) � d(0, ��� � ��).
Thus, without loss of generality, it is sufficient to begin at x � 0
and increase x systematically until the first x* for which the phase
reenters within a cube of side 2�� centered at the phase 0�, so that
d(0� and ��) 
 ��.

To obtain the functional dependence of capacity on ��, we
vary the phase resolution (keeping the number of lattices fixed, at
N � 12) and numerically compute D as above. We find (Fig. 2)
that capacity grows with increasing phase resolution 1/�� as

D���� � � 1

���
Neff�1

, (5)

where Neff � 10.7 is obtained by fitting the capacity curve in the
example of Figure 2. Thus, capacity in the realistic case scales
similarly as in the idealized case, growing as a power of the effec-
tive number of distinguishable states per lattice, roughly esti-
mated by the inverse phase uncertainty, 1/��. However, the
power Neff is slightly smaller than N � 12, the actual number of
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lattices: this modest modification is the price paid for uncertain-
ties in phase and real, not co-prime integer, lattice periods.

Similarly, to determine how capacity scales with N, we vary the
number of lattices (keeping phase resolution fixed). We find that
capacity grows exponentially with the number of lattices N (Fig.
3), scaling as

D�N� � � 1

��0
���N�1�

, (6)

where � � 0.62 is a fit for the parameters of Figure 3. Therefore,
despite uncertainties in phase, the scaling of capacity with num-
ber of lattices is still combinatorially large and comparable with
the idealized case, at the cost of a prefactor � 
 1 in the exponent.
Nevertheless, for generic choices of the real-valued lattice peri-
ods, � is of order unity.

With conservative values for the parameters (N � 12 dMEC
lattices, periods uniformly spaced between 30 and 74 cm, and
phase resolution of one-fifth of the lattice period, �� � 1/5), we

obtain a range for unique position representation of 2000 m per
linear dimension, with a resolution of 6 cm (Fig. 3). This value is
on the correct scale to cover the behavioral range of rat excur-
sions; by including a few more lattices or assuming a somewhat
better phase resolution, it is easy to obtain a nearly astronomical
range of position representation [e.g., (2 � 10 8 m) 2], vastly in
excess of the rat’s behavioral range (Fig. 3).

Even if we assume a high encoding redundancy, with 1000
neurons active per phase and per lattice and with the conservative
set of parameters used in the preceding paragraph, the dMEC
phase code would require only 
5 � 10 4 neurons to cover a
(2000 m) 2 area with a resolution of 6 cm per side. [The entorhinal
cortex in rats contains �10 5 neurons (Amaral et al., 1990; Mul-
ders et al., 1997), which provides an upper bound for the total
number of neurons in dMEC.]

Let us briefly reconsider dMEC information content from the
point of view of single neurons. If a neuron fires in a lattice with
phase resolution 2�/5, the rat can be localized to within �1/5 of
the area; assuming 1000 active neurons per phase and per lattice
as above (i.e., assuming that each lattice comprises 5000 neurons)
yields a minuscule estimate of 0.001– 0.003 bits per dMEC neu-
ron. Thus, the capacity of the single neuron code or even the full
population code in a single lattice is shockingly small, reminis-
cent of the low capacity for dense distributed codes in associative
networks (Foldiak, 2002). However, when neurons are added to
form a new lattice, they enlarge the overall capacity exponentially
(Fig. 3) rather than algebraically, as they would for neurons
added to an existing lattice population (Fig. 2). Total dMEC ca-
pacity is therefore combinatorially large, produced by pooling a
number of independent, low information content networks into
a structured population-of-populations or “meta-population”
code.

Comparison with place cell coding. We have seen (Fig. 3) that
with 
5 � 10 4 neurons, the modulo code in dMEC can easily
cover 2000 m with 6 cm resolution per linear dimension. This
compares favorably with the rat’s behavioral foraging range, es-
timated at 100 m to 1 km per linear dimension (Recht, 1988;
Miller and Clesceri, 2002; Russell et al., 2005). If dMEC were
instead to encode position-like idealized place cells (strictly uni-
modal grandmother-cell representation of position), it would
require �10 10 neurons to cover the same dynamic range, even if
we assumed a very low redundancy of 10 neurons active per (6
cm) 2. The rat hippocampus contains only �10 6 neurons (Ama-
ral et al., 1990). With these neurons and an idealized place cell
code, the hippocampus would be able to cover a range of at most
20 � 20 m, even with nearly no redundancy. The contrast in
capacity between the idealized place cell and modulo residue
codes is even more dramatic if entorhinal cortex is assumed to
contain 24 lattices instead of 12 (Fig. 3). Even with quite conser-
vative estimates, therefore, the phase code for position is vastly
more efficient (as quantified by the ratio total capacity/number of
cells) than an idealized place cell code.

The large capacity of dMEC has many potential uses. The large
range of the dMEC code together with the regular position-based
firing of grid cells suggests that dMEC forms the primary repre-
sentation of position in the rat brain and can provide unique
modulo phase labels for every possible location in the large for-
aging range of rats (corresponding to scales much greater than
the periods of individual lattices). Furthermore, the capacity is
large enough for the representation to have high resolution at
each location. These properties together suggest, independently
of dynamical considerations or network modeling (Burak and
Fiete, 2006; Fuhs and Touretzky, 2006; McNaughton et al., 2006;
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Figure 3. Capacity grows exponentially with the number of lattices. A, The maximum
uniquely representable distance, D, grows exponentially with the number of lattices, D � (1/
��0)� (N � 1). For all lattices, the phase resolution is ��0 � 1/5; as in Figure 2, the first lattice
period is 30 cm, with 4 cm increments per subsequent lattice. The fit parameter is �� 0.62. Red
dot, N � 12. Green dot, N � 24. B, Twelve lattices with uniformly spaced periods from 30 to 74
cm with �� � 0.2 can unambiguously represent an 
2 � 2 km area with a 6 � 6 cm
resolution. If 5000 neurons build each lattice, that would require 
5 � 10 4 neurons. To cover
the area with sparse unimodal place cell-like encoding [with 10 neurons per (6 cm) 2 block]
would require 
10 10 neurons compared with the estimated 10 5 neurons in rat dMEC (Amaral
et al., 1990; Mulders et al., 1997), which could unimodally represent at most 
6 � 6 m with a
(6 cm) 2 resolution. With 24 lattices, D 
 2 � 10 5 km (with a 6 cm resolution) in each direction,
hugely in excess of the representational requirements of rats.
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Burgess et al., 2007), that dMEC could be the elusive neural inte-
grator of idiothetic rat motion cues (Hafting et al., 2005). Excess
capacity may be used for error correction (discussed below) in the
representation of position or to build multiple independent rep-
resentations of space based on context [“multiple cognitive
maps” (McNaughton et al., 1996; Touretzky and Redish, 1996;
Redish, 2001)] (discussed below).

