UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Prof. S.B. Giddings

Physics 229A

Winter 2007

Gauge Theories

ASSIGNMENT #6 Due Thursday, February 22, 2007

Suggested Reading: Wess and Bagger, I – VII

1. Check that the supersymmetry algebra given in class follows from the definitions

$$\begin{split} \delta \phi &= \sqrt{2} \ \epsilon^{\alpha} \psi_{\alpha} \\ \delta \psi_{\alpha} &= \sqrt{2} \ i \sigma^{\mu}_{\dot{\alpha}\beta} \partial_{\mu} \phi \bar{\epsilon}^{\dot{\beta}} \end{split}$$

- 2. Show that $\bar{D}_{\dot{\alpha}}F = D_{\alpha}F = 0$, for an arbitrary superfield F, implies F = a = constant. Demonstrate that $\bar{D}_{\dot{\alpha}}F = 0$ and $D^{\alpha}D_{\alpha}F = 4mF^+$ yield massive field equations for the components of F.
- 3. Construct the superfield whose lowest component is F, rather than φ . Compare this to the superfield $DD\Phi$.
- 4. Define the components of a chiral superfield $(\bar{D}_{\dot{\alpha}}\Phi = 0)$ as follows:

$$\mathcal{A} = \Phi|_{\theta = \bar{\theta} = 0}$$
$$\Psi_{\alpha} = D_{\alpha} \Phi|_{\theta = \bar{\theta} = 0}$$
$$\mathcal{F} = DD\Phi|_{\theta = \bar{\theta} = 0} .$$

Express these components in terms of the component fields φ, ψ, F of the chiral superfield given in class. Compute the transformation laws for \mathcal{A}, Ψ , and \mathcal{F} using Q and \overline{Q} in the following form:

$$Q_{\alpha} = D_{\alpha} - 2i\sigma_{\alpha\dot{\alpha}}{}^{\mu}\bar{\theta}^{\dot{\alpha}}\frac{\partial}{\partial x^{\mu}}$$
$$\bar{Q}_{\dot{\alpha}} = \bar{D}_{\dot{\alpha}} + 2i\theta^{\alpha}\sigma_{\alpha\dot{\alpha}}{}^{\mu}\frac{\partial}{\partial x^{\mu}}.$$

5. Show that $\Phi = \overline{D}\overline{D}U$ is chiral for any superfield U. Relate the components of U to those of Φ .