UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Prof. S.B. Giddings

Physics 229A

Winter 2007

Gauge Theories

ASSIGNMENT #1

Due Thursday, January 18, 2007

Reading: Rothstein, TASI lectures, p. 1 - 22 (see "resources"); Background, as needed, from Srednicki's QFT.

- 1. One defines the "critical dimension" d_c for an operator to be the spacetime dimension for which that operator is marginal. How will that operator behave in dimensions d when $d > d_c$ or $d < d_c$? In a theory of interacting relativistic scalars, Dirac fermions, and gauge bosons, determine the critical dimension for the following operators:
 - 1. A gauge coupling to either a fermion or a boson through the covariant derivative in the kinetic term;
 - 2. A Yukawa interaction, $\phi \bar{\psi} \psi$;
 - 3. An anomalous magnetic moment coupling $\bar{\psi}\sigma_{\mu\nu}F^{\mu\nu}\psi$ for a fermion;
 - 4. A four fermion interaction, $(\bar{\psi}\psi)^2$.
- 2. Rothstein, exercise 1.1
- 3. The one-loop β function for QCD is

$$\beta(g) = \mu \ \frac{d}{d\mu} \ g \simeq -\frac{g3}{16\pi^2} \ b_0$$

with

$$b_0 = \frac{11}{3}N_c - \frac{2}{3}N_F \; .$$

Integrate this equation to find

$$\alpha_s \left(\mu^2 = q^2 \right) \,,$$

the value of the strong coupling constant at energy scale q^2 , in terms of the integration constant Λ_c .

4. Derive the conserved $SU(3)_L \times SU(3)_R$ Nöther currents for the QCD lagrangian with u, d, s quarks and $m_u = m_d = m_s = 0$. Find the divergences of these currents for non-zero masses.