Beyond capacity
Beyond high capacity, the modulo code has several useful fea-
tures and implementational advantages for position representa-
tion and updating, as described next. For simplicity, we will fre-
quently use examples with lattice periods treated as integers, but
the properties described below apply directly to real-valued lat-
tice periods as well.

In parts of this section, we compare the modulo code with
positional base-b systems. In light of the structure of the dMEC
code for position and its correspondence with the RNS, it is not
outrageous to imagine that the brain could instead have used a
base-b positional numeral system to represent the numeric quan-
tity of position [in the positional base-b system, the pth register
represents (x mod �p) with resolution b p, where �p � b p �1].
Therefore, it is possible to debate the relative merits of the two
representation schemes.

Narrow range of grid periods: similar lattices without capacity cost
Modular representations allow great flexibility in the choice of
moduli or lattice periods: the periods may span a geometrically
large range, as in positional base-b systems (Fig. 4A, second row).
In the base-b systems, the ratio of the maximum to minimum
register sizes must equal the dynamic range (range over resolu-
tion) of the represented quantity. For a number represented by
six registers (digits) in the decimal system, the largest register
represents the hundreds of thousands scale, whereas the smallest
represents ones. In the modular system, however, it is possible for
all the moduli to be of the same magnitude, without sacrificing
capacity (Fig. 4A, third row).

The sizes of the different registers also dictate how rapidly
those registers change as the represented quantity is varied: the
Nth register in a base-b scheme increments b N�1 times more
slowly than the first register, whereas in the modulo scheme with
approximately equally sized moduli, all registers increment at
approximately the same rate (Fig. 4B).

What is the biological relevance of this observation? To gen-
erate lattices that span a very large range of sizes (e.g., several
decades, as might be the dynamic range of position representa-
tion, estimated from dMEC capacity) requires the existence of
parameters in the underlying network that span a similarly large
range, a difficult task. Instead, the modular system may have an
arbitrarily large dynamic range (with a suitable number of lat-
tices), with a narrow dynamic range in the parameters of the
dMEC network. This property allows dMEC to maintain a high
capacity with periods that are approximately within a factor of 10
of each other in size.

A corollary of the narrow range of periods allowed in the
modular representation is that the different lattices share infor-
mation about rat position “democratically.” In the base-b nu-
meral systems, removal of the leftmost lattices would leave infor-
mation about small rat displacements intact but obliterate
knowledge of the large-scale position of the rat, whereas removal
of the rightmost set would have the converse effect. In the mod-
ular system, information from all scales is present in every lattice
(Fig. 4B). Lesioning a few dMEC lattices beyond the number that

provides redundant coding of position (see below) should de-
grade navigational behavior equally at all scales, big and small,
larger than the individual lattice periods.

Carry-free arithmetic: independent position updating
across lattices
In the modular representation, operations such as addition, sub-
traction, and multiplication are completely parallelized: if there is
a wraparound in one of the registers, no information is passed to
other registers to obtain the correct sum (Fig. 4B). This is be-
cause, if a� � a mod �� and b� � b mod ��, then a� � b� � (a �
b) mod ��, or, in other words, the sum of two numbers is simply
the modulo sum of their phases, computed separately for each
register or lattice. (In contrast, in the fixed-base numeral systems,
whenever one register wraps around, the next register must be
incremented by an appropriate amount by carrying the
spillover.)

This property of modular arithmetic has long been appreci-
ated and exploited in computer science. Computer hardware de-
signed to operate on the RNS instead of binary has been used to
produce large speed boosts by avoiding the overhead of carrying
numbers in applications such as signal processing, cryptology,
and RSA, which involve repeated addition and multiplication
steps (Soderstrand et al., 1986; Mohan, 2002; Bajard and Imbert,
2004).
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1
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800,000     =     (8, 14, 0,  5, 12, 6)
45     =     (9, 11, 13, 0,  3, 6)

modulo 1,113,840(18,  17,  16,  15,  14,  13)

modulo 
(18, 17, 16, 15, 14, 13)

decimal

800,001      =     (9, 15, 1,  6, 13, 7)

 B

Figure 4. Neurobiologically useful properties of the modulo code. A, Similarly sized regis-
ters. Six registers can represent numbers in the range 0 to (10 6 � 1) in the decimal fixed-base
positional numeral system. However, the leftmost register represents quantities that are one
million times larger than the rightmost register, and increments one million times more slowly
as the represented quantity is varied. Registers in the modulo code may also span a large range
(middle row) but, importantly, may be chosen to be similar in size (bottom row). B, Similar
update rates. With similarly sized moduli (shown in gray), all registers are equally important for
representing position at all scales (compare the representations of 45 and 800,000), and all
registers increment at similar rates as position is varied (compare the representations of
800,000 and 800,001). C, Parallel, carry-free position updating. Left, Summation of 97 with
entails a carry operation when the 1’s register wraps around in the decimal fixed-base numeral
system. Right, In the modular phase representation with moduli (7, 6, 5), the same numbers
[97 � (6, 1, 2) and 4 � (4, 4, 4)] sum to 101 � (3, 5, 1). The register corresponding to the
modulus 5 wraps around because 2 � 4 mod 5 � 6 mod 5 � 1, as does the register corre-
sponding to 7, because 6 � 4 mod 7 � 10 mod 7 � 3. However, no information is carried to
other registers to produce the correct result. (The examples above use integer moduli, but the
principle holds for reals.)
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Why is this seemingly abstract feature of modular arithmetic
relevant for position representation in neurobiology? As the rat
moves from x to a new location x � �x, the mental representation
of its position must be updated by addition of the displacement
vector �x. Because of the carry-free property of modular arith-
metic, each lattice can directly (in parallel) use feedforward mo-
tion inputs to add �x to its previous phase to obtain the correct
phase for the new rat position. There is no need to sum spillovers
from, or pass spillovers to, other lattices, even when a phase
wraps. Although positional information is distributed across lat-
tices, no coordination (and therefore no recurrent processing) is
required between lattices to update position.

