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Figure 1. Upper. The pulse sequence of distributing the photon between the readout qubit and

the two control qubits. Lower. The distribution of the photon as a function of the control qubits-

resonator interaction time, where we can achieve the superposition and recombination every 8.5

ns.

I. PHOTON DISTRIBUTION THROUGH THE QUBITS-RESONATOR COLLEC-

TIVE INTERACTION

The simulation of weak localization requires the coherent photon transfer between di�er-

ent quantum elements. In an architecture where all the qubits are symmetrically coupled a

center resonator, the quantum circuit provides us a convenient way to coherently transfer a

photon between di�erent elements, simply by tuning the qubits in and out of resonance with

the resonator.[1] As shown in the pulse sequence in Fig. 1, we realize photon superposition

and recombination by distributing the photon between the readout qubit and the control

qubits, following the same protocol that has been employed to realize W-type entangled

state in superconducting quantum circuits.[2, 3] We �rst generated a photon in the readout

qubit and have it transferred to the coupling resonator. We then immediately detuned the

readout qubit back to its idling frequency, while bringing the two control qubits on resonance

with the coupling resonator. The two control qubits then remain on resonance with the cou-

pling resonator for a duration τ , before we tuned them back to their original frequency and
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Figure 2. Upper. Pulse sequence for the Ramsey-type interference experiment, used to extract

the overall coherence time Tφ of the two control qubits. Lower. a. P1 of Q1 as a function of τtotal

obtained from the interference experiment, which we used to demonstrated the tunability of the

system phase coherence ,as we adjust the ratio of τπ/τtotal . b. Extracted system coherence time

Tφ as a function of τπ/τtotal.

have the remaining photon in the resonator transferred back into the readout qubit. At the

end, we perform measurements to all the three qubits, determining the distribution of the

photon. The result is demonstrated in Fig. 1, where we plot the probability of measuring

the qubits to be in the excited state as a function of the interaction time τ . One can see

that the photon is initially concentrated in the readout qubit (P1 maximum for Q1). After

an interaction time of 8.5 ns, it splits evenly into the control qubits (P1 minimum for Q1).

By maintaining the interaction for the same duration time, we can reverse the process and

have the photon recombine back into the readout qubit.

II. TUNING THE SYSTEM PHASE COHERENCE TIME

We simulated the temperature e�ect by tuning the phase coherence time of our supercon-

ducting quantum system. One widely used method to improve the system coherence time

is the so-called Hahn-echo technique.[4] By inserting a π-pulse into the middle of a pulse se-
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quence, one can refocus the phase of the qubit excitation and therefore e�ectively compensate

the system frequency drifting caused by 1/f �ux noise. In order to achieve a range of co-

herence times needed for simulating di�erent temperatures, we apply a modi�ed Hahn-echo

sequence, whose e�ectiveness can be illustrated with a quantum interference experiment. As

shown by the pulse sequence in Fig. 2, we �rst prepare the photon in superposition state

of occupying two control qubits, following the method discussed in the previous section.

We then apply a constant detuning of 50 MHz between the two control qubits for a total

time duration τtotal, after which the photon gets recombined and subsequently measured by

the readout qubit. Within the detuning pulse, we introduce refocusing π-pulses to the two

control qubits at a certain time τπ, used for e�ectively tuning the system coherence time.

As the results in Fig. 2a shows, when τπ/τtotal = 0 which corresponds to no refocusing pulse,

the interference fringes rapidly decay within the �rst 150 ns. When τπ/τtotal = 0.5, which

corresponds to the standard Hahn-echo method, the interference fringes remains visible even

over 300 ns, suggesting an improved phase coherence in the system. A tunable coherence

time between these two cases can therefore be achieved by adjusting τπ/τtotal to have a value

between 0 and 0.5, with an example being demonstrated when τπ/τtotal = 0.25. From the

decay of the amplitude of the interference fringes, we extrapolates the system e�ective co-

herence time Tφe� , which basically averaged the dephasing rate of the two control qubits. As

shown in Fig. 2b, as we move the location of the refocusing pulse from the beginning to the

middle of the detuning sequence, the system e�ective phase coherence time Tφe� gradually

increases from its original value of ∼ 117 ns to ∼ 220 ns. These values are eventually used

to simulate di�erent temperatures in the mesoscopic system.

III. WEAK ANTI-LOCALIZATION: SPIN EFFECT

.

The existence of a sizable spin-orbit interaction in the mesoscopic system has profound

e�ects on the weak localization. In meoscopic systems, the spin-orbit coupling induces

momentum-dependent spin precession during the scattering events, which shifts the spin

phase oppositely for the electron between time-reversed trajectories. The relative phase

shift inverts the original time-reversed symmetry into anti-symmetry, which resultes in the

well-known weak anti-localization.[5�8] To simulate the e�ect of the added phase shift, we
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Figure 3. Upper. Pulse sequence of simulating weak antilocalization, where we append an ad-

ditional detuning pulse to accumulate a relative π phase between splitted photon. Lower. The

measured photon return probability Preturn as a function of the static detuning δ, at di�erent co-

herence time Tφe� . The Preturn peak at zero detuning resembles the postive magnetoresistance peak

associated with weak antilocalization. Inset shows a magni�ed view of Preturn near δ = 0, where we

can observe the growth of the Preturn valley, simulating the growth of the magnetoresistance valley

when lowering the temperature.

reprogram our pulse sequences by appending an extra detuning pulse to the end of the Con-

trol part of the pulse sequence, as shown in the top panel of Fig. 3. The appended detuning

pulse was precisely calibrated to induce a relative π phase rotation between the splitted

photon, which leads to the reversal of the symmetry between the random detuning pulses.

