Relational Observables in 2-D Quantum Gravity Based on hep-th/0612191 M.G. and S.B. Giddings

Michal Gary Dept. of Physics, UCSB

mgary@physics.ucsb.edu

- Want to see locality in a complete theory of Quantum Gravity.
- Work in 2d where we understand the theory well.
- Use Z-model from hep-th/0512200 by S.B. Giddings, D. Marolf, and J. Hartle.

The Z-Model

Consider a QFT with operator $\mathcal{O}(x^{\mu})$.
 Introduce fields Z^i and state $|\Psi\rangle$ such that
 $\langle \Psi | Z^i | \Psi \rangle = \lambda \delta^i_{\mu} x^{\mu}$

in some region of spacetime.

Localize operator with respect to $\langle \Psi | Z^i | \Psi \rangle$.

$$\mathcal{O}_{\xi} = \int_{M} \sqrt{g}'' \delta(Z^{i} - \xi^{i})'' \mathcal{O}(x)$$

Since $\langle Z^i \rangle \sim x^{\mu}$, this localizes \mathfrak{O} near position ξ^{μ} , up to quantum fluctuations.

2-D Liouville Gravity

Consider 2-D Liouville Gravity with metric g and conformally coupled matter m with anomaly c

$$Z = \int \frac{\mathcal{D}g\mathcal{D}m}{\mathrm{Vol}(\mathrm{diff})} e^{iS[m,g]}$$

Gauge fix to metric $\hat{g} = e^{\phi} \eta_{ab} dx^a dx^b$, giving

$$S_L[\phi, \hat{g}] = \int_{\Sigma} \sqrt{\hat{g}} \left(\frac{g^{aa}}{2} \partial_a \phi \partial_b \phi + \hat{R} \phi \right)$$

$$Z = \int \mathcal{D}_{\hat{g}} \phi \mathcal{D}_{\hat{g}} m \left| \det_{\hat{g}} P \right| e^{i \frac{c-25}{48\pi} S_L[\phi, \hat{g}] + i S[m, \hat{g}]}.$$

For c = 25, S_L reduces to a free scalar action.

2-D Relational Observables

For simplicity, assume matter is 2 free scalar fields X^0, X^1 and m' with conformal anomaly c' = 23.

$$c = 2 + c' = 25$$
, so let $\hat{X} = \sqrt{\alpha' \frac{25-c}{24}}\phi$.

Spacetime $\Sigma = S^1 \times \mathbb{R}$ with coordinates $-\infty < t < \infty$ and $0 \le \theta < 2\pi$ with Lorentzian signature. (Euclidean version conformally equivalent to a sphere with 2 punctures).

•Localize with respect to fields X^0, X^1 .

Background State

Want background $|\Psi
angle$ so that

- $\mathbf{I}\langle \Psi | \, X^0 \, | \Psi \rangle = p^0 t$
- $\label{eq:phi} \langle \Psi | \, X^1 \, | \Psi \rangle = R \theta \text{ with } X^1 \simeq X^1 + 2 \pi R.$

Such states exist. This is a winding state of the bosonic string if we take m' to be 23 free scalars.

•Wheeler-deWitt equation (=Virasoro constraints) $(p^0)^2 = \frac{R^2}{4} - 2$.

Semi-Local Observables

Let $\mathcal{O}[m']$ have weight $\Delta \ll 1$. $\hat{\mathcal{O}}(k_a) = \int d^2x \sqrt{\hat{g}} \mathcal{O}e^{ik_0X^0 + ik_1X^1 + i\hat{k}\hat{X}}$ has weight 1 (\Leftrightarrow Diff invt.) if $\hat{k} = \pm 2\sqrt{\frac{1-\Delta}{2} - \frac{k_ak^a}{4}}$.

Fourier transform w.r.t. k_0, k_1 against a gaussian of width $\sigma \ge 1$.

 $\hat{\mathcal{O}}(\hat{t},\hat{\theta}) = \int d^2k e^{-\sigma^2 k_a^2} e^{2ik^0 p^0 \hat{t} - ik^1 R \hat{\theta}} \hat{\mathcal{O}}(k_0,k_1)$

• $\hat{\mathbb{O}}(\hat{t}, \hat{\theta})$ is approximately \mathbb{O} times a spatial gaussian centered at $(\hat{t}, \hat{\theta})$.

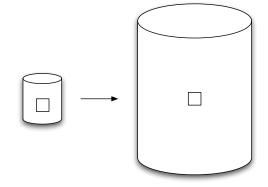
The Amplitude

- •Want to calculate $\mathcal{A} = \langle \Psi | \prod_i \hat{\mathfrak{O}}_i | \Psi \rangle$.
- Conformal symmetry \rightarrow fix position of one operator (no extra work to localize).
- ■Diff. invariance → integrate over positions of remaining operators.
- \blacksquare \Rightarrow gaussians fix positions of operators on Σ .

Localization

$$\begin{aligned} \mathcal{A} \approx \\ \frac{1}{(4\pi\sigma^2)^N} \int \left(\prod_{i=1}^N d^2 x_i e^{2it_i} e^{-(\frac{p_0}{\sigma})^2 (t_i - \hat{t}_i)^2 - (\frac{R}{2\sigma})^2 (\theta_i - \hat{\theta}_i)^2} \right) \times \\ f(x_i) \left\langle \prod_{i=0}^N \mathcal{O}_i(x_i) \right\rangle \end{aligned}$$

■Localized with resolution $\Delta t \sim \sigma/p^0, \Delta \theta \sim \sigma/R$. ■Increasing p^0, R increases resolution.



As p^0 , R are increased with ℓ_s held fixed, a string-scale area on the worldsheet becomes smaller relative to the worldsheet area.

Approximations

- For $|k_i^a| \ll 1, k_i \cdot k_j = 2 + O((k_i^a)^2),$ $f(k_i, x_i) \approx f(x_i).$
- For $\sigma \gg 1$, k-space gaussians sharply peaked, $\Rightarrow |k_i^a| \ll 1$, so integrand is rapidly oscilating away from region of interest and integrals converge.
- ■ $p^0, R \gg 1$ so that sum over momentum modes (n/R) can be approximated as an integral.
- Subleading terms in 1/R, $1/p_0$ expansions also dropped.

Limitations

- Resolution limited by value of p⁰, R, which can be taken arbitrarily large, giving arbitrary resolution.
- Note difference from higher dimensions because no bakcreaction, no UV cutoffs.
- •Operators only localize for $\sigma \gg 1$.
- Operators well defined independent of background, only localize in background $|\Psi\rangle$.

