
Supplementary information for "Qubit architecture with high coherence and fast
tunable coupling"

Yu Chen1,∗ C. Neill1,∗ P. Roushan1,∗ N. Leung1, M.l Fang1, R. Barends1, B. Campbell1, Z. Chen1, B. Chiaro1, A.
Dunsworth1, E. Jeffrey1, J. Kelly1, A. Megrant1, J. Y. Mutus1, P. J. J. O’Malley1, C. M. Quintana1, D. Sank1,

A. Vainsencher1, J. Wenner1, T. C. White1, Michael R. Geller2, A. N. Cleland1, and John M. Martinis1†
1Department of Physics, University of California,
Santa Barbara, California 93106-9530, USA and

2Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA

FIG. 1. (a) The frequency of Q1, as a function of the coupler
flux bias while the second qubit is far detuned. For each value
of the coupling strength, we compensate the frequency shift
due to the change in inductance, sweep the microwave drive
frequency and measure the qubit excited state probability P1.
Each line is fit for a peak, with the results plotted in panel
(b) in blue. The associated standard deviation is 110 kHz.
The same experiment is performed without the calibration
and overlayed in green.

CALIBRATION

A key aspect of our design is the independent control
of the qubit frequency and inter-qubit coupling. The res-
onance frequency of the individual qubits depends on the
impedance of the coupling circuit; this is true for any cou-
pling scheme. In our design, the total qubit inductance
L is given by

L = LJ + Lg||(Lg + Lc)

= LJ + Lg −M (1)

where || stands for "in parallel with" and M is the mu-
tual inductance given in Eq. (1) of the main text. Chang-
ing the inter-qubit coupling is achieved by changing the
mutual inductance, which additionally shifts the qubit’s
resonance frequency. We are able to compensate for this
change in inductance using the tunable inductance of the
qubit junction LJ . The compensation is achieved by first
measuring the qubit frequency ω as a function of the
qubit flux bias ΦQ and then as a function of coupler bias
ΦC . The qubit frequency is given by ω = 1/

√
LC − α

where C is the qubit capacitance and α is the anhar-
monicity. Solving this expression for L and using the
measured data for ω yields L(ΦC) and L(ΦQ). From the
first expression we determine the change in inductance
∆L due to a change in ΦC . Using the second expression
we calculate the qubit flux bias required to shift L by
−∆L. Summing these two terms yields zero net change
in the qubit inductance. Note that the number of mea-
surements required to compensate for the frequency shift
scales linearly with the number of qubits and couplers.

The results of this compensation protocol are shown
in Fig. 1(a). For each value of the coupler flux bias, we
sweep the microwave drive frequency and measure the
excited state probability P1. The frequency is almost
completely independent of the coupler bias, with a stan-
dard deviation of 110 kHz. We fit each vertical column of
data for a peak and plot the results in blue in Fig. 1(b).
We perform an identical measurement without calibra-
tion and overlay the results in green. We see that the
qubit frequency shifts by over 60MHz (∼ g/2π) as we
vary the coupler bias.

COHERENCE

The most important part of constructing this tunable
coupling architecture is to maintain the coherence inher-
ent in the Xmon design. There are two primary sources
of loss associated with the modifications that we have
made: capacitive coupling to surface defects on the cou-
pling structure and inductive coupling to the added bias
line. The voltage divider created by LJ and Lg reduce ca-
pacitive losses by a factor of over 2000. The coupler bias
line has a mutual inductance to the junction loop of 1 pH;
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FIG. 2. (a) T1 ofQ1 as a function of the qubit frequency, when
g = 0. These results are comparable to that of the Xmon
with similar capacitor geometry and growth conditions. (b)
T1 of Q1 as a function of the coupler bias, when the qubit
frequency is set to 5.3GHz. We find no dependence of the T1

on the coupling strength.

this 1 pH coupling to a 50Ohm line introduces a decoher-
ence source with an associated T1 of greater than 200µs
at 80MHz of coupling. We measure T1 as a function
of the qubit frequency and plot the results in Fig. 2(a).
These results are comparable to the performance of pre-
vious Xmon devices with similar capacitor geometry and
growth conditions. We observe no indication that the T1
is reduced as we vary the coupling strength, with data
shown in Fig. 2(b).
It is important to ensure that the coupling cir-

cuit does not introduce additional dephasing to
the qubits. As discussed in the Ref [1] and [2],
the dephasing rate can be minimized by reduc-
ing the sensitivity of the qubit frequency to the
coupler flux bias, i.e., df10/dϕCoupler. We have de-