The carry-free property of the dMEC code shows that the
dMEC representation is well suited for summing incremental
movement signals to update its state, again suggesting, indepen-
dently of any dynamical considerations or modeling (Burak and
Fiete, 2006; Fuhs and Touretzky, 2006; McNaughton et al., 2006;
Burgess et al., 2007), that dMEC might be the locus of idiothetic
path integration in the brain (Hafting et al., 2005).

Distance metric is not preserved for metric comparisons
If the rat moves by an amount much smaller than the period of
the smallest lattice (�min), the updated phase vector is close to the
original phase vector. For instance, if the rat started at position
x � 0 with phases (0, 0, 0) for a set of lattices of periods (17, 18,
19), the metricity of real space is preserved in the phases for
excursions smaller than 16 steps. Thus, the grid cell representa-
tion can be directly and easily used over these scales to make
metric comparisons of distance.

Over large distance scales, metric information is not lost in the
modular dMEC code, because the mapping from position to
phases is unique and the map has an exact inverse, but making
real-space distance comparisons is difficult. This is because far-
away points are regularly mapped very close to each other in the
grid cell representation. In the example above, the nearby phases
(16, 16, 16) and (16, 17, 18) represent x � 16 and x � 5813, which
are separated by 5797 steps, nearly the full range of the represen-
tation. Figure 5 illustrates that points in the space of modulo
phases do not share the same metric as points in real space (rat
location). The cross-correlation of the dMEC population vectors
corresponding to locations x, x� � x � �x decays monotonically
with �x over short distances (�x smaller than the blob width in
the largest lattice), but, over larger distances, the correlation var-
ies non-monotonically with separation �x. Thus, beyond the
width of a blob, closeness in real space is unrelated to closeness in
the grid cell representation, and a simple linear readout (or even
a linear summation followed by a monotonic nonlinearity) of
dMEC cannot compute distance in real space.

This observation prompts the question of whether the brain
translates the grid cell representation into a form that is more
amenable to explicit metric computations (and, if so, how) or
whether it uses the phases of entorhinal cortex to perform other
navigation-related tasks that do not require explicit inversion and
metric comparisons. We consider this question below (see below,
Downstream uses of the grid cell code).

Robustness
In principle, the potentially vast excess capacity of dMEC (Figs. 2,
3) can be used to redundantly represent the same information so
that faulty phases may be corrected. In the context of error cor-
rection, the fact that small perturbations in phase correspond to
large differences in the represented position is an asset. Let us
consider one, not necessarily optimal, example of error correc-

tion [see other examples by Soderstrand et al. (1986) and Mohan
(2002)]. For lattice periods (15, 17, 19, 22), the unique represent-
able range is [0, 62985]. If the rat never ventures outside the range
[0, 250], position can be represented by any two of the four lat-
tices, rendering the other two redundant. In the modular repre-
sentation, 200 � (5, 13, 10, 2). An error of �1 in any one of these
phases corresponds to positions �6000. Because any of these
perturbations to the phase vector represents positions far outside
the range of interest, an error is easily flagged even without know-
ing which phase is wrong. Ignoring one of the correct lattice
phases does not produce candidate positions in the range of in-
terest; ignoring the incorrect phase does produce a candidate
position in the relevant range, which is the true position. In short,
dropping phases typically produces exact error correction (if the
original error was in the form of small perturbations to a few
phases), even without knowledge of the correct phase vector or
the identity of the wrong phase.

Downstream uses of the grid cell code
We emphasize that, until now, we have simply characterized or
mathematically elucidated the properties of the grid cell code for
position. Therefore, our analysis has been model-free. Next, we
consider possible ways in which the grid cell code for position
may be read out by downstream areas. What follows is necessarily
more speculative.

Let us consider a concrete example: suppose that, for the set of
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Figure 5. Decorrelation of dMEC population response with distance. Black line, Cross-
correlation between the full dMEC vectors (representing activity in all phases, all lattices) cor-
responding to pairs of locations separated by distance �x. Green (pink) curves show cross-
correlations for the dMEC phase vector of only the two smallest (largest) lattices. The dMEC
population correlation is high and monotonically decreasing with �x for small separations
(central peak, magnified in rightmost inset): in this regime, distances in the space of dMEC
responses are proportional to distances in real space. However, the dMEC population vector has
completely decorrelated for �x, comparable with the width of a blob in the largest lattice
[full-width at half-maximum (FWHM) of 
18 cm; the central peak width in the green (pink)
curve is approximately the blob width in the smallest (largest) lattice], beyond which dMEC
correlations begin to vary nonmonotonically. Middle insets, Two-sample dMEC population vec-
tors, representing two positions separated by �x � 140 cm, to illustrate the degree of decor-
relation in the population activity. The abscissa shows the index of different lattices, arranged in
order of increasing period. The ordinate shows the phase of the active population within the
corresponding lattice. Grayscale intensity represents the analog level of activity (black is maxi-
mally active). Middle left, The population vector at x � 80 cm; middle right, the population
vector at x � 220 cm. Parameters: N � 12 1-D lattices, periods uniformly spaced in (30,74) cm.
The binary population vector � (N � M dimensions) has �(�, i) � 1 if i � ceil[M (x mod
��)/��] and 0 otherwise. M � 100 is the number of different phase bins per lattice. The
population activity vector r�� {r�,i} is the convolution within each lattice of the phase vector
with a Hanning kernel, so that, although the activity of the �, ith phase group peaks at ��,i, it
also responds to neighboring phases, with FWHM of 1/4 of the total lattice period.
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lattice periods (15, 17, 19, 22), the phase vector at some perceived
location x* reads ��* � (5, 13, 10, 2). The readout may treat this
phase vector as a unique neural label or name for x* (unique over
a range of 62,985 units), without using the fact that ��* corre-
sponds to a displacement of 200 units from �� � 0�. Alternatively,
the readout may actually perform the inverse mapping from
modulo phases to displacements, to obtain and exploit the metric
information inherent in the modulo code.

