
PHYSICAL REVIEW A 86, 032324 (2012)

Surface codes: Towards practical large-scale quantum computation

Austin G. Fowler
Centre for Quantum Computation and Communication Technology, School of Physics, The University of Melbourne, Victoria 3010, Australia

Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland
Department of Physics, University of California, Santa Barbara, California 93106-9530, USA

and California Nanosystems Institute, University of California, Santa Barbara, California 93106-9530, USA
(Received 2 August 2012; published 18 September 2012)

This article provides an introduction to surface code quantum computing. We first estimate the size and speed
of a surface code quantum computer. We then introduce the concept of the stabilizer, using two qubits, and
extend this concept to stabilizers acting on a two-dimensional array of physical qubits, on which we implement
the surface code. We next describe how logical qubits are formed in the surface code array and give numerical
estimates of their fault tolerance. We outline how logical qubits are physically moved on the array, how qubit braid
transformations are constructed, and how a braid between two logical qubits is equivalent to a controlled-NOT. We
then describe the single-qubit Hadamard, Ŝ and T̂ operators, completing the set of required gates for a universal
quantum computer. We conclude by briefly discussing physical implementations of the surface code. We include
a number of Appendices in which we provide supplementary information to the main text.

DOI: 10.1103/PhysRevA.86.032324 PACS number(s): 03.67.Lx

I. BACKGROUND

Quantum computers provide a means to solve certain
problems that cannot be solved in a reasonable period of
time using a conventional, classical computer. These problems
include factoring very large numbers into their primes, which
on a quantum computer can be accomplished relatively quickly
using Shor’s algorithm [1] and searching large, unstructured
data sets, which can be done on a quantum computer using
Grover’s search algorithm [2,3]. A number of physical systems
are being explored for their use in quantum computing,
including ions, spins in semiconductors, and superconducting
circuits. However, none of these systems perform sufficiently
well to serve directly as computational qubits. It is, however,
possible to construct a logical qubit from a collection of
physical qubits, such that the logical qubit performs much
better than the individual physical qubits.

One approach to building a quantum computer is based
on surface codes [4,5], operated as stabilizer codes [6]. The
surface codes evolved from an invention of Alexei Kitaev
known as toric codes [7–9], which arose from his efforts
to develop simple models for topological order, using qubits
distributed on the surface of a toroid. The toroidal geometry
employed by Kitaev turned out to be unnecessary, and planar
versions (thus “surface codes”) were developed by Bravyi and
Kitaev as well as Freedman and Meyer [4,10].

One of the significant advantages of surface codes is their
relative tolerance to local errors, as was first described by
Preskill and co-workers [11]. In this publication, the critical
logical controlled-NOT (CNOT) operation was implemented
using stacked layers of surfaces, a three-dimensional
structure that significantly complicates potential physical
implementations, but the ability of the surface codes to
withstand large error rates was apparent: These authors
showed that the surface codes could handle error rates of
almost 3% per surface code clock cycle, assuming the ability
to measure a four-qubit operator.

Raussendorf and co-workers then discovered that the
logical CNOT operation could be implemented by braid

transformations on a single surface, a highly significant
simplification [12–14]. These authors also evaluated error
tolerances for a fully planar implementation using only one-
and two-qubit nearest-neighbor gates, arriving at an error
threshold of 0.75% per operation.

The literature on surface codes is somewhat opaque.
Increasingly accessible descriptions have appeared in more
recent publications [15,16], including thorough analyses of
errors and their propagation [16,17] and the ongoing devel-
opment of efficient classical control software [18]. A number
of authors are working on improving the classical processing
associated with the surface code [19–23], as well as other
two-dimensional topological codes [24–27].

The tolerance of surface codes to errors, with a per-
operation error rate as high as about 1% [17,18], is far less strin-
gent than that of other quantum computational approaches.
For example, calculations of error tolerances of the Steane and
Bacon-Shor codes, implemented on two-dimensional lattices
with nearest-neighbor coupling, find per-step thresholds of
about 2 × 10−5 [28,29], thus requiring three orders of magni-
tude lower error rate than the surface code. The error tolerance
of the surface code, along with a simple two-dimensional
physical layout with only nearest-neighbor coupling, makes a
surface code architecture one of the most realistic approaches
to building a solid-state quantum computer.

As the reader will discover, the price paid for the high
error tolerance is that implementations of the surface code
involve large numbers of physical qubits, as do most other
approaches to quantum computing [28,29]. It takes a minimum
of 13 physical qubits to implement a single logical qubit.
A reasonably fault-tolerant logical qubit that can be used
effectively in a surface code takes of order 103 to 104 physical
qubits.1 The number of physical qubits needed to find a
number’s prime factors, using Shor’s algorithm [1], depends
on a trade-off between physical size and time of computation.

1This number depends strongly on the rate that errors occur on the
physical qubits.

032324-11050-2947/2012/86(3)/032324(48) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.032324

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

TABLE I. Trade-off between number of computational logical
qubits and number of sequential and total Toffoli gate operations for
factoring an N -bit number into its primes using Shor’s algorithm.
Each line in the table corresponds to a different quantum circuit
implementing the algorithm. The physical size of a circuit scales
with the ratio of the total number of Toffoli gates to the number of
sequential Toffoli gates.

No. of Sequential Total
computational Toffoli Toffoli
logical qubits gates gates References

2N 40N3 40N 3 [30–32]
5N 600N 2 O(N 3 log N) [33]
2N 2 15N log2 N O(N 3 log2 N) [34]
O(N 3) O(log3 N) O(N 3 log3 N) [35]

These trade-offs are apparent in Table I, where we display the
approximate number of computational logical qubits, the num-
ber of sequential Toffoli gates, and the number of total Toffoli
gates needed to factor an N -bit number for different types of
factoring circuits.2 In general, while the computational time
gets smaller as one moves down the table, the spatial extent of
the circuit becomes larger, as the number of logical qubits (the
circuit “footprint”) scales with the ratio of the total number of
Toffoli gates to the number of sequential Toffoli gates.

We can make a rough estimate of the time and circuit
size needed to factor a number with N = 2000 bits (600
decimal digits) using a circuit size scaling as in the first
line of Table I and making assumptions about the physical
qubit error rates and gate times; more details on this esti-
mate are provided in Appendix M.3 This Shor’s algorithm
implementation is constructed from ideas in Refs. [30–32]
and involves a resource-intensive modular exponentiation that
requires approximately 40N3 ≈ 3 × 1011 sequential Toffoli
gates. The modular exponentiation thus determines the total
execution time for the factoring algorithm. A highly optimized
version of this circuit [36] can complete each Toffoli gate in
approximately three physical qubit measurement cycles. If we
assume a physical qubit measurement time of 100 ns, it will
take about 26.7 h to complete the exponentiation.

The spatial extent of the circuit is determined in part by the
number of computational logical qubits, which for this circuit
is about 2N = 4000. A much larger part of the surface code
is needed, however, to generate and purify the special ancilla
|AL〉 states that are used in the Toffoli gates. Each Toffoli gate
consumes seven |AL〉 states [32]. In total, the exponentiation
circuit therefore requires approximately 280N3 ≈ 2.2 × 1012

|AL〉 states. The surface code must be able to generate these

2A Toffoli gate is a three-qubit gate, with two controls determining
the result on one target. The Toffoli can be described as a “controlled-
controlled NOT”: If both controls are “true,” the target is flipped,
“false” → “true” or “true” → “false”, while otherwise the target is
unchanged. This reversible gate can be implemented in quantum logic
using a combination of two-qubit controlled-NOTs and single-qubit
gates and can be used to construct any arithmetical operation. The
Toffoli is needed to implement Shor’s algorithm; see Refs. [37,38].

3We look at this circuit in detail, as it has the smallest footprint,
albeit with the longest factoring time.

states at a rate sufficient to keep pace with the exponentiation
circuit.

The number of physical qubits needed to define a logical
qubit is strongly dependent on the error rate in the physical
qubits. Error rates just below the threshold require larger
numbers of physical qubits per logical qubit, while error rates
substantially smaller than the threshold allow smaller numbers
of physical qubits. Here we assume an error rate approximately
one-tenth the threshold rate, which implies that we need about
3600 physical qubits per logical qubit to give a sufficiently low
logical error rate to successfully execute the algorithm.

We can now estimate the number of physical qubits
needed for our factoring problem. The 4000 computational
logical qubits require a total of about 4000 × 3600 = 20 × 106

physical qubits. As discussed in Appendix M, generating and
purifying one |AL〉 state takes a surface code area of about
70 000 physical qubits and takes about 100 μs. Generating the
full set of 2.2 × 1012 |AL〉 states over the 26.7 h of execution
takes about 200 × 106 physical qubits. The computational
qubits, which are separate from those used to generate the
|AL〉 states, therefore comprise about 10% of the quantum
computer footprint, so in total we see that with the assumed
error rate, the full quantum computer needs about 220 × 106

physical qubits, operating for about 1 day.
The size of the quantum computer is quite sensitive to

the error rate in the physical qubits. For example, improving
the overall error rate by about a factor of ten, as detailed
in Appendix M, can reduce the number of physical qubits
by about an order of magnitude, to about 20 × 106, although
leaving the execution time unchanged.

Further reduction of the qubit overhead can in principle be
achieved by speeding up the surface code operation. Faster
operation means fewer qubits are needed to generate |AL〉
states at the necessary rate. Note, however, that the algorithm
execution time is set by the modular exponentiation, and can
only be reduced by reducing the measurement time. However,
as will be clear later, operating a surface code-based quantum
computer requires intimate classical monitoring and control
of the physical qubits, with the control circuitry driven by
classical logic. Reducing the logical gate time will then put
severe demands on this classical control hardware. Given
the current speed of digital logic, logical gate times for the
quantum computer in the range of 0.1–10 μs are probably
realistic. Longer logical gate times can be used; however,
this requires more qubits to keep the overall execution time
constant. The number of qubits can be reduced by slowing
down the modular exponentiation, as then the rate of |AL〉
consumption is reduced, resulting in a smaller footprint for
the |AL〉 production. This may, however, lead to unacceptably
long factoring times. We return to this question, and the issue
of physical implementations, in a brief discussion at the end
of this article.

In this article we describe the surface code approach to
quantum computing. We have attempted to maximize clarity
and simplicity, while perhaps sacrificing some rigor. The
article is targeted at an audience with a good grounding in basic
quantum mechanics, but assumes no additional knowledge
regarding surface codes, error correction, or topological
information processing. We do however assume some prior
knowledge of the basics of qubits and quantum computing,

032324-2

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

including familiarity with single qubit operations such as X̂ bit-
flips and Ẑ phase-flips, the Hadamard gate, and the two-qubit
controlled-NOT (CNOT) gate as well as the multi-qubit Toffoli
gate. We also assume a working understanding of quantum
circuits and their terminology. We refer the uninitiated reader
to one of the excellent texts on this topic, e.g. Ref. [37] or [38].

II. INTRODUCTION

Quantum computation relies on the use of qubits, which are
two-level quantum systems. The prototypical two-level system
is an electron spin in a magnetic field, from which much of
the terminology originates; all of the quantum properties of an
electron spin are captured by the algebra of the Pauli operators
σ̂x , σ̂y , σ̂z and the identity Î . In keeping with the literature
on quantum computation, we use the qubit operators X̂, Ŷ ,
and Ẑ, defined in terms of the Pauli operators by X̂ = σ̂x ,
Ŷ = −iσ̂y , and Ẑ = σ̂z (see Appendix A). The algebra of
the qubit operators is almost identical to that of the Pauli
operators:

X̂2 = Ŷ 2 = Ẑ2 = Î , X̂Ẑ = −ẐX̂,
(1)

[X̂,Ŷ] ≡ X̂Ŷ − Ŷ X̂ = −2Ẑ,

where the last relation holds for cyclic permutations of X̂, Ŷ ,
and Ẑ, except for [Ẑ,X̂] = +2Ŷ .