Running the reprogrammed sequence, we remeasure Preturn as a function of the detuning δ,

with the result demonstrated in Fig. 3. Under the symmetry inversion, the photon now

gains a higher probability to return as we turned on the detuning δ. The observation of

the enhanced photon return probability under the applied detuning δ corresponds to the

positive magneto-resistance in the mesoscopic system, the experimental signature of the

weak anti-localization. We further investigated the temperature e�ect on the weak anti-

localization by including the Hahn-echo refocusing pulse into the sequence. As detailed data
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shown in the inset of the �gure, the simulated weak anti-localization gradually loses its vis-

ibility as we tuned down the quantum coherence of the system. This result is in agreement

with well-established experimental observations in mesoscopic systems, where an increased

temperature diminishes the amplitude of the positive magneto-resistance. [9]

IV. THEORETICAL DISCUSSION ON PHOTON DISTRIBUTION IN TAVIS-

CUMMINGS MODEL

Our quantum circuit, with all the qubit symmetrically coupled to the bus resonator, can

be described by the Tavis-Cummings model,

H = ~ωra
+a+

3∑
i=0

~ωiσ
+
i σ

−
i +

3∑
i=0

~g(a+σ−
i + aσ+

i ), (1)

where ωr, ω are the resonate frequencies of the resonance and qubits, and g is the coupling

strength between the resonator and qubits. This allows for coherent photon transfer directly

between qubits and resonator, and indirectly from qubit to qubit via the resonator.

In the case of the photon superposition and recombination, we brought the two control

qubits on resonance with the resonator while having the other two qubits far detuned. In

this case, we can obtain the matrix for the Hamiltonian in the single photon subspace as

H1 =


ω g g

g ω 0

g 0 ω

 . (2)

Diagonalizing the matrix, we can obtain the eigenenergies of the coupled system as E1 = ω,

E2 = ω + g and E3 = ω − g, with three corresponding eigenstates |ψ1⟩ = 1√
2
(|0eg⟩ − |0ge⟩),

|ψ2 >=
1√
2
|1gg⟩+ 1

2
|0eg⟩+ 1

2
|0ge⟩) and |ψ3⟩ = 1√

2
|1gg⟩ − 1

2
|0eg⟩ − 1

2
|0ge⟩.

For the photon superposition, we initialize the state as |ψ(t = 0)⟩ = |1gg⟩. The time

evolution of the wavefunction can be expressed as

|ψ(t)⟩ = cosΩt|1gg⟩+ i

2
sinΩt|0eg⟩+ i

2
sinΩt|0ge⟩. (3)

We can see that the collective interaction allows the photon to oscillate back and forth

between the resonator and two control qubits, at a frequency of Ω =
√
2g.. If we set the

interaction time to be t = (2n + 1)π/(2Ω), with n being an arbitrary integer number, we

can split the photon in the desired superposition state |ψ⟩ = 1√
2
(|0eg⟩+ |0ge⟩).
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For the photon recombination, the initial photon state is |ψ(t = 0)⟩ = 1√
2
(eiϕ1 |0eg⟩ +

eiϕ2 |0ge⟩), where the phases ϕ1,2 contains both the random phase and the static phase as

described in the main text. Ignoring a global phase and setting ϕ = ϕ1 − ϕ2, we obtain the

time evolution of the wavefunction as

|ψ(t)⟩ = i

2
(eiϕ + 1) · sinΩt|1gg⟩

+
1

2
√
2
[(1− eiϕ) + cosΩt · (1 + eiϕ)]|0eg⟩

+
1

2
√
2
[−(1− eiϕ) + cosΩt(1 + eiϕ)]|0ge⟩. (4)

We set the interaction time to be t = (2n + 1)π/(2Ω) for a photon recombination. As

a consequence, the probability for the photon to be in the resonator, which is eventually

measured by Q1, is,

P1 =
1

2
(1 + cosϕ). (5)

The photon return probability oscillates when we tune the relative phase between

two branches of the splitted photon, demonstrating a microwave photon version of the

Aharonov�Bohm e�ect.

In the experiment, the relative phase ϕ was accumulated for a certain detune time t.

During this period of time, the �uctuations in the frequency can lead to the dephasing of

the qubits, exhibited as a phase noise ∆ϕ. Averaged over these phase �uctuations, Eq. (5)

gets modi�ed into

P1 =

⟨
1

2
(1 + cos(ϕ+∆ϕ))

⟩
=

1

2
(1 + ⟨cosϕ cos(∆ϕ)⟩)

=
1

2
(1 + cosϕ ⟨cos(∆ϕ)⟩), (6)

where we have assumed both qubits to have the same dephasing rate, ⟨⟩ stands for

averging over random phase �uctuations and in the last line we have used ⟨sin(∆ϕ)⟩ = 0,

taking into account of the even distribution of ∆ϕ.

As thoroughly discussed in Ref. [10], dephasing in this case can lead to the decay of the

photon, given as

P1 =
1

2
(1 + cosϕ · exp(−(t/Tφ1 + (t/Tφ2)

2)), (7)
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where the exponential decay originated from the white noise and the Gaussian decay

originated from the 1/f noise.

Finally, taking into account for dissipation throughout the sequence, we can obtain the

full expression to �nd the photon back in the resonator as

P1 =
1

2
(1 + cosϕ · exp(−(t/Tφ1 + (t/Tφ2)

2)) exp(−t/T1). (8)

In the experiment, we modulate the e�ect of the 1/f noise by adjusting the timing of

the inserted a π-pulse in the control sequence. In this way, we can e�ectively modulate Tφ2,

which is referred as Tφe� as in the main text.
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