We refer to these two complementary, and not necessarily
mutually exclusive, readout possibilities as (1) a place-label read-
out and (2) an explicitly metric readout and discuss each below.
We pause briefly here to stress that we are only considering how
the grid cell phases �� , which represent x, the rat’s estimate of its
location, are read out and used downstream in the brain and not
whether x is an accurate estimate of the actual rat position. Ad-
mittedly, the utility of any readout of x depends on whether x is
itself a reasonably good estimate of the rat’s true position over the
relevant scales; purely idiothetic path integration may produce
large errors in position estimation. However, what is considered a
sufficiently accurate estimate to be useful may depend on the
task. In what follows, we assume that the dMEC position estimate
is arrived at based on a combination of path integration compu-
tations and external sensory cues (landmarks), which can correct
gross errors in position estimation (Etienne et al., 2000).

Place-label readout
The position code in dMEC is distributed and dense. Distributed
dense codes can have a high capacity in the sense that they can
represent a large number of variables with relatively few neurons.
However, a well known problem with distributed dense codes,
made much worse if the code consists of graded activity patterns,
is that they are difficult to read out by neural networks, because
different code words or labels can have large overlaps with each
other (Foldiak, 2002). For instance, if the code words consisted of
the analog firing patterns of a neural population (e.g., a rate-
based code), all neurons would fire at most locations, with the
primary difference between different words being the graded lev-
els of activity. The dMEC code ameliorates this problem while

maintaining a fully combinatorial capacity
because each place name is based predom-
inantly on the identity of active neurons
(whether a neuron is active or not), not
their rates. Thus, the dMEC code, al-
though itself dense, nevertheless facilitates
the formation of a sparse place-label read-
out (like place cells in hippocampus), in a
way that dense graded codes cannot.

The place-label readout can help with
certain navigation tasks and not others.
Because place labels do not extract the
metric information present in the dMEC
phases about the rat’s location, they can-
not be used to compute and represent vec-
tors for straight-line homing to a location
after random excursions from it, over large
ranges and in general environments. Nev-
ertheless, place labels can be instrumental
in navigation, as we describe below.

If grid cell phases are at least partly
based on integrated rat movement signals,
whether computed within dMEC or else-
where, the phase labels would enable the
rat to know that it has arrived at a land-
mark even when the sensory marker for

that landmark is absent or its appearance has changed (Fig. 6B)
because the grid cell phase labels, computed by summing dis-
placements as the rat arrives at the location from home, will be
the same. Similarly, the rat can discriminate between two differ-
ent but similar-looking locations (Kuipers, 2000) (Fig. 6A) be-
cause the grid cell phase labels for the two locations will be dif-
ferent. Thus, although place labeling constitutes a non-metric
readout of the grid cell code, its most useful properties from the
point of view of navigation actually arise if the labels are derived
and updated using strict metric rules for movement-based
integration.

Place cells in the hippocampus may be viewed as the sparse
readouts of the unique but distributed place labels given to loca-
tions by dMEC. In fact, recent modeling studies have shown how
sparse place cells might be constructed from dMEC inputs, using
appropriate feedforward weights between dMEC and the hip-
pocampus [by summing input from grid cells with different pe-
riods and phases chosen so that the grid cell responses have peaks
at the place field center (O’Keefe and Burgess, 2005; Rolls et al.,
2006; Solstad et al., 2006; Franzius et al., 2007)]. This observation
suggests that dMEC place labels are useful in navigation for many
of the same reasons as have been widely proposed for place cells;
for instance, the sparsened place cell readouts of the dMEC place
labels can, together with the help of associative learning, form
memories that chain together sequentially visited locations to
aide in the learning of specific landmark-based routes between
locations (Blum and Abbott, 1996; Redish and Touretzky, 1998;
Foster et al., 2000). Additionally, if dMEC is the path integrator
and if the connectivity from dMEC to place cells and back is
symmetric, then place cells in the hippocampus, if anchored to
landmarks through sensory inputs, can be used to reset the dMEC
phases and correct errors in the internal estimate of position
(Redish and Touretzky, 1997; Samsonovich and McNaughton,
1997; Redish, 2001; O’Keefe and Burgess, 2005).

In the typically small areas (long 1-D tracks or �1 m diameter
enclosures) used in experiments, hippocampal neurons tend to
form unimodal place fields that resolve position with relatively
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Figure 6. Uses of the grid cell code: nonmetric place-label readout. The black square represents home base or the rat’s starting
location. A, Metrically updated place labels that themselves convey no metric information can help to differentiate separate but
similar looking locations (x0 vs x1). B, A landmark may change appearance over time; however, the metric updating of dMEC
phases as the rat moves from a reference point to the landmark generates an invariant dMEC phase vector at the landmark. The
consistent dMEC state helps to correctly identify a location despite the inconsistency of sensory cues.
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high accuracy and appear to cover the space roughly uniformly
(O’Keefe and Dostrovsky, 1971; Wilson and McNaughton,
1993). Above (see Capacity), we concluded that hippocampal
capacity rules out the possibility that large enclosures could be
fully remapped with high resolution [
(10 cm) 2] using idealized
unimodal place cells. Thus, we predict that in large enclosures,
sparse location labels in the form of unimodal place cell firing
cannot be assigned uniformly. Instead, place cells that continue
to fire unimodally in large enclosures must disengage from uni-
formly covering all space with narrow place fields and only rep-
resent select locations (e.g., edges, landmarks, rewarded loca-
tions, etc.) with high resolution.