Any two-level quantum system that satisfies the rela-
tions (1) can, in principle, be used as a qubit. In fact, any
system in which one can define X̂ and Ẑ operators that satisfy
the relations (1) can be used as a qubit, even if the system
has more than two degrees of freedom. Just having X̂ and Ẑ

operators on a qubit is not sufficient, as a quantum computer
needs a few more single-qubit gates as well as an entangling
two-qubit gate. The Solovay-Kitaev theorem [8,38] implies
that one set of operators sufficient to implement an arbitrary
quantum algorithm comprises the single-qubit operators X̂, Ẑ,
the Hadamard Ĥ , the Ŝ and Ŝ† phase gates, and the T̂ and
T̂ † gates, as well as a two-qubit CNOT gate (any two-qubit
gate from which a CNOT can be constructed is, of course,
acceptable).4 The matrix representations of these operators
are given in Appendix A.

In the surface code, physical qubits are entangled together
using a sequence of physical qubit CNOT operations, with
subsequent measurements of the entangled states providing a
means for error correction and error detection. A set of physical
qubits entangled in this way is used to define a logical qubit,
which due to the entanglement and measurement has far better
performance than the underlying physical qubits. We describe
how logical qubits are constructed in the surface code and
also show how the complete set of single logical qubit gates
and the two-qubit logical CNOT are constructed, allowing us to
implement quantum algorithms based on these logical qubits.

The qubit Ẑ eigenstates are called the ground state |g〉 and
the excited state |e〉. The ground state is the +1 eigenstate
of Ẑ, with Ẑ|g〉 = + |g〉, and the excited state is the −1

4Note this is not a minimal set, which would be T̂ , the Hadamard Ĥ ,
and the CNOT, as we have the identities T̂ 2 = Ŝ, T̂ 4 = Ẑ, Ĥ ẐĤ = X̂,
ẐŜ = Ŝ†, and T̂ 7 = T̂ †.

eigenstate, with Ẑ|e〉 = − |e〉.5 It is tempting to think of the
qubit as a kind of quantum transistor, with the ground state
corresponding to “off” and the excited state to “on.” However,
in distinct contrast to a classical logic element, a qubit can
exist in a superposition of its eigenstates, |ψ〉 = α|g〉 + β|e〉,
so a qubit can be both off and on at the same time. A
measurement MZ of the qubit will, however, return only one
of two possible measurement outcomes, +1 with the qubit
state projected to |g〉, or −1 with the qubit state projected
to |e〉. A quantum state is furthermore relatively delicate,
easily perturbed by interactions with the outside world. These
interactions can be intentional or can arise from errors, energy
decay from |e〉 to |g〉, or fluctuations in the energy difference
between the qubit eigenstates, that is, fluctuations in the qubit
transition frequency. When unintended, these changes to the
qubit state comprise quantum errors, and present one of the
largest challenges in quantum computing.

Qubit errors can be modeled by introducing random X̂

bit-flip and Ẑ phase-flip operators in the evolution of the qubit
state (we note that the Ŷ operator is the combination Ŷ = ẐX̂,
and is thus a combined bit and phase flip). If these errors are
rare, the amplitudes for these operators will be correspondingly
small. This modeling of errors can describe a quite wide range
of single-qubit errors (see, e.g., Ref. [39]).

The operator model for single-qubit errors implies that these
errors can, in principle, be undone by quantum correction
gates: An erroneous Ẑ can be canceled by subsequently
applying an intentional Ẑ, since Ẑ2 = Î . If we detect all the
errors, we can correct them by repeatedly applying quantum
correction gates. However, one feature of the surface code
is that errors only need to be corrected when they affect
measurement outcomes, and thus one merely needs to identify
errors, and then correct any measurements that are affected by
these errors. This can be done entirely in the classical system
used to control the surface code, as we describe in Sec. IX.
For example, a Ẑ phase-flip error that is detected immediately
can be corrected by changing the sign of any subsequent X̂

measurements, whereas an X̂ error will have no effect on
the same X̂ measurement; any subsequent Ẑ measurements
would similarly have to be corrected for an X̂ error but not for
a Ẑ error. This means that as long as errors can be detected
promptly, they can be undone in classical software. One of the
important aspects of the surface code is therefore a focus on
error detection rather than error correction.

As errors occur from the random and unpredictable ap-
pearance of X̂ and Ẑ operations, they must be detected
by repeatedly measuring each qubit, which can be done
with combined X̂ and Ẑ measurements. However, because
[X̂,Ẑ] �= 0, sequential measurements of X̂ and Ẑ on the same
qubit conflict with one another, causing random projections
of the qubit state onto these operators’ respective eigenstates,
completely destroying the quantum state. Specifically, a Ẑ

measurement MZ probabilistically projects the qubit state onto
|g〉 or |e〉, yielding the corresponding +1 or −1 eigenvalues,
respectively, with complete loss of the initial state’s amplitude

5Typically, Ẑ serves as the energy quantization axis, from which the
names originate; the larger eigenvalue for the ground with respect to
the excited state is because the Hamiltonian is proportional to −Ẑ.

032324-3

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

TABLE II. Eigenstates of the two-qubit operators ẐaẐb and
X̂aX̂b. The four eigenstates are the Bell states for this system.

ẐaẐb X̂aX̂b |ψ〉
+1 +1 (|gg〉 + |ee〉)/√2
+1 −1 (|gg〉 − |ee〉)/√2
−1 +1 (|ge〉 + |eg〉)/√2
−1 −1 (|ge〉 − |eg〉)/√2

and phase (unless it was originally in a Ẑ eigenstate). A subse-
quent measurement MX of X̂ will project the qubit state
onto the X̂ eigenstates |+〉 = (|g〉 + |e〉)/√2 or |−〉 = (|g〉 −
|e〉)/√2, with +1 and −1 measurement outcomes, respec-
tively, again destroying the state amplitude and phase. This
again is in contrast with classical logic, in which a logic
element has only bit-flip errors between off and on, and
measurement of the logic state does not perturb that state.

The projective measurement problem can, however, be
avoided by measuring more than one qubit at a time, making
nondestructive quantum error detection possible. Consider a
two-qubit system, with qubits a and b, which we measure using
the two-qubit operators X̂aX̂b and ẐaẐb. These operators,
even though they represent separate X̂ and Ẑ measurements,
actually commute:

[X̂aX̂b,ẐaẐb] = (X̂aX̂b)(ẐaẐb) − (ẐaẐb)(X̂aX̂b)

= X̂aẐaX̂bẐb − ẐaX̂aẐbX̂b

= (−ẐaX̂a)(−ẐbX̂b) − ẐaX̂aẐbX̂b = 0.

(2)

We have used the fact that operators on different qubits always
commute, so, for example, [X̂a,Ẑb] = 0. Measurements of
these two-qubit operators are thus compatible, so a two-qubit
state can actually be a simultaneous eigenstate of both X̂aX̂b

and ẐaẐb.6

In Table II we display the four simultaneous eigenstates of
X̂aX̂b and ẐaẐb, with their corresponding eigenvalues. We see
that these states are actually the four Bell states. We note that
each qubit has two degrees of freedom (ignoring the overall
phase), so the pair has four degrees of freedom. Specifying
the two-operator eigenvalues, which are by definition real and
thus impose two constraints on the qubits, restricts the system
to only one quantum state. The operators X̂aX̂b and ẐaẐb

therefore form a complete set for this two-qubit system.
Any of the eigenstates in Table II can be repeatedly

measured by X̂aX̂b and ẐaẐb, and these measurements will

6The careful reader may be confused by our notation: When we
use a qubit operator product such as X̂Ẑ without subscripts on the
operators, the two operators act on the same qubit; the 2 × 2 matrix
representations of each operator are multiplied together to give a
2 × 2 matrix representation for the product. When we instead have
subscripts, such as X̂aX̂b, the operators act on different qubits, so
formally we should write this as an outer product X̂a ⊗ X̂b; this outer
product operator acts on a four-dimensional Hilbert space, so its
matrix representation is a 4 × 4 matrix formed by the outer product
of the two 2 × 2 representations of X̂a and X̂b.

not change the state. If there is an externally induced X̂ or Ẑ

error on one of the qubits, then the two-qubit measurements
will project the qubit state onto one of the other two-qubit
eigenstates, and the measurement eigenvalues will change,
signaling that an error has occurred. For example, consider the
state (|gg〉 + |ee〉)/√2, with eigenvalues (+1,+1), in the first
line of Table II. An X̂b error on the second qubit will transform
this state to (|ge〉 + |eg〉)/√2, which is also an eigenstate but
with eigenvalues (−1,+1); the change in the first eigenvalue
will signal this error. Note, however, that this error cannot be
distinguished from an X̂a error, which yields the same final
state and final eigenvalues. By contrast, a Ẑa error on the first
qubit will transform (|gg〉 + |ee〉)/√2 to (|gg〉 − |ee〉)/√2,
which is an eigenstate with eigenvalues (+1,−1), changing
the second eigenvalue (a Ẑb error will give the same outcome
as Ẑa). Hence, while errors can always be detected, they cannot
be uniquely identified: A more complex system is needed to
achieve that, the surface code being one example.

The operator products X̂aX̂b and ẐaẐb are called stabi-
lizers. Stabilizers are very important in preserving quantum
states: By repeatedly measuring a quantum system using a
complete set of commuting stabilizers, the system is forced
into a simultaneous and unique eigenstate of all the stabilizers.
One can measure the stabilizers without perturbing the system;
when the measurement outcomes change, this corresponds to
one or more qubit errors, and the quantum state is projected
by the measurements onto a different stabilizer eigenstate.

III. THE SURFACE CODE

The two-qubit stabilizer example demonstrates a simple
form of error detection. More complex circuits can detect and
precisely identify errors in much larger assemblies of qubits;
the surface code is such an example. We implement the surface
code on a two-dimensional array of physical qubits, as shown
in Fig. 1. The qubits are either data qubits, represented by
open circles in Fig. 1(a), in which the computational quantum
states are stored, or measurement qubits, represented by solid
circles. All of the data and measurement qubits must meet the
basic requirements for quantum computation: Initialization,
single-qubit rotations, and a two-qubit CNOT between nearest
neighbors. In addition, in order to perform a topological
version of the Hadamard transformation, the data qubits and
measurement qubits must be able to exchange their quantum
states (a SWAP operation). A method to measure Ẑ for each
qubit is also required.

The measurement qubits are used to stabilize and manipu-
late the quantum state of the data qubits. There are two types
of measurement qubits, “measure-Z” qubits, colored green
(dark) in Fig. 1(a), and “measure-X” qubits, colored orange
(light); these are called Z syndrome and X syndrome qubits,
respectively, in the surface code literature (see, e.g., Ref. [15]).
Each data qubit is coupled to two measure-Z and to two
measure-X qubits, and each measurement qubit is coupled
to four data qubits. A measure-Z qubit is used to force its
neighboring data qubits a, b, c, and d into an eigenstate of the
operator product ẐaẐbẐcẐd : Each measure-Z qubit therefore
measures a Ẑ stabilizer. A measure-X qubit likewise forces its
neighboring data qubits into an eigenstate of X̂aX̂bX̂cX̂d , and
therefore measures an X̂ stabilizer.