FIG. 3. (a) Swap spectroscopy for Q1, as a function of the
coupler flux bias, with the two qubits on resonance. For each
value of the coupling strength, we excite Q1, wait a variable
delay time and measure the excited state probability P1. We
see no excitation swapping between the two qubits when cou-
pler bias is ∼ 0.32Φ0, indicating that the coupling is turned
off. (b) We set the coupler bias to this value and examine
the excited state probability P1 of Q1 over an extended de-
lay time. We see no indication of swapping between the two
qubits after 6µs (placing an upper bound on residual coupling
of 50 kHz.)

signed our gmon with df10/dϕCoupler < 0.1GHz/Φ0,
nearly two orders of magnitude less than that of
the qubit flux bias df10/dϕQubit. As a consequence,
near the qubit optimal bias point, we achieved a
Tϕ of 3 ∼ 4µs over the full range of coupler bias,
with data shown in Fig. 2(c). The measured co-
herence times are comparable to that of Xmon
qubits and are independent of the coupler bias.
These results demonstrate that our gmon design
preserves the high coherence of the Xmon qubit.

ZERO COUPLING

An important application of tunable coupling is to iso-
late individual qubits for local operations by turning off
the coupling. We characterize the zero coupling of our ar-
chitecture using a modified swap spectroscopy measure-
ment. We bring the two qubits on resonance and vary the
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coupler flux bias. For each value of the coupling strength,
we excite Q1, wait a variable delay time and measure its
excited state probability. As the results in Fig. 3(a) show,
over a wide range of biases, the two qubits can interact
and swap an excitation. At a coupler bias of ∼ 0.32Φ0,
there is no excitation swapping between the two qubits,
indicating that the coupling is turned off. Focusing on
zero coupling, we examine the excited state probability
P1 of Q1 over a extended delay time, with the results
shown in Fig. 3(b). We see no indication of swapping
between the two qubits after 6µs. This places an up-
per bound on residual coupling of 50 kHz, resulting in an
on/off ratio > 1000.

CZ ERROR BUDGET

We perform two measurements to determine the
sources of errors in our CZ gate. The dominant contri-
bution to the 0.93% error comes from decoherence. We
measure this contribution by performing interleaved ran-
domized benchmarking on a 20 ns two-qubit idle gate,
with g = 0. We first measure a reference curve without
the interleaved idle and plot the data in red in Fig.4(a).
We then perform an interleaved randomized benchmark-
ing sequence in which we insert an idle gate between each
random Pauli gate, and overlay the data in blue. Com-
paring these two curves allows us to extract a fidelity of
99.56% for a 20 ns two-qubit idle gate. Scaling this error
rate by a factor of 1.5 to account for the relative length
of the CZ yields an error from decoherence of ∼ 0.66%.

The next largest contribution to errors are from non-
adiabatic transitions from the |11〉 to |02〉 state. We di-
rectly measure this transition using a Ramsey error fil-
ter technique [3]; the pulse sequence is shown inset in
Fig. 4(b). We initialize the system in the |11〉 state and
then apply two CZ gates separated by a variable delay
time. Afer applying a π-pulse to each qubit, we mea-
sure the uncorrelated excited state probability for each
qubit. The results are shown in Fig. 4(b), where we see
the expected oscillations that result from the interference
between two CZ gates. The frequency of the oscillation
is set by the detuning of the |11〉 and |02〉 states which
was 130 MHz, corresponding to a period of 8 ns. The
|02〉 state leakage error is given as 1/4 of the oscilla-
tion amplitude (peak-to-peak). For our 30 ns CZ gate,
we measured a non-adiabatic error of ∼ 0.25%. This
is suprisingly small considering such a short gate time,
and can be exponentially surpressed with increasing gate
length.

TRANSMON PHYSICS

The operation of the transmon has been previously de-
scribed in detail [4]. Here, we give a simplified calculation

FIG. 4. (a) Interleaved randomized benchmarking on a 20 ns
two-qubit idle gate (g = 0). We extract a fidelity of 99.56%,
which suggests a decoherence error of 0.66% for the 30 ns CZ
gate. (b) Inset: The pulse sequence for the Ramsey error
filter technique. Main panel: The measured excited state
probability P1 +P2 as a function of the delay between two CZ
gates. We observe the expected sinusoidal oscillation with a
peak-to-peak amplitude of 1%. The non-adiabatic error from
|02〉 state leakage is 1/4 of the oscillation amplitude and is
therefore ∼ 0.25%.

in the phase basis that is useful to describe more complex
transmon circuits, as for the gmon architecture.