An alternative possibility is that hippocampal place cells will
display multimodal firing fields in larger enclosures. Indeed,
some place-sensitive cells in hippocampus fire at multiple loca-
tions in an enclosure (McNaughton et al., 1983; Muller et al.,
1987). If multimodal responses are the norm in large enclosures,
the hippocampal code for place is actually a (sparse) combinato-
rial code rather than a grandmother-cell code, and cells with
multimodal responses cannot properly be called place cells. The
resolution of this issue remains an important topic for experi-
ments to address. Our capacity statement is not in contradiction
to this alternative; we simply note that, if place cells retain their
hitherto observed unimodal firing characteristic in large enclo-
sures, they cannot match (or even approach) the range and reso-
lution of positional information in dMEC.

The prediction of selective, highly non-uniform assignments
of place fields in larger enclosures (if they remain unimodal) is
qualitatively different than would be expected if place cells were
the primary general-purpose encoders of rat position and if they
were the loci of neural path integration, as suggested by some
models (Samsonovich and McNaughton, 1997; Tsodyks, 1999),
because path integration relies critically on translation invariance
in the representation of space. Indeed, consistent with our pre-
diction, several experiments show that place field coverage can be
highly non-uniform (Eichenbaum et al., 1989; O’Keefe and Bur-
gess, 1996; Hartley et al., 2000; Hollup et al., 2001).

Because the primary role of dMEC in the place-label scenario
is to label locations, the absolute phase values are crucial (in
contrast to relative phase differences between positions, as in the
explicitly metric readout scenario described below). Thus, if the
rat arrives at a landmark that it recognizes from sensory inputs as
familiar but by starting from an entirely novel location without
landmarks along the way, so that its phase vector on arrival is not
the same as its phase vector at previous visits to that landmark,
the dMEC state should abruptly reset to the previously assigned
phases.

Another reason why absolute phases may be important is if the
dMEC code signals context in addition to position. dMEC may
represent non-metric quantities such as context but also retain a
purely metric representation of space locally (over large spaces)
by breaking up its vast capacity of states into contiguous blocks,
with each block representing space metrically but different blocks
representing that space in different contexts (“multiple cognitive
maps”).

A pair of phase vectors corresponding to a massive difference
in the represented position (e.g., by an amount larger than a rat’s
range) could be used to represent the same point in space in
different contexts. Within this picture, a context-dependent
remapping of space corresponds to a differential shift in the phase
across lattices. For hippocampal place cells, generated by sum-
ming several dMEC inputs, this dMEC remapping should pro-
duce a visually dramatic transformation, with fields appearing in

new locations and disappearing from old locations, or with cells
that were previously inactive in an area becoming active, and vice
versa.

Explicit metric readout
For a rat to perform navigation tasks such as estimating the di-
rection and straight-line distance toward home following ran-
dom foraging trajectories (Fig. 7C), it needs to (1) estimate its
current position from its displacements and any available sensory
cues, and (2) compute a homing vector that points from its cur-
rent position to home, from which the direction and distance to
home can be read out. Even if a rat is incapable of computing an
accurate straight-line homing vector over large scales, it is likely
that the animal must have a vague sense of the direction back
home; similarly, it must be able to approximately gauge the rela-
tive straight-line distances from home to two different and dis-
tant food sources (e.g., which one is closer to home), even if it
took a circuitous trajectory to each one. Because dMEC phases
encode the coordinates of the rat’s current location, dMEC al-
ready reflects the results of computation 1 above (whether the
computation to estimate the rat’s position is done by dMEC or an
upstream area). Additionally, because dMEC phases are always
relative to a starting phase, dMEC also encodes the vector dis-
placement of the rat relative to the reference location, informa-
tion necessary for performing computation 2.

However, metric information about rat displacement con-
tained in the dMEC code is difficult to extract. This is because, as
noted earlier, it is not possible for a single-layer neural network
readout to reconstruct metric quantities relating to the rat’s po-
sition in real space from the dMEC code, for general values of the
rat’s possible location. Therefore, we expect that converting the

max

||x||

A

C

x

y

x

y
B

rr

θ

x
λ

Figure 7. Uses of the grid cell code: explicit metric readout. A, An example of an explicit
metric readout of the dMEC phase code: if the firing rate of a readout cell is proportional to
displacements of the rat from a starting location, small changes in the neural response corre-
spond to small changes in rat location and vice versa and constitute an explicitly metric code for
displacement. Top, 2-D; bottom, 1-D. B, An example metric readout for angular displacements:
the firing of a cell is proportional to closeness to a reference orientation. Top, 2-D; bottom, 1-D.
C, Explicitly metric readouts may be used to compute the straight-line path home after random
excursions over long distances. The black square represents home base.
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dMEC code into an explicitly metric representation useful for
homing requires a dedicated processing network. By explicit met-
ric readout, we mean the transformation of the dMEC code into
another representation that represents (through a continuous
mapping from space to neural representation and vice versa)
metric properties of space in a way that distance or angular com-
parisons can be made without a lookup table, for instance, one in
which cells fire whenever the rat is at a particular angle (or dis-
tance) from the home base (Fig. 7A,B).

It is possible for a neural network-like readout to convert
modulo phases into an explicitly metric representation, as de-
scribed in Appendix. The particular network in Appendix in-
volves recurrent circuitry, but it may be possible for another net-
work to accomplish the task using a multilayered architecture
instead.

It is unknown whether behaviorally rats can compute rough
homing vectors over displacements that are large compared with
the lattice periods in dMEC and, thus, whether they possess the
computational ability to invert the modulo phase code for posi-
tion. Rats can home accurately, even without any external sen-
sory feedback, after random foraging excursions in enclosures of
	2 m diameter (Whishaw and Maaswinkel, 1998). However,
over such short distances, homing may not require a separate
explicitly metric readout, because the grid cell representation
metrics resemble real-space metrics (Fig. 5).

Suppose that physiology experiments locate neurons in the
rodent brain whose responses are explicitly metric functions of
position over large distances and are independent of the taken
path. Such neurons, if they exist, are likely to be the explicit
metric readouts of the dMEC phase code. The existence of these
neurons is likely to be predictive of behavioral abilities in rats to
estimate the distance or angle toward home over large excursions
(Fig. 7B).