032324-4

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

a

b c

d

H H(c)

(b)

(a)

+-

+-

g

repeat

1

g

6 7 8

+1: ΨZ+

1: ΨZ-

+1: ΨX+

1: ΨX-

repeat

Z
Z

Z

Z

X
X

X
X

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X
X

X

X

Z

Z

Z
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

a

b

d

c

a
b
c
d

2 3 4 5
I I

a
b
c
d

X

FIG. 1. (Color online) (a) A two-dimensional array implementa-
tion of the surface code. Data qubits are open circles (◦), measurement
qubits are solid circles (•), with measure-Z qubits colored green
(dark) and measure-X qubits colored orange (light). Away from
the boundaries, each data qubit contacts four measure qubits, and
each measure qubit contacts four data qubits; the measure qubits
perform four-terminal measurements. On the boundaries, the measure
qubits contact only three data qubits and perform three-terminal
measurements, and the data qubits contact either two or three measure
qubits. The solid line surrounding the array indicates the array
boundary. (b) Geometric sequence of operations (left), and quantum
circuit (right) for one surface code cycle for a measure-Z qubit,
which stabilizes ẐaẐbẐcẐd . (c) Geometry and quantum circuit for
a measure-X qubit, which stabilizes X̂aX̂bX̂cX̂d . The two identity Î

operators for the measure-Z process, which are performed by simply
waiting, ensure that the timing on the measure-X qubit matches that
of the measure-Z qubit, the former undergoing two Hadamard Ĥ

operations. The identity operators come at the beginning and end of
the sequence, reducing the impact of any errors during these steps.

IV. QUIESCENT STATE OF THE SURFACE CODE

The measure-Z and measure-X qubits that stabilize the
surface code are operated in a very particular sequence,
with one complete cycle shown in Figs. 1(b) and 1(c),
for a single measure-Z and measure-X qubit, respectively.
After initializing each measure qubit in its ground state |g〉,
the heart of the sequence comprises four CNOT operations
followed by a projective measurement. For the measure-Z
qubit, the CNOTs target the measure qubit with the four
nearest-neighbor data qubits as the controls, with the
projective measurement yielding an eigenstate of ẐaẐbẐcẐd

(see Appendix B, as well as [38]; eigenstates are listed
in Table III). For the measure-X qubit, the four CNOTs

TABLE III. Eigenstates for the four-qubit stabilizers ẐaẐbẐcẐd

and X̂aX̂bX̂cX̂d .

Eigenvalue ẐaẐbẐcẐd X̂aX̂bX̂cX̂d

+1 |gggg〉 | + + + +〉
|ggee〉 | + + − −〉
|geeg〉 | + − − +〉
|eegg〉 | − − + +〉
|egge〉 | − + + −〉
|gege〉 | + − + −〉
|egeg〉 | − + − +〉
|eeee〉 | − − − −〉

−1 |ggge〉 | + + + −〉
|ggeg〉 | + + − +〉
|gegg〉 | + − + +〉
|eggg〉 | − + + +〉
|geee〉 | + − − −〉
|egee〉 | − + − −〉
|eege〉 | − − + −〉
|eeeg〉 | − − − +〉

target the nearest-neighbor data qubits using the measure
qubit as the control, and the sequence also includes a
Hadamard applied to the measure qubit before and after
the CNOTs; the projective measurement yields an eigenstate
of X̂aX̂bX̂cX̂d . Hence, after the projective measurement of
all the measure qubits in the array, the state |ψ〉 of all the
data qubits simultaneously satisfies ẐaẐbẐcẐd |ψ〉 =
Zabcd |ψ〉, with eigenvalues Zabcd = ±1, and
X̂aX̂bX̂cX̂d |ψ〉 = Xabcd |ψ〉 with eigenvalues Xabcd = ±1.
Following measurement, the cycle is repeated.7 The measure
qubits in Figs. 1(b) and 1(c) all operate in lockstep, so that
every step in the cycle shown in the figure is completed over
the entire two-dimensional (2D) array before the next step
begins. We note that the zig-zag sequence abcd followed by
each of the measure qubits is quite particular and cannot be
easily modified while preserving the stabilizer property (see
Appendix B).

Stabilizer codes have the remarkable property that they do
not operate from the system ground state, but instead from the
state |ψ〉 that results from the concurrent measurement of all
the stabilizers; we call this the quiescent state. The quiescent
state |ψ〉 is randomly selected by completing one full surface
code cycle, which is the sequence shown in Figs. 1(b) and 1(c),
starting, for example, with all data and measurement qubits in
their ground states |g〉.

7A capital italic letter with a “hat,” for example, X̂, designates
an operator, while a capital italic letter by itself, X, represents
the outcome of a measurement of that operator, which must be
an eigenvalue of the operator. A stabilizer X̂aX̂bX̂cX̂d is the outer
product of four physical qubit X̂j operators, so would be represented
by a 24 × 24 = 16 × 16 matrix; its measurement outcome Xabcd is
an eigenvalue of this matrix. Note measuring the product X̂aX̂bX̂cX̂d

does not yield the same result as measuring each individual X̂a , X̂b,
X̂c, and X̂d , as the qubits are, in general, not in a product eigenstate
of the individual X̂j operators, so measuring the individual X̂j would
cause undesirable projections.

032324-5

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

Once selected, in the absence of errors, the same state |ψ〉
will be maintained by each subsequent cycle of the sequence,
with each measure qubit yielding a measurement outcome
Xabcd or Zabcd equal to that of the previous cycle. This occurs
because all X̂ and Ẑ stabilizers commute with one another.
This is trivial for stabilizers that do not have any qubits in
common, as X̂ and Ẑ operators on different qubits always
commute. Stabilizers that have qubits in common will always
share two such qubits, so every X̂ stabilizer shares two data
qubits with each neighboring Ẑ stabilizer and vice versa.8

Hence we have, for X̂ and Ẑ stabilizers that measure data
qubits a and b in common,

[X̂aX̂bX̂cX̂d,ẐaẐbẐeẐf]

= (X̂aẐa)(X̂bẐb)X̂cX̂dẐeẐf

− (ẐaX̂a)(ẐbX̂b)X̂cX̂dẐeẐf

= 0, (3)

as we get a minus sign from commuting X̂a through Ẑa as well
as one from commuting X̂b through Ẑb. Note the similarity
of this four-qubit stabilizer commutator with the two-qubit
stabilizer example in Eq. (2).

There are an enormous number of quiescent states that
can be selected by the stabilizer measurements: If there are
N measure qubits in the array, there are 2N measurement
outcomes. The measurements at the end of each surface
code cycle randomly project the data qubits onto one
of these quiescent states. For the array in Fig. 1, with N = 38
measure qubits, there are 238 ≈ 3 × 1011 possible quiescent
states. We also note that the rapid, single-cycle projection
onto a quiescent state implies that the quiescent state is
not a fully entangled state of the entire array, but instead
comprises local collections of highly entangled data qubits,
with a smaller degree of entanglement between more distant
groups of qubits. This is in some way analogous to the
ground state of a superconductor, with Cooper-paired electrons
strongly correlated over size scales small compared to the
superconducting correlation length, less strongly correlated
over larger length scales, yet still described by a single
macroscopic order parameter.

V. SINGLE-QUBIT ERRORS

Once selected, a quiescent state remains unchanged except
when disturbed by errors, for example, erroneous single-qubit
X̂ bit-flip or Ẑ phase-flip operations. These errors will be indi-
cated by changes in the measurement outcomes. Consider, for
example, a single data qubit error, represented by the erroneous
Îa + εẐa operating on data qubit a; |ε|
 1 is a small number
equal to the probability amplitude for the Ẑ phase flip, and we
neglect normalization. This error transforms the wave function
|ψ〉 → |ψ ′〉 = (Îa + εẐa)|ψ〉. Following this error, when the
next surface code measurement cycle is completed, the state
|ψ ′〉 will be projected to an eigenstate of all the X̂aX̂bX̂cX̂d and
ẐaẐbẐcẐd operator products. This projects |ψ ′〉 either back to
the original state |ψ〉, which occurs with near unit probability

8Note that this is true both for qubits in the interior of the array and
for qubits on the array boundaries.

and erases the error, or projects it to Ẑa|ψ〉, with probability
|ε|2; the latter state is an eigenstate of all the stabilizers, as
we will see in a moment. In the first case the measurement
outcomes are the same as before the error, while in the second
case the signs of the two measure-X qubits adjacent to data
qubit a will change. This is apparent from the following:

X̂aX̂bX̂cX̂d (Ẑa|ψ〉) = −Ẑa(X̂aX̂bX̂cX̂d |ψ〉)
= −Xabcd (Ẑa|ψ〉) (4)

(recall that Xabcd is the measurement outcome of the measure-
X qubit). This shows that Ẑa|ψ〉 is an eigenstate of this X̂

stabilizer, but with the opposite sign from |ψ〉. The same result
applies to the other measure-X qubit adjacent to a: Ẑa|ψ〉 is
an eigenstate of that stabilizer, with opposite sign compared to
|ψ〉. The data qubit error will not change the outcomes of the
two neighboring measure-Z qubits, as the Ẑ operators all com-
mute: [ẐaẐbẐcẐd ,Ẑa] = 0. In terms of the quiescent state,

ẐaẐbẐcẐd (Ẑa|ψ〉) = Ẑa(ẐaẐbẐcẐd |ψ〉)
= Zabcd (Ẑa|ψ〉), (5)

clearly again an eigenstate but with unchanged sign. Hence, in
this second case, the state |ψ ′〉 = (Îa + εẐa)|ψ〉 is projected
to Ẑa|ψ〉, which is a different eigenstate of all the stabilizers
in the array.

The erroneous phase-flip Ẑa causes sign changes in the
measurement outcomes of the two measure-X qubits adjacent
to qubit a, allowing us to detect and localize the phase-flip
error. We could then apply a second Ẑa operator to this qubit,
correcting the error (using the fact that Ẑ2

a = Îa); however, this
phase-flip cannot be applied with 100% fidelity, so this could
introduce more errors into the surface code state. It is safer to
instead handle this phase-flip error in software by recording on
which qubit the phase-flip error occurred. The classical control
software simply changes the sign of every subsequent measure-
ment of that data qubit’s two adjacent measure-X qubits, thus
correcting for the effects of the error. The two neighboring
measure-Z qubits are not affected by the error, so their
measurement outcomes do not need to be corrected. Both bit-
and phase-flip errors are handled in this way, with bit-flip errors
corrected by changing the sign of the affected qubit’s neigh-
boring measure-Z qubits, leaving the measure-X outcomes
unchanged. A second bit-flip error would cancel the first bit-
flip error, and a second phase-flip error would cancel the first
phase flip, and any measurement corrections would then end.