Since the transmon produces qubit behavior from a
weak non-linearity, we first review the physics of a linear
inductor-capacitor (LC) oscillator. In terms of physical
variables charge q and flux Φ, the oscillator Hamiltonian
is given by

Ĥo =
q̂2

2C
+

Φ̂2

2L
. (2)

Here the quantum operators of flux and charge obey the
standard commutation relation [Φ̂, q̂] = i~. The oscillator
frequency is the classical value ω = 1/

√
LC, and eigen-

states m have energy Em = ~ω(m + 1/2). The ground
state wavefunction is given by

Ψ0(Φ) ∝ exp[−(ωC/2~)Φ2] . (3)



4

Note that the width of the wavefunction is set by the
oscillator impedance Zo = 1/ωC = ωL =

√
L/C. Vary-

ing this impedance changes the widths of the charge
and flux wavefunctions, as illustrated in Table I. The
impedance is also important since it is used to describe
how strongly the oscillator couples to other modes. The
flux and charge operators are conveniently expressed in
terms of the raising and lowering operators

Φ̂ = (~/2ωC)1/2(a† + a) (4)

q̂ =
(
~ωC/2

)1/2
i(a† − a) . (5)

For a tunnel junction with shunting capacitor, the
charge on the metal island takes on discrete values corre-
sponding to the number of Cooper pairs n. The Hamil-
tonian for this system is given by

Ĥt = 4Ec(n̂− ng)2 − EJ cos δ̂ , (6)

where Ec = e2/2C is the charging energy and EJ =
I0Φ0/2π is the Josephson energy from the tunnel junc-
tion, with critical current I0. The normalized coordinates
are related to ordinary electrical variables by q̂ = 2en̂
and Φ̂ = (Φ0/2π)δ̂, and thus their commutation relation
is [δ̂, n̂] = i. Here we have included a continuous charge
bias ng, produced for example by a small coupling capac-
itor with voltage bias. The Josephson term can be writ-
ten as cos δ̂ = [exp(+iδ̂) + exp(−iδ̂)]/2, corresponding
to number displacement operators exp(±iδ̂) that couple
states that differ by one in the number of Cooper pairs.

The form of the solution for this Hamiltonian depends
on the ratio of these two energies. For small capacitance
where Ec � EJ , the “Cooper-pair box” limit, the charg-
ing energy dominates, and the eigenstates are described
by one or the superposition of two number states. The
states sensitively depend on the gate charge ng. This is
death to qubit physics, since fluctuations of gate charge
from the movement of trapped charge around the junc-
tion produces large qubit decoherence from dephasing.

We are interested in the large capacitance “transmon”
limit, where EJ � Ec. Here, the dependence of qubit
energy on the gate charge becomes exponentially small,
so qubit decoherence from charge fluctuations essentially
vanishes. To understand this, note that for large capac-
itance the phase fluctuations are small. The potential
cos δ̂ can then be expanded in powers of δ̂, with the low-
est non-trivial term giving an inductive energy. First
considering the case ng = 0, one obtains a harmonic

TABLE I. Table of relative width of charge and flux wave-
functions as capacitance C (and impedance Zo) are changed.

C Zo 〈q̂2〉 〈Φ̂2〉
small large small large
large small large small

oscillator-like Hamiltonian

Hto = 4Ecn̂
2 + (Φ0/2π)2δ̂2/2LJ , (7)

where the Josephson inductance is LJ = (Φ0/2π)2/EJ =
Φ0/2πI0. We can thus use harmonic oscillator solutions
as the basis eigenstates for perturbation theory.

Note that formally the charge wavefunction is a delta-
function comb with spacings 2e in charge, with ampli-
tudes given by the harmonic oscillator solution. The
charge comb corresponds to a phase wavefunction pe-
riodic in 2π. As the capacitance increases, the number of
states in the charge wavefunction increases, so that the
relative separation of the teeth in the charge comb be-
come so closely spaced as to look like the normal contin-
uous solution for the harmonic oscillator. In phase, this
implies the wavefunction is so localized in phase that the
2π periodicity does not matter.

The phase wavefunction has a width 〈δ̂2〉 that can be
computed using the exponential term in the wavefunction
given by Eq. (3)

1 =
ωC

~

(Φ0

2π

)2
〈δ̂2〉 , (8)

which gives

〈δ̂2〉 =
√

8Ec/EJ (9)
= ZJ/(RK/8π) , (10)

where in the last equation RK = h/e2 = 25.8 kΩ is the
resistance quantum, and RK/8π = 1.026 kΩ. The phase
basis works well when the mean quantum fluctuation of
the phase is small, which corresponds to a small Ec/EJ
ratio or a junction impedance ZJ =

√
LJ/C much less

than 1 kΩ.
The effect of the gate charge ng in the Hamiltonian

can be computed by noting that this offset in the opera-
tor n̂ can be accounted for by the displacement operator
exp(ing δ̂) applied to the solution of Ht with ng = 0. This
is equivalent to imposing periodic boundary conditions at
the phase δ = ±π