Conversely, suppose that behavioral experiments in large en-
closures find that a rat can perform roughly straight-line homing
after random trajectories that take it farther than �max from
home. Such behavioral abilities suggest the likely existence of
neurons with an explicitly metric readout of rat position from
dMEC. The potential to home over distances greater than �max

based on dMEC input is a qualitatively, not quantitatively, differ-
ent phenomenon than homing over short distances, because it
requires an entire machinery for the construction of explicit met-
ric readouts and is open for behavioral testing.

Finally, if the dMEC code were only used in the computation
of homing vectors, differences in the grid cell phases vectors be-
tween two locations might be far more important than absolute
phases. In such a situation, specific sets of phases need not be
attached consistently to a set of landmarks; rather, the dMEC
phase assignment could be arbitrary for encounters with the same
landmark on different days and occasions, as long as phase dif-
ferences between different locations were consistent along the
animal’s foraging path.

Experimental tests
Our only assumption, or central premise, in the analysis of the
grid cell code (capacity and arithmetic properties) was that grid
cells with a regular periodic response as a function of position
remain periodic with unchanged periods in any enclosure, in-
cluding in enclosures of size ���max [e.g., �(50 m) 2] and that
their response remains independent of path. Current evidence
from experiments in small enclosures suggests that this assump-
tion is correct, but it will be important to test it directly when the
net displacement in rat position is large. Sampling a few activity

blobs in each of two distant neighborhoods within the large en-
closure is sufficient to determine both path independence and
periodicity.

Once the above assumption is made, the properties of the grid
cell code follow automatically from pure mathematical principles
and are therefore model independent. For example, the capacity
of the code does not depend on how grid cell activity is processed
in downstream areas of the brain. In other words, the character-
ization of the properties of the grid cell code for position neither
depends on nor implies any specific model for the generation or
readout of grid cell firing. Can we use this characterization of grid
cell response to propose hypotheses that can be tested and
falsified?

We have established that grid cells unambiguously specify rat
position over a large range and that the dMEC code has notable
implementational advantages for position representation and in-
cremental updating. The primary testable hypotheses emerging
from these considerations, which are complementary to ap-
proaches based on modeling network dynamics, is that dMEC
must be the primary neural representation of rat position in large
2-D environments (based on capacity) and is likely to be the locus
of path integration in the rat brain (based on arithmeticity and
capacity). When results on the general properties of the dMEC
code are combined with assumptions about how downstream
areas may use dMEC inputs to perform spatial tasks, it is possible
to generate more specific experimental predictions.

General predictions, independent of readout scheme
(1) The arithmetically convenient properties of the grid cell code
for position suggest that dMEC is the idiothetic path integrator in
the rat brain. The most basic test, not yet performed, is to deter-
mine whether grid cells reflect path-integrated responses in the
absence of all spatially informative external sensory cues, i.e.,
does activity remain grid-like? The next is to pinpoint the locus of
path integration through selective lesion of grid cells or their
input fibers. Studies involving selective lesion and behavior show
that entorhinal cortex is part of the path integration circuit
(Alyan and McNaughton, 1999; Parron and Save, 2004) but have
not probed the specific contribution of dMEC.

(2) The large range (���max) of unique position representa-
tion suggests that dMEC is the primary repository of general-
purpose, high-resolution and large-scale position information in
the rat brain, quite independently of whether or not it performs
path integration. In an experiment that is not yet technologically
feasible, but could be in the future, the hypothesis that the rat uses
the dMEC code as its primary reference for its sense of position
could be directly tested. Shifting the phase vector by ��� � �x
mod (��) should produce a shift by �x in where the rat thinks it is.
(Where the rat thinks it is could be assayed easily by whether the
rat freezes or displays other unconditioned aversive responses, if
the shifted location corresponds to where the rat has received
multiple foot shocks or some other aversive stimulus.) The ex-
periment to shift the dMEC phases requires activation of a spe-
cific phase vector in dMEC. Because neurons in dMEC do not
appear to be physically grouped by phase, this experiment re-
quires tools capable of identifying and stimulating groups of
functionally related neurons.

(3) The similarly sized periods of grid cell lattices imply that,
in any spatially information-rich readout (metric or non-metric,
but over large spaces), each readout cell must pool input from
many or a majority of dMEC lattices. This is because small num-
bers of lattices do not uniquely specify rat position and because
lattices of all periods share information about rat position equi-
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tably. Indeed, neurons in the septal (dorsal) half of the long axis
of the hippocampus do appear to receive inputs from across the
dMEC band (Witter and Groenewegen, 1984).

(4) For capacity scaling, rats with partial lesions that spare
linearly increasing numbers of grid lattices should display expo-
nentially better performance, toward normal. This prediction
can only be probed in enclosures ���max, because it is at this scale
that information must be pooled across lattices to uniquely spec-
ify position.

Predictions specific to the place-label readout scheme
(5) A rat with a large dMEC lesion (missing most lattices) should
be unable to recognize the same location if it looks different after
excursions ���max. Such a test could involve an annular enclo-
sure with radius ���max in which the rat runs unidirectionally,
with landmarks strewn along the circumference, including a spe-
cific landmark (that changes appearance or disappears between
visits) at which, on the rat performing a specific behavior, a food
or drink reward is given. A control rat should be able to do this
task.

(6) A rat with a large dMEC lesion will be unable to disambig-
uate two similar-looking locations separated by a distance
���max, even if it is able to do so over distances comparable with
a lattice period. The experimental setup could be the same as
above but with one rewarded and one nonrewarded location,
both of which look similar. A control rat should be able to do this
task.

(7) Place cells cannot form a general-purpose, high-resolution
representation of all space in enclosures of size comparable with
the foraging ranges of rats (like dMEC can) with a unimodal
place-like code; instead, spatially compact place fields will only
form at salient locations.

(8) For multiple cognitive maps and remapping, differential
shifts in the phase across different lattices in dMEC should cause
global remapping of many place cells in the hippocampus. Exper-
iments show that global place cell remapping is accompanied by
phase shifts in dMEC (Fyhn et al., 2007); however, these experi-
ments have not probed whether the phases in different lattices of
the same rat shift by different amounts, as we predict.