Error detection requires that we locate and identify errors.
A single data qubit Ẑa error is signaled by changes in the
measurement outcomes of the two measure-X qubits adjacent
to the affected data qubit, with the changes occurring in
one surface code cycle. Single-qubit X̂a errors, projecting
to the state X̂a|ψ〉, will generate sign changes in the two
measure-Z outcomes neighboring the data qubit, while the
two neighboring measure-X outcomes will be unchanged.
A Ŷa = ẐaX̂a error, projecting to the eigenstate ẐaX̂a|ψ〉,
will be signaled by sign changes in both of the neighboring
measure-X and measure-Z qubits. These types of errors
with their correlated signals are shown in Fig. 2. Once
such an error has occurred, the state resulting from the
projective measurements is again a quiescent state, with the

032324-6

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

Y

ti
m

e

-Z

-

++

-

M

-

-

-
-

-

+

+

+

-

-
-

-

-

-

-

- -

-

-

-
-

-
-

-

-

--

-

-

+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

X

+

FIG. 2. (Color online) Schematic evolution of measurement
outcomes (solid circles with ± signs), over a segment of the 2D array.
Time progresses moving up from the array at the bottom of the figure,
with measurement steps occurring in each horizontal plane. Vertical
heavy red (gray) lines connect time steps in which a measurement
outcome has changed, with the spatial correlation indicating an X̂

bit-flip error, a Ẑ phase-flip error, a Ŷ = ẐX̂ error, and temporal
correlation a measurement (M) error, which is sequential in time.

difference from the original |ψ〉 reported by the measurement
outcomes.

Errors occurring in the measurement process itself must
also be considered; one such error will yield a sign change for
that measure qubit only. On the next cycle, this measurement
error will likely vanish, so this error will typically be signaled
by a pair of sequential measurement changes occurring on a
single measure qubit. Note that a measurement error could,
of course, recur on the subsequent measurement, with a lower
probability, and on the measurement following that, with an
even lower probability, and so on. Establishing the value of
a particular measurement therefore requires several surface
code cycles, in order to catch single as well as sequential
measurement errors.

The signal from a measurement error, as it is typically
isolated on a single measure qubit, is distinct from that of a data
qubit error, which is reported by two or more measurements
separated in space. Other types of errors, such as CNOT errors,
are discussed in Ref. [17], and also generate distinct patterns
of sign changes in the measure-X and measure-Z qubits.

If the errors are sufficiently rare, the error signals will be
well-isolated on the 2D array, that is, in space as well as in
time. The error signals can then be matched up to deduce
which specific qubit error occurred, with very high probability
of correctly identifying the error. Given the linearity of a
quantum computer, if all the qubit errors that occur are
correctly identified, it is possible to correct for all these
errors in the classical control software by applying corrective
phase and bit flips to the qubit measurements, as discussed
above. However, if the errors in the array are not so sparse,

error identification becomes less straightforward. The inverse
problem, determining which qubit errors actually occurred to
generate a given set of error signals, does not have a unique
solution, and alternative sets of qubit errors become likely as
the error density increases. If mistakes are made in backing
out the qubit errors, these mistakes will result in erroneous
conclusions about the computational result. Ultimately, this
limits the surface code’s ability to handle errors.

We return to this discussion after introducing the surface
code logical operators.

VI. LOGICAL OPERATORS

How does one perform quantum logic in the surface code?
It may appear that the surface code completely stabilizes the
2D array, and that it therefore locks the quantum system
in a particular state, as in our earlier two-qubit example.
However, the set of surface code stabilizers is actually not
always complete, so the array can have additional degrees of
freedom. These additional degrees of freedom can be used to
define logical operators, the first step in defining a logical
qubit. We can see this by considering the small 2D array
shown in Fig. 3. This array has been drawn with two types
of boundaries, terminating with measure-X qubits on the right
and left, which we call X boundaries, and terminating with
measure-Z qubits on the top and bottom, which we call Z

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z
Z Z

Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

d=5

Z7

Z3

Z8

Z9

X1 X2 X3 X4 X5

ZL

XL

X10

X11

X12

Z6

FIG. 3. (Color online) A square 2D array of data qubits, with X

boundaries on the left and right and Z boundaries on the top and
bottom. The array has 41 data qubits, but only 40 X̂ and Ẑ stabilizers.
A product chain X̂L = X̂1X̂2X̂3X̂4X̂5 of X̂ operators connects the two
X boundaries, commutes with all the array stabilizers and changes
the array state from the quiescent state |ψ〉 to |ψX〉 = X̂L|ψ〉 with the
same measurement outcomes as |ψ〉. A second product chain ẐL =
Ẑ6Ẑ7Ẑ3Ẑ8Ẑ9 connects the two Z boundaries and commutes with the
array stabilizers; it changes the array state from |ψ〉 to |ψZ〉 = ẐL|ψ〉.
The operator chains X̂L and ẐL anticommute. A modification of
the X̂L chain to the chain X̂′

L = X̂1X̂10X̂11X̂12X̂3X̂4X̂5 generates a
quiescent state |ψX′ 〉 = X2,10,11,12|ψX〉, related to |ψX〉 by the result of
the measurement X2,10,11,12 = ±1 of the encircled measure-X qubit
(outlined in black).

032324-7

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

boundaries. The X boundaries are called smooth boundaries
in the surface code literature, while Z boundaries are called
rough boundaries [15].

If we count the number of data and measure qubits in the
array, we find there are 41 data qubits and 40 measure qubits,
so there are 2 × 41 degrees of freedom in the data qubits with
2 × 40 constraints from the stabilizer measurements (each
measurement is real valued, thus the factor of two). The
stabilizers in this array are all linearly independent, and no
stabilizer can be written as a product of the other stabilizers,
so these 2 × 40 constraints are all linearly independent.9 The
two unconstrained degrees of freedom indicate that this small
array might serve as a (single) logical qubit; we still need to
define the logical operators that manipulate these degrees of
freedom.

How do we find the operators that will allow us to
manipulate the additional degrees of freedom in the array,
without affecting the stabilizers? A clue is provided by the
fact that the stabilizer measurements commute because the
stabilizers share pairs of data qubits. If we pair up operations
on pairs of data qubits, we can create multiqubit operator
products that commute with the stabilizers; this is how we
build the logical operators, which we term X̂L and ẐL.

We remind the reader that a single data qubit X̂ operation
changes the measure-Z outcomes on either side of the data
qubit. Consider, however, two simultaneous X̂ operations on
two data qubits a and b that both neighbor one measure-Z
qubit. Then we have

ẐaẐbẐcẐd (X̂aX̂b|ψ〉) = (−1)2X̂aX̂b(ẐaẐbẐcẐd |ψ〉)
= Zabcd (X̂aX̂b|ψ〉). (6)

In other words, the product of two X̂ operations commutes
with a single Ẑ stabilizer: [ẐaẐbẐcẐd ,X̂aX̂b] = 0.

Consider now Fig. 3, in particular the operation X̂1 on the
left boundary. This operation is detected by the measure-Z
qubit just to the right of the flipped data qubit, but we can
at the same time perform an X̂2 operation on the data qubit
on the other side of that measure-Z. The first Ẑ stabilizer
now commutes with the product of these two operations, but
the measure-Z qubit to the right of X̂2 still reports a change;
hence, we add a third operation X̂3 to the set, and so on,
until we have created a product of concurrent X̂ operations
X̂L = X̂1X̂2X̂3X̂4X̂5, which connects the two X boundaries on
the left and right sides of the array. Every measure-Z qubit now
interacts with pairs of data qubits appearing in the X̂L operator,
so by construction the product chain X̂L commutes with all
the Ẑ stabilizers in the array (note X̂L trivially commutes
with the X̂ stabilizers). Hence, if the X̂L operator is applied

9This is true for almost all arrays: With N measure qubits, there are
2N linearly independent constraints on the array wave function |ψ〉.
The two exceptions to this are arrays with uniquely X or uniquely Z

boundaries. In these cases, one of the X̂(Ẑ) stabilizers can be written
as a product of all the other X̂(Ẑ) stabilizers. As the stabilizers all
commute, this in turn means that this one stabilizer does not impose an
additional constraint, so with N measure qubits one only has 2N − 2
constraints. However, in these arrays there are only N − 1 data qubits,
so in this situation the quiescent state is completely determined by
the stabilizers, with no additional degrees of freedom.

to a quiescent state |ψ〉, generating the state |ψX〉 = X̂L|ψ〉,
the new state |ψX〉 will be a quiescent state with identical
measurement outcomes to |ψ〉. Note that |ψX〉 is not equal
to |ψ〉, as we have bit-flipped five data qubits in going from
|ψ〉 to |ψX〉, and as X̂L cannot be written as a product of
stabilizers, |ψX〉 is not trivially related to |ψ〉. The X̂L operator
thus manipulates one of the two degrees of freedom of the array
in Fig. 3.

The other degree of freedom in the array can be manipulated
by constructing a ẐL operator using a completely analogous
product of Ẑ data qubit operations: We again build a chain
of operations using Ẑ operators that are paired across each
measure-X qubit that would otherwise report a measurement
change. The chain of paired Ẑ operators must cross the entire
array and further must start and end on a Z boundary (rather
than the X boundaries on either end of the X̂L chain). An
example of such a chain is ẐL = Ẑ6Ẑ7Ẑ3Ẑ8Ẑ9 in Fig. 3.
This ẐL operator chain commutes with all the stabilizers
in the array, and thus when operating on a quiescent state,
generates a new quiescent state |ψZ〉 = ẐL|ψ〉 with the same
measurement outcomes as |ψ〉. The state |ψZ〉 clearly differs
from |ψ〉, as we have phase flipped five data qubits, and as
ẐL cannot be written as a product of stabilizers, |ψZ〉 is not
trivially related to |ψ〉; ẐL thus manipulates a second degree
of freedom in the array. We show below that X̂L and ẐL do
not commute, so they manipulate two independent degrees of
freedom just as for a physical qubit.

It may seem that we could choose other chains of
single-qubit operator products to define different X̂L or
ẐL operators. Consider, for example, the chain X̂′

L =
X̂1X̂10X̂11X̂12X̂3X̂4X̂5, also shown in Fig. 3. This chain of
X̂ operators satisfies the same conditions as X̂L, as the X̂ data
qubit operators are paired so as to bracket each measure-Z
qubit. Hence, X̂′

L commutes with all the stabilizers and will
generate a quiescent state |ψX′ 〉 = X̂′

L|ψ〉 with the same
measurement outcomes as |ψ〉 and |ψX〉. However, the state
|ψX′ 〉 is actually linearly related to |ψX〉: First, note that we
can manipulate the set of operators appearing in X̂′

L, as

X̂′
L = X̂1X̂10X̂11X̂12X̂3X̂4X̂5

= (X̂2X̂10X̂11X̂12)(X̂1X̂2X̂3X̂4X̂5)

= (X̂2X̂10X̂11X̂12)X̂L, (7)

where we have used X̂2
2 = Î in going from the first to the

second line in Eq. (7). Now, the operator product in parentheses
in the third line of Eq. (7) is just the stabilizer outlined in black
in Fig. 3: In other words, we have simply multiplied X̂L by an
operator product that is stabilized to a ±1 eigenvalue by the
surface code. If we operate on a quiescent state |ψ〉 with X̂′

L,
we can simply replace this operator product by its eigenvalue:

X̂′
L|ψ〉 = X2,10,11,12X̂L|ψ〉 = ±X̂L|ψ〉 = ±|ψX〉, (8)

where X2,10,11,12 = ±1 is the measurement outcome of the
stabilizer X̂2X̂10X̂11X̂12. This holds for any operator X̂′

L that
can be written as a stabilized operator product times X̂L, that
is, X̂′

L|ψ〉 = ±X̂L|ψ〉, where the sign is determined by the
measurement outcomes of the corresponding stabilizers. In
fact, any X̂′

L chain that crosses the array in Fig. 3 can be written
as X̂L multiplied by a product of X̂ stabilizers, as can easily