Ψ(−π) = Ψ(π) ei2πng . (11)

We can estimate the effect of this boundary condition on
the eigenstates by noting that it should be proportional
to the probability of the wavefunction at δ = π. Using
the harmonic oscillator solution, the magnitude of the
modulation of eigenstate energy from charge ng should
scale approximately as

∆E ∝ |Ψ0(δ = π)|2 (12)

= exp[−(ωC/~)(Φ0/2)2] (13)

= exp[−(π2/8)
√

8EJ/Ec] . (14)

We may calculate the exponential factor precisely by
including the non-linear junction energy. Using the WKB
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theory, with constants 2m = 1/4Ec and ~ = 1 from
Eq. (6) and its commutation relation, we find

|Ψ0(π)|2 = exp[−2

ˆ π

0

dδ
√

(1/4Ec)EJ(1− cos δ) ] (15)

= exp[−
√

8EJ/Ec] , (16)

matching the result of Ref. [4]. A large EJ/Ec ratio gives
exponentially low sensitivity to charge noise.

Note that the phase qubit has vanishing sensitivity to
charge noise for two reasons. First, the ratio of EJ/Ec
is even larger than for the transmon. Second, the latest
versions of the device used a shunting inductor for cur-
rent biasing. The continuous flow of charge across the
junction then shunts any DC change in charge bias. This
latter effect is the purpose of the inductor shunt in the
fluxonium device.

For completeness, we compute the change in the har-
monic oscillator energy eigenvalues due to the cosine non-
linearity. Starting from

cos δ̂ ' 1− δ̂2/2 + δ̂4/24 , (17)

the correction to the energy from the fourth order term
is

∆Em = −EJ〈m|δ̂4|m〉/24 (18)

= −EJ
24

( ~
2ωC

)2( 2π

Φ0

)4
〈m|(a† + a)4|m〉 . (19)

The matrix element can be calculated by using the square
(a† + a)2 = a†2 + a2 + 2a†a+ 1, giving

〈m|(a† + a)4|m〉 = 〈m|a†2a2 + a2a†2 + (2a†a+ 1)2|m〉
(20)

= m(m− 1) + (m+ 1)(m+ 2) + (2m+ 1)2

(21)

= 6m2 + 6m+ 3 (22)

where in the first equation we have only kept terms that
leave |m〉 unchanged. The change in energy between ad-
jacent states is

∆(Em − Em−1) = −mEc (23)

as expected. As the unperturbed oscillator frequency can
be written as ~ω =

√
8EJEc, the fractional change in

qubit frequency is
√
Ec/8EJ .

Series Inductance

We next consider how this physics changes when in-
cluding an inductance L in series with the Josephson
junction. The total phase across the two elements is
given by δ = δL + δJ . The conservation of current at
the node between the two elements gives the constraint

IL = I0 sin δJ , which then can be used to relate the indi-
vidual phase changes and their derivative

δL/L = sin δJ/LJ0 (24)
dδL/L = dδJ cos δJ/LJ0 , (25)

where we have defined LJ0 = Φ0/2πI0 = (Φ0/2π)2/EJ
as the Josephson inductance at zero current.

The WKB theory gives a charge sensitivity that in-
cludes both Josephson and inductor energies

− ln |Ψ0(π)|2

=

√
1

Ec

ˆ π

0

dδ
√
EJ(1− cos δJ) + (δLΦ0/2π)2/2L (26)

=

√
EJ
Ec

ˆ π

0

dδJ [1 + (L/LJ0) cos δJ ]

×
√

1− cos δJ + (L/2LJ0) sin2 δJ (27)

'
√

8EJ/Ec (1− 0.166L/LJ0) , (28)

where the integral was evaluated numerically. The linear
expansion in Eq. (28) is quite good for L/LJ0 ≤ 1

The nonlinearity in the energy levels can be evaluated
by noting that the quantum fluctuations of the phase is
small, so that we can use the linear relation for phase
change δL/L = δJ/LJ0. The junction phase can then be
found using an inductance divider relation

δJ =
LJ0

L+ LJ0
δ . (29)

Following Eq. (19), the change in energy eigenvalues is
proportional to 〈δ̂4J〉 = 〈δ̂4〉/(1 + L/LJ0)4, giving

∆(Em − Em−1) = −EJ
24

( ~
2ωC

)2( 2π

Φ0

)4 12m

(1 + L/LJ0)4

(30)

= −mEc
1

ω2LJ0C

1

(1 + L/LJ0)4
(31)

= −mEc
1

(1 + L/LJ0)3
, (32)

where for the last equation we have used the resonance
condition ω2 = 1/(L + LJ0)C. We see that the extra
linear inductance lowers the nonlinearity coming from the
junction.
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