Predictions specific to the metric readout scheme
(9) dMEC is necessary for homing over distances ���max, if the
rat can do such homing.

(10) If the rat can home over distances ���max behaviorally,
there must be a separate readout area that pools inputs from
dMEC and generates an explicit metric representation of posi-
tion. The converse is likely to be true too: if a readout area exists
that pools input from many dMEC lattices and has an explicit
metric representation of space over distances ���max, then the
rat is likely to be able to home over those scales. (An explicit
metric readout is not necessary for homing over distances
��min.)

(11) When the enclosure is changed from a square to a circle
(inscribed in the square), the period of the recorded grid cells is
observed to grow slightly (Fyhn et al., 2007). If the percentage
change in grid cell period is coherent across all lattices of an
individual, this would correspond to a scaling of space and pro-
duce a small misestimate of position by the same amount as the
scaling of the grid periods. If different lattices within one animal
were to expand by different amounts, that would produce a seri-
ous problem for the metric readout mechanism. A metric read-
out can remain a viable possibility, only if different grids change
in a consistent way.

A common theme in many of these predictions is that exper-
iments in much larger enclosures, either in real space, aided by
advanced telemetry, or in virtual space (Dombeck et al., 2007),
should yield qualitatively, not just quantitatively, new insights
about navigational computation and the representation of space
in the rat brain.

This particular list of predictions is the product of our limited
imaginations. A modulo code for position in dMEC is likely to
have numerous other testable implications, to be imagined by
others, for experiments involving contextual place cell remap-
ping, readout neurons, and lesions.

Discussion
Summary
We analyzed the relationship between two simultaneously re-
corded quantities: rat position and dMEC activity. For this rea-
son, we did not have to rely on models of the dynamics of re-
sponse generation in grid cells or on models for the readout of the
grid cell code. The characterization of the transformation from
position to grid cell response followed from purely mathematical
principles and allowed us to deduce the capacity and arithmetic
properties governing position representation in the grid cell code.
The large range of the dMEC code for position suggests that
dMEC is the primary neural repository where the rat stores its
estimate of position over large scales (however rough that esti-
mate might be) and to which the rat refers for obtaining a sense of
its location. The high-resolution and carry-free arithmetic prop-
erty of the code hint that dMEC is the idiothetic path integrator
and that it may provide fine spatial information for tasks relating
shorter segments of the trajectory. Finally, the many unique
properties of modular codes constrain the ways in which dMEC
phases may be used by readout areas for navigation, leading to
testable predictions about the properties of potential readout
schemes.

The present work has considered the properties of the dMEC
modular code for representing estimated position; it has not been
concerned with how well the estimated position approximates
the rat’s true position, but ultimately, the utility of both our
proposed readout schemes (and for that matter, the general util-
ity to the rat of retaining any internal estimate of position) will
hinge on the accuracy of the internal position estimate. If the
error in the internal position estimate is similar to the rat’s dis-
tance from home, there is little value in storing a representation
of position or constructing readouts from it. However, if, with
help from sensory cues, the position estimate error is smaller than
the total distance from home, both readout schemes could have
complementary uses for spatial navigation.

Codes in the brain
It is extraordinary that dMEC has devised an encoding scheme
for position, analogous to the residue number system, that is
simultaneously combinatorial in capacity, has a register structure
(by virtue of positional information that is broken down and
distributed across lattices in a structured meta-population code),
and is amenable to parallelized arithmetic operations for incre-
mental position updating. The capacity and register structure of
the grid cell code make it comparable, for the representation of a
numeric quantity (position), to the fixed-base positional nu-
meral systems, among the most highly developed human tools for
this purpose (Table 1). The carry-free arithmetic property and
narrow register range of the modular code actually make it imple-
mentationally superior to fixed-base numeral systems for posi-
tion representation in the neurobiological context.
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To our knowledge, a numeral system neural code is unique
compared with all other known examples of coding in the brain
(Abbott and Sejnowski, 1999), for instance, codes that encode
metric variables but are not combinatorial in capacity [e.g., rate-
proportional coding for horizontal eye deflections in the oculo-
motor system (Lopez-Barneo et al., 1982) or unimodal popula-
tion coding like the angular tuning of head direction cells (Taube
et al., 1990) or the ultrasparse coding of time during song in
premotor songbird neurons (Hahnloser et al., 2002)] or codes
that are thought to be combinatorial [e.g., distributed odor rep-
resentations in the antennal lobe of insects (Laurent et al., 2001)]
but represent predominantly non-metric variables and lack ap-
parent register structure and arithmeticity.

1-D versus 2-D analysis
For expositional and computational simplicity, our analysis was
performed for a 1-D analog of the full 2-D system. How can we
justify this simplification, and what do we expect in two dimen-
sions? All properties above in Results, in the section Beyond ca-
pacity, carry over in a straightforward way regardless of the di-
mensionality of the represented variable, just as they carry over to
real-valued numbers in one dimension. Capacity is less straight-
forward. In the hypothetical situation that all lattices share the
same angular orientation, the rat’s position in 2-D space and the
2-D phase represented by each unit cell can be decomposed into
the projections along the principal lattice directions. Thus, the
2-D representation may be trivially regarded as two sets of inde-
pendent 1-D phases, and our capacity analysis applies directly to
each 1-D phase. More generally, if the lattices have different ori-
entations, as is possible in dMEC, it is not trivial to decompose
the 2-D phase into two 1-D phases for capacity analysis. Never-
theless, there is no reason to expect that the scaling of capacity
with lattice number should be qualitatively different: a study
modeling place cell responses, computed by summing dMEC
inputs (Fuhs and Touretzky, 2006), shows that place cell diversity
actually grows (overlaps shrink) as the diversity of relative dMEC
lattice angles increases, an indirect indication that overall capac-
ity does not decrease if different dMEC grids are unaligned.