032324-8

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

be verified. Hence, there is only one linearly independent X̂L

operator for this array.
This result may seem mysterious; after all, if we operate

on the array with a loop of X̂ operators corresponding to a
stabilizer, for example, the loop X̂loop = X̂2X̂10X̂11X̂12, we
are bit flipping four data qubits, so the state |ψ ′〉 = X̂loop|ψ〉
should be different from |ψ〉. However, the fact that X̂loop

is equal to a stabilizer means that |ψ〉 already includes
superposition states of the un-bit-flipped and the bit-flipped
states of the data qubits involved in X̂loop; this holds for any
operator that is equal to the product of one or more stabilizers.10

The same argument applies to alternative Ẑ′
L operators: Any

such operator is equal to the original ẐL multiplied by a product
of Ẑ stabilizers, and thus any Ẑ′

L|ψ〉 differs from ẐL|ψ〉 by
±1. Hence, there is also only one linearly independent ẐL

operator for this array.
We now show that the two operators X̂L and ẐL satisfy the

critical anticommutation relation in Eq. (1). We have

X̂LẐL = (X̂1X̂2X̂3X̂4X̂5)(Ẑ9Ẑ10Ẑ3Ẑ11Ẑ12)

= X̂3Ẑ3(X̂1X̂2X̂4X̂5)(Ẑ9Ẑ10Ẑ11Ẑ12)

= −Ẑ3X̂3(Ẑ9Ẑ10Ẑ11Ẑ12)(X̂1X̂2X̂4X̂5)

= −ẐLX̂L, (9)

where all the single-qubit operations are on different qubits,
and thus commute, except for X̂3 and Ẑ3, which anticommute,
X̂3Ẑ3 = −Ẑ3X̂3. This makes X̂L and ẐL anticommute. The
logical operators X̂L and ẐL therefore have exactly the same
commutation relation as the physical qubit operators X̂ and
Ẑ. One can show that X̂2

L = Ẑ2
L = Î . We can also construct

the logical operator ŶL = ẐLX̂L, comprising two chains of Ẑ

and X̂ operators that each cross the array. The set of logical
operators X̂L, ŶL, and ẐL satisfy all the commutation relations
in Eq. (1), thus making this 2D array a logical qubit.

We use the logical operators X̂L and ẐL to manipulate the
degrees of freedom in the 2D array that are not constrained
by the stabilizers. The state |ψ〉 describes the quantum state
of all the data qubits; the surface code measurements ensure
that |ψ〉 is an eigenstate of all the stabilizers, but in the
case where we have more data qubits than stabilizers, |ψ〉
is not completely constrained. We can therefore write |ψ〉
as an outer product, |ψ〉 = |Q〉|qL〉, where |Q〉 is a vector
in the 2N -dimensional Hilbert subspace on which the N

stabilizers operate, with |Q〉 constrained to a unique state
in this Hilbert space, as determined by the N stabilizer
measurement outcomes. The remaining degrees of freedom
in |ψ〉 are captured by |qL〉. For the array in Fig. 3, with
two unconstrained degrees of freedom, |qL〉 is in a 2D
Hilbert space, that is, represents a single-qubit state. The
stabilizers have no effect on |qL〉, and the logical operators

10In other words, if |ψ〉 includes qubits 2, 10, 11, and 12 in the
state | · · · + − + + · · · 〉, then |ψ〉 must also include the state where
these qubits are in | · · · − + − − · · · 〉, that is, |ψ〉 = ±| · · · + − +
+ · · · 〉 ± | · · · − + − − · · · 〉 + · · · . Then operating with X̂loop on |ψ〉
flips the first state to the second and vice versa without changing
|ψ〉, X̂loop|ψ〉 = ∓| · · · − + − − · · · 〉 ∓ | · · · + − + + · · · 〉 + · · · =
∓|ψ〉.

X̂L and ẐL have no effect on |Q〉. The eigenstates of ẐL are
|qL〉 = |gL〉 and |qL〉 = |eL〉, such that ẐL|gL〉 = +|gL〉 and
ẐL|eL〉 = −|eL〉, while the corresponding eigenstates of X̂L

are |qL〉 = |±L〉 = (|gL〉 ± |eL〉)/√2, with eigenvalues ±1.
Either pair, |gL〉 and |eL〉 or |+L〉 and |−L〉, can be used as
a basis for the states |qL〉. We can to some extent ignore the
presence of |Q〉 when discussing manipulations of the logical
state |qL〉.

So far we have only shown how to define a single logical
qubit in our array; later we show how to make larger numbers
of logical qubits within an array, which is done by creating
more degrees of freedom within the array. Each logical qubit
we create will increase the size of the logical Hilbert space of
|qL〉 by two and concomitantly reduce the size of the stabilizer
Hilbert space of |Q〉 by two. With n logical qubits, the Hilbert
space for |qL〉 has dimension 2n.

VII. ERROR DETECTION

Now that we can construct surface code logical operators,
we turn again to the consideration of errors in the surface code.
The errors we consider here are on the physical qubits, either
the data or the measure qubits. Errors occur due to single-qubit
errors (erroneous X̂, Ŷ , or Ẑ operations), measurement errors
(reporting the incorrect outcome and projecting to the wrong
state), initialization errors (setting a qubit to the wrong state),
Hadamard errors (performing a Hadamard but in addition
performing an erroneous X̂, Ŷ , or Ẑ), and CNOT errors.
Individual errors of these types are, of course, the most likely,
but concatenated errors can also occur, for example, two, three,
or more adjacent data qubits suffering X̂ errors in one surface
code cycle, creating what are called error chains.

The surface code can deal with all these errors as long
as the errors that occur during each surface code cycle can
be identified [i.e., decoding which specific error(s) occurred
on which particular qubit(s)].11 Once identified, these errors
can be tracked and the information used to correct any
subsequent measurement outcomes using the classical control
software. Edmonds’ minimum-weight perfect-matching algo-
rithm [40,41] provides an automated method for doing this
and works perfectly for sufficiently sparse errors, but begins
to fail as the error density increases and as the length of the
error chains increases. Numerical simulations using this type
of algorithm can therefore provide estimates of the tolerance
of the surface code to different types of errors. An example of
a set of simulations of this kind is shown in Fig. 4.

The simulations used to generate Fig. 4 include the
following types of errors, occurring during the surface code
cycle shown in Fig. 1:

(1) attempting to perform a data qubit identity Î , but
instead performing a single-qubit operation X̂, Ŷ , or Ẑ, each
occurring with probability p/3;

(2) attempting to initialize a qubit to |g〉, but instead
preparing |e〉 with probability p;

11Actually, the surface code does not need to completely identify
errors; it is sufficient that it identifies errors or chains of errors that are
topologically equivalent to the actual errors, meaning any differences
can be written as products of stabilizers.

032324-9

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

(a) Simulation

Per-step error rate p

10-5

10-4

10-3

10-2

10-1

d=3
d=5
d=7
d=9
d=11
d=15
d=25
d=35
d=45
d=55

(b) Estimate

10-2

10-1

10-4 10-3 10-2

10-4

10-3

10-5

1
10-4 10-3 10-2

L
og

ic
al

 X
 e

rr
or

 r
at

e
P L

1

d=3
d=7

d=11
d=25
d=55

pth

L
og

ic
al

 X
 e

rr
or

 r
at

e
P L

FIG. 4. (Color online) (a) Numerical simulations of surface code
error rates and how these error rates scale with the distance d of
the array. Per-step error rates p less than the per-step threshold
error rate of pth = 0.57% (dashed vertical line) yield surface code
logical error rates PL that vanish rapidly with increasing d . This
threshold corresponds to roughly a 4% error rate for the entire surface
code measurement cycle. (b) Estimated error rates, using statistical
arguments given in main text, for array distances d = 3, 7, 11, 25,
and 55. Note the estimate gives a logical error rate PL and a per-step
threshold that are qualitatively similar to those from the more precise
simulations.

(3) attempting to perform a measure qubit Hadamard
operation Ĥ , but performing in addition one of the single-qubit
operations X̂, Ŷ , or Ẑ, each with probability p/3;

(4) performing a measure qubit Ẑ measurement, but
reporting the wrong value and projecting to the wrong state
with probability p;

(5) attempting to perform a measure qubit-data qubit CNOT,
but instead performing one of the two-qubit operations Î ⊗ X̂,
Î ⊗ Ŷ , Î ⊗ Ẑ, X̂ ⊗ Î , X̂ ⊗ X̂, X̂ ⊗ Ŷ , X̂ ⊗ Ẑ, Ŷ ⊗ Î , Ŷ ⊗ X̂,
Ŷ ⊗ Ŷ , Ŷ ⊗ Ẑ, Ẑ ⊗ Î , Ẑ ⊗ X̂, Ẑ ⊗ Ŷ , or Ẑ ⊗ Ẑ, each with
probability p/15.12

The errors occur randomly during the simulation, with no
correlation between errors. The probability p is per step in
the surface code cycle (there are eight steps in the cycle used

12Here we use the two-qubit outer product notation Â ⊗ B̂. When
Â ⊗ B̂ operates on the two-qubit state |ab〉, the Â operator acts on
qubit a’s part of the state, and B̂ acts on qubit b’s part of the state.

for the simulation (Fig. 1), so the overall rate per cycle of the
surface code is approximately 8p, as discussed in more detail
in Sec. VII B). Edmonds’ matching algorithm maps changes
detected in the stabilizer outcomes to physical qubit errors;
the rate at which the algorithm makes mistakes, meaning it
misidentifies the source of a particular error report, is displayed
as PL, the number of X̂L errors appearing anywhere in the
array, per surface code cycle.13 This error rate is plotted as a
function of the per-step error rate p.

The relation between PL and p depends very strongly on
a very important number, the array size d, which we also
call the distance of the array: d is the minimum number of
physical qubit bit flips or phase flips needed to define an X̂L

or ẐL operator. In Fig. 3, for example, we need a minimum
of five physical operators to define a logical operator, so that
array has a distance d = 5. At distance d = 55, the largest
appearing in the simulations in Fig. 4, the equivalent array
would have 55 data qubits along the horizontal and 55 data
qubits along the vertical.

For small p, PL is small and gets smaller as d increases.
For large p, PL is larger, and gets larger as d increases. The
cross-over between these two regimes occurs when p crosses a
threshold error rate pth: For p < pth, the logical error rate falls
exponentially with d, while for p > pth, PL increases with
d. In Fig. 4, which applies to the stabilizer circuits in Fig. 1
simulated with the error sources listed above, the threshold rate
is pth = 0.57%. We note this threshold is smaller than some of
those mentioned earlier; this is in part because the threshold
depends on the particular surface code implementation, but
mostly because we include more types of errors than were
considered in earlier publications. As we discuss in more detail
in Sec. VII B, the logical error rate PL responds in a strikingly
different way to different types of errors.

For error rates p < pth, the simulations show that the logical
error rate scales with p according to the power law PL ∼ pde ,
where we define the error dimension for odd d as

de = (d + 1)/2. (10)

For even d, we round down, so de = d/2. Using this, the error
rate PL shown in Fig. 4 can be approximated more specifically
by the empirical formula

PL
∼= 0.03 (p/pth)de . (11)

A. Statistical model for the logical error rate

We can qualitatively understand the scaling in Eq. (11) by
looking at the types of errors for which the matching algorithm
fails. Consider Fig. 5(a), in which two measure-Z qubits are
reporting errors, marked by “E”s in the figure. Two examples
of sets of data qubit errors that would generate this error report
are shown in Figs. 5(b) and 5(c): In Fig. 5(b), two of the five
data qubits had X̂ errors, while in Fig. 5(c), the other three

13There are, of course, also ẐL errors, occurring at about the same
rate as X̂L errors; here we are interested in identifying the scaling
relation between physical qubit error rate and the resulting logical
error rate, a scaling that is very similar for X̂L errors and ẐL errors,
so we only look at the scaling for X̂L errors.

032324-10

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

E E

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

ZE E

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

ZE E E

(a)

(b)

(c)

X X

XXX

FIG. 5. (Color online) (a) An example where two measure-Z
qubits report errors in a single row of a 2D array, marked by “E”s.
This error report could be generated by (b) two X̂ errors appearing in
the same surface code cycle on the second and third data qubit from
the left or (c) three X̂ errors appearing in the other three data qubits
in the row.

data qubits had X̂ errors. These two events look identical
in terms of measurement outcomes. A natural conclusion
would be to assume that just two data qubit errors have
occurred; This is, of course, more likely, as this will occur with
probability proportional to p2, while the triple error shown in
Fig. 5(c) will occur at a rate scaling as p3. More generally,
for arrays with distance d, the most misidentifications will
occur when (d + 1)/2-fold qubit errors are misidentified as
(d − 1)/2-fold errors, where the rate these misidentifications
occur scales as pde . This explains the general scaling seen in
Fig. 4 and in Eq. (11), and underlines the primary result that
misidentification of qubit errors causes logical errors and that
large arrays are less error-prone than small arrays.

The magnitude of the logical error rate can be estimated
using simple statistical arguments, considering only errors
on the data qubits (and ignoring, e.g., errors in the CNOTs
between measure qubits and data qubits [17]). Chains of
errors will give the same measurement outcomes if they are
complementary in the way shown in Fig. 5; more formally,
two chains of errors are complementary if their product is an
array-crossing chain that commutes with all the stabilizers.
Since the shortest error chains are the most likely, we need
only consider minimum-length array-crossing chains, which
have d operators and can cross the array in any one of the
d data qubit rows. The most likely misidentifications occur
between error chains with length de − 1 = (d − 1)/2 that are
complementary to error chains of length de = (d + 1)/2. For
a chain of errors in a given row, the number of possible de-fold
errors is d(d − 1), . . . ,de/de!, where the denominator appears
because error order does not matter. Given a per-step error rate
p, the per-cycle individual error rate is pe

∼= 8p, as there are
eight steps per cycle. The total X̂L error rate P s

L from these
statistical arguments is then

P s
L = d

d!

(de − 1)!de!
pde

e , (12)

where the factor of d accounts for the d independent rows in
the array. A plot of this prediction is shown in Fig. 4(b) and is
seen to scale in a way similar to the simulations in Fig. 4(a).

We can use these scaling relations to estimate the number
of qubits needed to obtain a desired logical error rate. Using

10 -2 10 -1 10 0
10 1

10 2

10 3

10 4

10 5

Single step error rate p/pth

N
um

be
r

of
 q

ub
it

s
n q PL = 10-20

10-10

10-5 5

10

20

40

d=

FIG. 6. (Color online) Estimated number of physical qubits nq per
logical qubit, versus the single-step error rate p, the latter normalized
to the threshold error rate pth, plotted for different target logical error
rates PL. Notation on the right axis corresponds to the array distance
d for a single logical qubit.

Eq. (11) for the error probability, we plot in Fig. 6 the total
number nq of data and measurement qubits, nq = (2d − 1)2,
versus error rate normalized to the threshold p/pth < 1, for
three values of the logical error rate PL. We find that nq

increases rapidly as p approaches the threshold pth, so that
a good target for the gate fidelity is above about 99.9%
(p � 10−3). In this case, a logical qubit will need to contain
103–104 physical qubits in order to achieve logical error rates
below 10−14–10−15, sufficient to perform Shor’s algorithm
with a reasonable chance of success.14

Similar considerations apply when detecting and identify-
ing errors in time as opposed to the spatially correlated errors
discussed above. If the measurement process gives errors at the
rate pM per surface code cycle, the probability of double errors
(the same error twice in a row) is p2

M , and so on. A particular
pattern of errors in time will suffer misidentifications following
the same scaling as in Eq. (12), so we find that we need roughly
the same distance d in time (measured in complete surface code
cycles) as we do in space to maintain the minimum logical error
rate, assuming the measurement error rate pM is comparable
to the physical qubit error rate p.

More complete calculations of this type can be found in
Ref. [42].

B. Logical error rate for different error classes

The logical error rates calculated from simulations such as
in Fig. 4 depend on which types of errors are simulated, as
well as the number of opportunities there are for each type of
error. Errors that occur on the data qubits, primarily data qubit
identity (“idle”) operations that are replaced by erroneous X̂,
Ŷ , or Ẑ operations, we term “class 0” errors. There are four
opportunities per surface code cycle for such errors on each

14The target logical error rate of 10−14–10−15 is explained in
Appendix M and is mostly due to the need to distill a large number of
highly purified |AL〉 states to complete the modular exponentiation
in Shor’s algorithm.

032324-11

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

data qubit (there are a total of eight surface code cycle steps
in Fig. 1, during four of which each data qubit is undergoing
a CNOT, leaving four steps in which the data qubit is idle).
Errors that occur on the measure qubits, namely initialization,
measurement, and Hadamard operations, we term “class 1”
errors; note that errors occurring during the two measure-Z
identity Î (idle) steps have no impact, as they are followed
by a ground-state initialization of the measure-Z qubit, so
these errors cannot propagate. Each measure-X qubit has four
opportunities for class 1 errors per surface code cycle, and
each measure-Z two opportunities. There is thus an average of
three opportunities per surface code cycle for a class 1 error.
Finally, errors in the measure qubit-data qubit CNOT operations
we term “class 2” errors. There are four steps per cycle during
which class 2 errors can occur, corresponding to the four CNOTs
for each measure qubit.

The logical error rate is least sensitive to class 1 errors, is
more sensitive to class 0 errors, and is the most sensitive to
class 2 errors. This is demonstrated by simulations in which
we examine the dependence of the logical error rate PL on
the error rate from each error class separately, with the error
rate from the other error classes set to zero, shown in Fig. 7.
It is readily apparent that the different error classes have very
different thresholds, with the class 0 errors in Fig. 7(a) having a
per-step threshold of 4.3% and a per-cycle threshold of 15.5%
(the per-cycle value is not quite four times the per-step value,
as multiple errors can cancel). The class 1 measure-Z qubit
errors shown in Fig. 7(b) have a per-step threshold of 25%,
translating to a per-cycle threshold of 50% as there are two
opportunities for class 1 measure-Z errors per surface code
cycle; the equivalent plot for measure-X qubits has a per-step
threshold of 12.5%, and as there are four opportunities for
class 1 errors per cycle in the measure-X qubits, the per-cycle
threshold is again 50%. The class 2 errors shown in Fig. 7(c)
have a per-step threshold of 1.25% (per-cycle threshold of
∼5%). Clearly, the sensitivity to class 2 errors is greatest and
to class 1 errors the smallest.

We can find empirical expressions for the scaling of the
logical error rates due to each error class:

Class0 : PL0 ∼
(

p0

pth,0

)de

with pth,0
∼= 0.043,

Class1 : PL1 ∼
(

p1

pth,1

)de

with pth,1
∼= 0.12, (13)

Class2 : PL2 ∼
(

p2

pth,2

)de

with pth,2
∼= 0.0125.

Here the rates p0, p1, and p2 and their thresholds are per step
in the surface code cycle, while the logical error rates are per
surface code cycle. The logical error rates display the same
dependence on the error dimension de = (d + 1/2) (in terms
of the array distance d) as the expression for the total logical
error rate PL given in Eq. (11), but with different thresholds
for each class of error.

The dependence of the overall logical error rate on the three
classes of errors occurring concurrently is shown in Fig. 8,
where we display the contours of error rates (p0,p1,p2) that
give a total logical error rate PL = 0.02, approximately the
value of PL at threshold. This figure shows that class 0 and 2

10-4

10-2

10-3

10-1

L
og

ic
al

 X
 e

rr
or

 r
at

e
(P

L)
L

og
ic

al
 Z

 e
rr

or
 r

at
e

(P
L)

d=3
d=5
d=7
d=9
d=11
d=15
d=25
d=35

10-110-2

Physical qubit error rate (p)

10-4

10-2

10-3

10-1

L
og

ic
al

 X
 e

rr
or

 r
at

e
(P

L)

(a) Class 0

(b) Class 1

(c) Class 2

0.6

0.4

0.2

0.1

d=45
d=55

d=3
d=5
d=7
d=9
d=11
d=15
d=25
d=35

d=45
d=55

d=3
d=5
d=7
d=9
d=11
d=15
d=25
d=35

FIG. 7. (Color online) X̂L error rate PL per surface code cycle
as a function of the per-step physical error rate p, considering only
(a) class 0 (data qubit) errors, (b) class 1 (measure qubit) errors, and
(c) class 2 (CNOT) errors (see text for full definition). For the class
1 errors in (b), results are for initialization and measurement errors
in measure-Z qubits, with two opportunities per surface code cycle,
while the equivalent for measure-X qubits includes Hadamard errors,
with four opportunities per cycle.

errors have roughly equal impact on PL, while PL is roughly
five times less sensitive to class 1 errors.

Returning to the general error rate discussion, we see that
the surface code is able to handle a per-step physical qubit error
rate up to the threshold pth = 0.57%, while still preserving
the integrity of logical states in the array. This is achieved
by identifying the sources of these errors and accounting for
them. The error tolerance improves as the array distance d

032324-12

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

0.0010.0030.010.02

0 0.01 0.02
0

0.004

0.008

0.012

C
la

ss
-2

 e
rr

or
 r

at
e

p 2

Class-0 error rate p0

Class-1 error
rate p1

p1=0.05

FIG. 8. (Color online) Contours of the three error class error rates
p0, p1, and p2 that combine to give the error threshold, corresponding
to the total logical error rate PL = 0.02. Data are from a distance d =
9 numerical simulation, and lines are guides for the eye. The green
dot (upper vertical axis) is the class 2 error rate giving PL = 0.02
with no class 0 or class 1 errors.

increases; larger values of d give lower logical error rates than
do smaller d, as long as the error rate p is smaller than the
threshold pth. We see that the array distance d is an important
parameter in the implementation. In fact, as we will see, the
critical parameter is not the size of the entire 2D array, but
instead the size of the logical qubits that are created within the
array. We return to this topic in Sec. XII.

At the fundamental level, we have physical qubits which
are being projectively measured on every surface code cycle,
with errors being continuously detected and accounted for in
software. Errors that are not erased through the surface code
measurement cycle cause changes in the quiescent state |ψ〉,
as indicated by changes in the stabilizer measurements. These
errors do not affect the logical state |qL〉, as they are restricted
to the directly stabilized part |Q〉 of |ψ〉 = |Q〉|qL〉. When,
however, the matching algorithm makes a mistake, a logical
error occurs, in which case typically both |Q〉 and |qL〉 are
affected; however, for sufficiently small p, these errors are
very rare, with the directly stabilized |Q〉 and the matching
algorithm protecting the logical subspace of |qL〉 from the vast
majority of errors.

When we build on this platform, we can often ignore the de-
tails of this error-accounting apparatus and instead discuss ma-
nipulating the physical qubits without worrying about errors.
At this level of abstraction, we are thus dealing with “software-
corrected” physical qubits. In the next few sections, we discuss
the creation and operation of logical qubits; we mostly ignore
the error accounting for this discussion, to keep things simple,
but we return to this important issue when necessary.