Tradeoff between capacity and dynamics
Capacity scales very differently with neuron number in dMEC,
depending on whether additional neurons are devoted to en-
hancing the phase resolution within each lattice (capacity grows
as a power of phase resolution) (Fig. 2) versus if they are devoted
to the construction of additional lattices with different periods
(exponential increase in capacity) (Fig. 3). This difference could
help to explain why blob size (the size of firing fields at each vertex
of the lattice), which may be inversely proportional to the phase
resolution, is relatively large: neurons are allocated to construct
more lattices at the expense of phase resolution within each lat-
tice, for a greater gain in capacity. However, why does the system
stop at the observed phase resolution and number of lattices
rather than further reducing the former and increasing the latter?
Network models of the dynamics of dMEC activity suggest that
the accuracy of position estimation based on path integration is
already strained by the number of neurons allocated per lattice
and suffers significantly if the number of cells within a lattice is
reduced (Burak and Fiete, 2006, 2007) (Y. Burak and I. R. Fiete,
unpublished observations). Although capacity considerations
may drive neural allocation toward the formation of more lattices
with fewer neurons each, dynamical constraints on the accuracy
of path integration, if dMEC is the path integrator, as our results
suggest, may pull neural allocation in the opposite direction. The

tradeoff between capacity and dynamical constraints may thus set
some optimal value for the number of lattices and the number of
neurons comprising each lattice in dMEC.

Optimality
The modular code for position is compact, but is it optimal?
Capacity could be improved in at least one obvious way: by cod-
ing position with two explicitly 1-D representations, as in the
Cartesian or cylindrical coordinate schemes, rather than with one
2-D representation. For grid cells, a hypothetical decomposition
would consist of 2N 1-D lattices (N for each spatial dimension),
instead of N 2-D lattices. Activity in each 1-D “lattice” would be
like a slice though a principal lattice direction of the correspond-
ing 2-D lattice. The lattices for each of the two spatial dimensions
would only increment their phases for rat movements along that
direction. To obtain a dynamic range r in each spatial dimension,
the required number of neurons scales like r 2 for a 2-D lattice but
only like 2r for two 1-D ones. If the representation of space were
broken into two independent variables, as imagined here, then
capacity would not be a great bottleneck even for sparse grand-
mother cell-like representations, with each cell responding uni-
modally around one location in one dimension. However, such a
representation would be far from a place code, because the firing
of each cell would represent an entire strip, not a single neighbor-
hood, of 2-D space.

Evolution has proven itself capable of producing structures
that decompose orthogonal stimulus dimensions into indepen-
dent processing channels [for example, three orthogonal vestib-
ular canals in vertebrates measure accelerations in three-
dimensional space (Della Santina et al., 2005), and independent
channels convey information about 2-D wind direction in cock-
roaches (Kolton and Camhi, 1995)]. It is unclear what constraints
led the brain to represent space by one 2-D system rather than
two separate 1-D ones. Possibly, a potential gain in capacity is
traded for a more decorrelated representation: capacity is much
greater with two 1-D representations, but the outputs remain
heavily correlated across positions if rat position is varied along
one dimension, even by a large amount, while keeping the other
fixed (e.g., varying x but keeping y fixed if the representation is
Cartesian, or varying 
 while keeping r fixed in cylindrical coor-
dinates). With the 2-D dMEC code, motion along any direction
and by any amount produces approximately equal (and relatively
large) amounts of decorrelation, facilitating the formation of
sparse decorrelated representations of different rat positions
downstream (e.g., by place cells in the hippocampus).

Grid cells and the concept of a map of space
A single dMEC lattice partitions space into a regular grid, super-
ficially like the grids overlaid on a city map. However, crucially,
grid cells do not assign unique labels (like 7-E, 3-B) to each unit
cell (responses in all unit cells are identical), so there is no sense in
which the grid can help to label or localize landmarks in space.
When many or all dMEC lattices are considered together, they do
uniquely specify locations over spaces much larger than the scale
of any single grid. However, the composite code from multiple
lattices is aperiodic and lacks any grid-like structure. Thus, there
is no analogy between grid cell firing and grids on a city map.
Furthermore, grid cell firing does not specify at any one instant in
time a layout for all space. Rather, it is a system that produces the
label for any location once the rat moves to that location. In an
updated analogy, the grid cell population output more accurately
resembles the output of a global positioning system device than a
map.
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Appendix
Are there plausible neural network schemes that could convert
grid cell phases into explicitly metric representations of rat posi-
tion? As one example, a single-layer recurrent network, like the
one proposed by Sun and Yao (1994), may perform such an
operation. The network takes as its inputs the grid cell phases (in
one dimension), producing as its output the firing of a neuron
whose rate r is equal to the displacement x of the rat, if it obeys the
following dynamics:

dr

dt
� �

r

�
�

1

C	
�

��̂��r� � ��� � �, (7)

where x is rat position; �� � x mod ��; �̂�(r) � r mod ��; �, 1/C


 1; and �/C 
 D/�, where D is the largest x that can be repre-
sented by the moduli.

Starting at r � D, r is guaranteed to reach a steady-state value
� [x � �, x � �]. The quantities �̂�(r) may be computed from
the instantaneous value of r by other networks that take r as their
input. Through numerical simulation, we find that this algorithm
for remapping modulo phases to a rate-proportional code works
even when the lattice periods �� are not co-prime or are non-
integers (data not shown).

This example illustrates that plausible neural network opera-
tions can implement a conversion from modulo residues to an
explicitly metric representation. Although the idiothetic path in-
tegrator must have high resolution to avoid accumulating round-
ing errors from successive position updates, readouts of the path
integrator may in principle represent position far more coarsely.
However, the readout implementation above requires a relatively
high-resolution internal representation of position (as encoded
in the firing rate r) for the network to converge to the correct
solution. Therefore, a large number of neurons would be re-
quired to accurately encode r over the desired range. [If units
(neurons) each have a fixed, finite dynamic range, i.e., if the
maximum firing rate and the resolution with which firing rate
changes can be determined are capped, the number of required
units grows linearly with the dynamic range of the represented
variable in a rate-proportional code. Thus, rate-proportional
codes do not have high capacity (Table 1).] It is possible that
different recurrent networks, or possibly networks with feedfor-
ward architectures, could perform a similar conversion. It is an
open question whether an alternative network could do so with-
out requiring a high-resolution internal representation of
position.
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