VIII. CREATING LOGICAL QUBITS

We have described one way to create the logical operators
X̂L and ẐL, by building array-crossing chains of X̂ and
Ẑ operators. These logical operators commute with all the
stabilizers. However, as the chains of operators must cross the
entire array, this becomes cumbersome for large arrays and,

XXXX

X X

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

Z6
Z5

Z3
Z4

X1

X3

X2 XL

ZL

FIG. 9. (Color online) A single Z-cut qubit. The array boundary
is indicated by a solid black line (top), while the other three sides
of the array continue outwards indefinitely. Two logical operators,
X̂L = X̂1X̂2X̂3 from the array’s outer X boundary to the internal X

boundary of the Z-cut hole, and ẐL = Ẑ3Ẑ4Ẑ5Ẑ6 surrounding the
Z-cut hole, are shown. Note that the operator chains for X̂L and ẐL

have one physical data qubit in common (data qubit 3).

for arrays with only two X and two Z boundaries, only gives
us a single logical qubit no matter how large the array. We can
increase the number of logical qubits by creating more varied
boundaries in the array; for example, using short alternating
X and Z boundaries would allow the creation of multiple
logical qubits, increasing the amount of information that can
be stored. However, as we shall see, performing logical CNOTs
between these boundary qubits is not possible, so this approach
has limited utility. A much more powerful approach is to
create holes (known as defects in the published literature)
inside the boundaries of the array, which can be done by
simply turning off one or more of the internal measure-X and
measure-Z qubits (“turning off” means that the measure qubit
no longer performs the surface code cycle of CNOTs followed
by measurement).

In Fig. 9 we show how this can be done, by turning off
a single measure-Z qubit and creating a hole, which we
call a “Z-cut hole.” Turning off the measure-Z qubit means
that we no longer measure its stabilizer, which creates two
additional degrees of freedom in the surface code array. We
can manipulate these degrees of freedom in a similar fashion
to the way we manipulate the array qubit, by defining logical
operators X̂L and ẐL that anticommute. We call this logical
qubit a “single Z-cut qubit.”

We have positioned the Z-cut hole near an X boundary
of the array. Turning off the Ẑ stabilizer leaves a small
hole surrounded by measure-X qubits; that is, this creates an
internal X boundary. We define the operator X̂L = X̂1X̂2X̂3,
which connects the array’s outer X boundary with the internal
X boundary of the hole. As can be seen, this logical operator
comprises a chain of operators that are paired across each Ẑ

stabilizer, so it commutes with all the Ẑ stabilizers in the array,
and trivially commutes with the X̂ stabilizers as well. We also
define ẐL = Ẑ3Ẑ4Ẑ5Ẑ6, a set of data qubit Ẑ operators that
form a loop around the Z-cut hole; the Ẑ operators are paired

032324-13

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

across each X̂ stabilizer, commuting with each of these and
trivially with all the Ẑ stabilizers as well. This operator loop
is not constrained by a Ẑ stabilizer as it would be without
the Z-cut hole, so it can change the quiescent state |ψ〉 in a
nontrivial way.

The X̂L chain and the ẐL loop share one data qubit, number
3 in Fig. 9. These two operators therefore anticommute:

X̂LẐL = (X̂1X̂2X̂3)(Ẑ3Ẑ4Ẑ5Ẑ6) = Ẑ4Ẑ5Ẑ6(X̂3Ẑ3)X̂1X̂2

= −Ẑ4Ẑ5Ẑ6(Ẑ3X̂3)X̂1X̂2 = −ẐLX̂L. (14)

One can show that X̂2
L = Ẑ2

L = Î , and we can define ŶL =
ẐLX̂L. Just as with the 2D array, we have created a set of
anticommuting operators associated with the Z-cut hole that
satisfy all the requirements for a logical qubit, so the Z-cut hole
is indeed a logical qubit. We note that if the outer perimeter
of the array were a single Z boundary, there would be no
way to build an appropriate X̂L chain between the Z-cut hole
and the array boundary; furthermore, the product of all the Ẑ

stabilizers in the array would fix the value of ẐL, so creating
a Z-cut hole in a Z-boundary array would not create any
additional degrees of freedom: At least one X boundary is
necessary to create a single Z-cut qubit. Note the distance d

of this qubit is d = 3, limited by the length of the X̂L chain; it
could be increased to d = 4 by moving the hole one stabilizer
cell further away from the array boundary, but d cannot be
increased above 4 without creating a larger qubit hole (see
Sec. XII). A single Z-cut qubit is called a smooth defect or a
dual defect in the published literature.

An analogous single X-cut qubit can be formed by turning
off a measure-X qubit in an array that has at least one Z

boundary; a ẐL operator is then a chain of Ẑ operators from
the array Z boundary to the internal Z boundary created by
turning off the measure-X qubit, and an X̂L operator is a loop
of X̂ bit flips surrounding the X-cut hole. One can show that
these logical operators satisfy the requisite anticommutation
relations. A single X-cut qubit is called a rough defect or a
primal defect in the published literature.

This concept can be made even more useful by making
qubits that do not rely on operator chains that reach one of the
array boundaries, simplifying their logical manipulation and
greatly increasing the number of qubits that can be created.
An example of a “double Z-cut qubit,” achieved by turning off
two measure-Z qubits in the array, is shown in Fig. 10. Making
these two Z-cut holes adds four additional degrees of freedom
to the array. We can manipulate each Z-cut hole separately by
defining X̂L1 and ẐL1 for the upper Z-cut hole, and X̂L2 and
ẐL2 for the lower Z-cut hole, in a way completely analogous
to the single Z-cut qubit. These four linearly independent
operators manipulate all four degrees of freedom, with each
logical operator pair (X̂Lj ,ẐLj) commuting with the other pair
but anticommuting with each other.

We can manipulate the two-qubit holes in a correlated
fashion by replacing X̂L1 with the product X̂L1X̂L2; this
operator product anticommutes with both ẐL1 and ẐL2, and
together with X̂L2 provides the same functionality as X̂L1 and
X̂L2 (note that we can recover X̂L1 by multiplying the operator
product by X̂L2, using X̂2

L2 = ÎL). Now, we can define a new
X̂L operator linking the two qubit holes, shown in Fig. 10;
this operator is the product of three data qubit X̂ operators

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

Z

Z Z

Z

Z Z

Z

Z Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X
X

X

X

Z

Z

Z
Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X
X

X

X
X

X

X
X

X

X

Z

Z

Z
Z

Z

Z

Z

Z

XL1ZL1
X

X

XL2

ZL2

XL

FIG. 10. (Color online) A double Z-cut qubit, formed by turning
off two measure-Z qubits. For each Z-cut hole we can define the
logical operators X̂L1 and ẐL1, X̂L2 and ẐL2, where X̂L1 and X̂L2 reach
from the array X boundary on the right to the internal X boundary
of each Z-cut hole, and ẐL1 and ẐL2 are loops surrounding each
Z-cut hole. We can replace X̂L1 (dashed blue line) with the product
X̂L1X̂L2, which performs an X̂L bit flip of both qubit holes and, along
with X̂L2, provides equivalent functionality to the two separate X̂

operators. However, the product X̂L1X̂L2 can be multiplied by all
the outlined X̂ stabilizers, which at most give a sign change to the
operator, to yield the equivalent operator X̂L (solid blue line) that
links the two qubit holes.

and links the internal X̂ boundary of the upper qubit to the
internal X̂ boundary of the lower qubit. If one examines the
figure, one will see that the product X̂LX̂L1X̂L2 is equal to
the product of all the stabilizers enclosed by these operators
(these stabilizers have black outlines in Fig. 10). Hence, if we
multiply X̂L1X̂L2 by all these stabilizers, we generate X̂L, so
in fact X̂L is equivalent to X̂L1X̂L2 to within ±1 (the sign is
equal to the product of all the enclosed stabilizers). Hence, we
can replace X̂L1X̂L2 with X̂L.

We now have the operator set {X̂L,X̂L2,ẐL1,ẐL2}, where
the logical X̂ operators commute with one another, as do the
logical Ẑ operators, but X̂L anticommutes with both ẐL1 and
ẐL2, as these each have one data qubit in common; X̂L2 only
anticommutes with ẐL2.

We are only interested in manipulating two of the four
degrees of freedom in this double qubit, so we can choose
to use X̂L along with either ẐL1 or ẐL2. If we choose to use
ẐL2 ≡ ẐL, and use this pair to define ŶL = ẐLX̂L, we have
a complete set {X̂L,ẐL,ŶL} of logical qubit operators for this
double Z-cut qubit. By restricting ourselves to this set of
logical operators, we are changing the two qubit holes in a
correlated fashion, so that effectively we are manipulating
a single two-level logical qubit; we write the state of this
composite logical qubit in the usual way, as, for example,
α|gL〉 + β|eL〉.

032324-14

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z

Z
Z

Z

Z

X
X

X

X

X
X

X

X

X
X

X

X

Z
Z

Z

Z
Z

Z
Z

Z

Z
Z

Z

Z

(a) (b)

Z6
Z5

Z3
Z4 X6

X5
X3X4

X2

X3 Z3

Z2

X1 Z1

XL

ZL XL

ZL

FIG. 11. (Color online) (a) A double Z-cut and (b) a double X-cut
qubit, formed in a large array by turning off two measure-Z qubits and
two measure-X qubits, respectively; the array is assumed to extend
outwards indefinitely. For the double Z-cut qubit the logical operators
comprise an X̂L = X̂1X̂2X̂3 chain that links one Z-cut hole’s internal
X boundary to the other, and a ẐL = Ẑ3Ẑ4Ẑ5Ẑ6 loop that encloses
the lower Z-cut hole. For the X-cut qubit we have the ẐL = Ẑ1Ẑ2Ẑ3

chain that links the two internal X-cut holes’ Z boundaries and the
X̂L = X̂3X̂4X̂5X̂6 loop that encloses the lower X-cut hole. The X̂L

and ẐL operator chains share one data qubit, data qubit 3 for both
examples, so the operators anticommute. Note that the loop operators
(ẐL for the Z-cut qubit and X̂L for the X-cut qubit) can surround
either of the two holes in the qubit, as discussed in the text.

We can create a double X-cut qubit in a similar way to the
double Z-cut qubit, by turning off two measure-X qubits. Both
the double Z-cut and double X-cut qubit types are shown in
Fig. 11. The logical operators for the double X-cut qubit are
defined in an analogous fashion to the double Z-cut qubit:
The ẐL operator is a chain linking the two X-cut holes,
and we choose either X̂L = X̂L1 or X̂L = X̂L2, the operator
loops that surround one or the other of the X-cut holes. It is
easy to show that these logical operators satisfy the necessary
anticommutation relations.

Double Z-cut (double X-cut) qubits are called smooth
(rough) qubits or dual (primal) qubits in the literature. As we
almost exclusively discuss double-cut qubits from this point
forward, we simply call these Z-cut and X-cut qubits.

The two different types of logical qubits, Z-cut and X-cut,
are needed to perform the topological braid transformation
that provides the logical CNOT operation in the surface code:
Only braids between mixed qubit types give the needed
functionality. However, as we discuss below, a topological
CNOT can be performed between two Z-cut qubits, by using an
X-cut qubit as an intermediary; similarly, a CNOT between
two X-cut qubits can be performed using a Z-cut as an
intermediary. An arbitrary quantum computation can therefore
be completed using mostly one flavor of logical qubit, with
the other qubit type only making appearances in a supporting
role.

The logical qubits we have introduced are “small” in that
we only turn off a single measure qubit (removing a single
stabilizer) in each of the two holes. For the Z-cut qubit shown
in Fig. 11, the ẐL loop consists of four data qubit Ẑ operators,
and the X̂L operator chain linking the two qubit holes has three
data qubit X̂ operators. Hence, the distance for this qubit is
only d = 3, meaning these logical qubits are relatively fault-
intolerant. Moving the two holes further apart would increase
the distance to d = 4, limited by the length of the ẐL loop.
In Sec. XII we describe how to create and initialize larger
distance d logical qubits, which as discussed in Sec. VII are
significantly more fault-tolerant.

IX. SOFTWARE-IMPLEMENTED ẐL AND X̂L

We now must inform the reader of a curious aspect of the
surface code: The logical operators X̂L and ẐL that we have
spent so much time discussing are not actually implemented
in the surface code hardware. These operations are handled
entirely by the classical control software, as we describe
in a moment. These logical gates could be implemented by
performing physical bit-flip and phase-flip operations on the
data qubits, as the surface code is fairly tolerant to errors
in these types of single-qubit gates; however, a hardware-
based solution will always have a higher error rate than one
implemented in the control software. Instead, whenever a
particular quantum algorithm calls for an X̂L or ẐL operator,
the operator is commuted through each subsequent logical
operation in the algorithm until a second identical operation is
called for, in which case the two cancel (since X̂2

L = Ẑ2
L = ÎL),

or until a measurement of the logical qubit is performed, in
which case the operator is applied to the measurement outcome
(hence, an X̂L would be applied by reversing the sign of a
ẐL measurement, while it would have no effect on an X̂L

measurement, and similarly for a ẐL operator combined with
an X̂L or a ẐL measurement, respectively).

We demonstrate the concept with an example, accompanied
by the warning that this example uses a number of results that
we have not introduced; the reader may want to return to
this example after reading the discussion of the Heisenberg
representation of the CNOT in Sec. XIV C. We represent
the two-qubit CNOT operation with the two-qubit operator
ĈL, which transforms two-qubit operators such as ÎL ⊗ ẐL

according to the rules described there [so, e.g., ĈL(ÎL ⊗ ẐL) =
(ẐL ⊗ ẐL)ĈL].

Consider the circuit fragment shown in Fig. 12(a), in which
a ẐL operator on logical qubit 1 and the identity ÎL operator
on qubit 2 is followed by a logical Hadamard on qubit 1, a
logical CNOT in which qubit 1 is the control and qubit 2 the
target, and a second logical Hadamard on qubit 1, with the
circuit terminated by X̂L measurements of both logical qubits.

Rather than actually applying the ẐL operator to qubit 1,
the ẐL operator is instead commuted through the Hadamard,
which transforms ẐL to X̂L (using ĤLẐL = X̂LĤL; see, e.g.,
Ref. [38]). This is shown in Fig. 12(b). The X̂L on qubit
1 and ÎL on qubit 2 are then commuted through the CNOT,
using ĈL(X̂L ⊗ ÎL) = (X̂L ⊗ X̂L)ĈL, leaving X̂L on qubit 1
and X̂L on qubit 2 after the CNOT, as shown in Fig. 12(c).
Commuting the first qubit X̂L through the second Hadamard,
this becomes ẐL on qubit 1 with X̂L on qubit 2 [Fig. 12(d)].

032324-15

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

〉

〉

(a)

〉

〉

(b)

IL

IL

XL

〉

〉

(c) XL

XL

〉

〉

(d) ZL

XL

〉

〉

(e) -

FIG. 12. (Color online) Example of how ẐL and X̂L operators
are handled in the control software. Here we commute a ẐL logical
operator [colored blue (light)] on one qubit with an identity ÎL

[colored blue (light)] on a second qubit through a sequence of logical
operations (colored black), here including two Hadamards and a
CNOT, ending with a measurement of each qubit. (a) We start with
ẐL operating on qubit 1 with the ÎL identity on qubit 2. (b) The two
operations are commuted one step to the right, with ẐL transformed by
the Hadamard to an X̂L. (c) The two operations are commuted through
the CNOT, with X̂L on qubit 1 remaining unchanged while ÎL on the
second qubit transforms to X̂L. (d) X̂L on qubit 1 is transformed by
the second Hadamard to ẐL, and finally (e) the ẐL on qubit 1 changes
the sign of the X̂ measurement from MX = ±1 to −MX = ∓1, while
the X̂L on qubit 2 does nothing to that qubit’s X̂ measurement.

We have now reached the terminal measurements at the end
of the circuit. At this point the measurements are carried
out, and the classical control software, which has calculated
the commutations we have stepped through, corrects the
measurements as needed using the pending operations: The
X̂L measurement of qubit 1, MX = ±1, has its sign reversed
by the pending ẐL on that qubit to −MX = ∓1, while the X̂L

measurement of qubit 2 is unaffected by its pending X̂L. The
roles of the ẐL and X̂L operators are ended by these logical
measurements.

In general, single-qubit X̂L and ẐL operators can be
commuted through the various one- and two-qubit operations
in any topological quantum circuit, without actually perform-
ing these logical operations, until they either cancel with
another identical single-qubit operator or are used to correct a
measurement as described above.15 We have shown how this
works for a simple circuit involving Hadamards and a logical

15There is an important distinction between what are called “Clifford
gates” and “non-Clifford gates”; the set of logical gates we are
developing here, X̂L, ẐL, ĤL, ŜL and Ŝ

†
L, T̂L, and T̂

†
L , and the two-qubit

(a) (b)

ZL

XL

FIG. 13. (Color online) Easy initialization of an X-cut logical
qubit. Using the logical qubit’s upper hole, the stable measure-X
outcome just prior to creating the qubit hole by turning off the
measure-X qubit is equal to the initial logical eigenvalue of the qubit.

CNOT. We discuss how this is done for the ŜL phase gate and
the T̂L gate in Sec. XVI.

X. LOGICAL QUBIT INITIALIZATION
AND MEASUREMENT

While we do not actually perform X̂L or ẐL operations on
the logical qubits, we do have to initialize and measure the
qubits. In this section we described two methods to initialize
logical qubits and two methods to measure the logical state.

A. Initialization

There are two ways to initialize a logical qubit state, which
we call “easy” and “difficult.” The easy way is to initialize
the qubit in an eigenstate of the qubit cut; for an X-cut qubit,
easy initialization is in the |+L〉 or |−L〉 eigenstates of X̂L,
while for a Z-cut qubit, easy initialization is in the |gL〉 or
|eL〉 eigenstates. The process is illustrated for an X-cut qubit
in Fig. 13, starting with a 2D array with no cuts, and stepping
immediately to one with a double-X-cut qubit, achieved by
turning off two measure-X qubits to create two X-cut holes.
We know the measurement outcomes of these two measure-X
qubits just prior to turning them off; if we define X̂L as the
loop surrounding the upper qubit hole, the initial state of the
qubit corresponds to the measurement outcome of the upper
measure-X qubit just before it is turned off, that is, |+L〉 if
Xabcd = +1 and |−L〉 if Xabcd = −1. If the initial state is not
the desired one, we can apply a ẐL phase flip to that logical
qubit; as discussed above, this phase flip would be applied
“in software,” meaning it would not actually be applied, but
would instead be commuted through the quantum circuit until

logical CNOT, are all Clifford gates except T̂L and T̂
†
L (see Ref. [43]).

We discuss how to commute X̂L and ẐL through the ŜL and T̂L gates
in Sec. XVI.

032324-16

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

(a) (b)

(c) (d)

MZ

MZ

MZ

g

g

g

XL

ZL

1

2

3

1

2

3

FIG. 14. (Color online) Ẑ eigenstate (difficult) initialization of an
X-cut logical qubit. The process steps are as follows. (a) Starting with
a fully stabilized array, we (b) turn off a column of four measure-X
qubits, switch the adjacent measure-Z qubits from four- to three-
terminal measurements, and perform Ẑ measurements of the data
qubits numbered 1, 2, and 3 to maintain error tracking. (c) We reset
(reinitialize) the data qubits 1, 2, and 3 to |g〉 and (d) turn two of the
measure-X qubits back on and switch the adjacent measure-Z qubits
back to four-terminal measurements, leaving us with a logical qubit
initialized in |gL〉 due to step (c).

it is canceled by a second operator or the logical qubit is
measured.

The alternative to initializing the X-cut logical qubit in
the X̂L basis is to perform a difficult initialization in the
ẐL basis, that is, in either |gL〉 or |eL〉. This can be done
using a logical Hadamard after initializing in the X̂L basis.
Logical Hadamards are, however, somewhat complicated (see
Sec. XV), so it is simpler to initialize in the ẐL basis directly.
This is illustrated for an X-cut qubit in Fig. 14. Briefly, starting
with a fully stabilized array, a strip of X̂ stabilizers is turned off,
where each end of the strip will serve as one of the qubit holes.
In addition, the Ẑ stabilizers that border the strip are switched
from measuring four adjacent data qubits to measuring just
three (by simply excluding one data qubit from the surface
code CNOT cycle in Fig. 1). There are six Ẑ stabilizers that
are switched from four-terminal to three-terminal operation in

Fig. 14(b).16 The three isolated data qubits (numbered 1, 2,
and 3 in Fig. 14) are measured once along Ẑ to maintain error
correction, and then set to the ground |g〉 state as in Fig. 14(c).17

Setting these three qubits to their ground state ensures that
the quiescent state |ψ〉 will be in the logical ground state
of the ẐL = Ẑ1Ẑ2Ẑ3 operator. Finally, the two X̂ stabilizers
internal to the strip are turned back on, and the three-terminal
Ẑ stabilizers switched back to four-terminal measurements,
completing the process.18 Details are given in Appendix C.

Note that the projective measurements of the two X̂ stabi-
lizers that were turned back on at the end of the initialization
will leave the three data qubits in a +1 eigenstate of ẐL, in
other words a |gL〉 eigenstate, even though the data qubits
themselves will no longer be in their individual ground states
|g〉. We can see this as follows: After the ground state reset, the
quiescent state |ψ〉 is transformed to |ψ ′〉 = |ggg〉|φ〉, where
|ggg〉 is the state of the three data qubits, and |φ〉 the state of
all the other data qubits in the array. The state |ψ ′〉 is a +1
eigenstate of ẐL, but is not an eigenstate of all the X̂ stabilizers,
as one can easily verify. However, we know that ẐL commutes
with all the X̂ stabilizers, so there are common eigenstates of
both ẐL and these stabilizers. The state |ψ ′〉 can be written
as a superposition of X̂ stabilizer eigenstates, where all these
eigenstates are still +1 eigenstates of ẐL, so the logical qubit
remains in |gL〉. The X̂ stabilizer measurements will project
|ψ ′〉 onto one of these eigenstates, leaving us with a state |ψ ′′〉
that is still a +1 eigenstate of ẐL but is also an eigenstate of
all the X̂ (and Ẑ) stabilizers in the array.

Initializing a Z-cut qubit is completely analogous to the
X-cut qubit initialization. Initializing in a ẐL eigenstate is easy,
because the Ẑ stabilizers that are turned off to create the qubit
holes ensure the logical qubit is in a ẐL eigenstate. Initializing
in an X̂L eigenstate is difficult: A strip of Ẑ stabilizers is
turned off, and the isolated data qubits then initialized to the
X̂ eigenstates |+〉 or |−〉, so that the state |ψ〉 is then in an
eigenstate of X̂L = X̂1X̂2X̂3. The stabilizers are then turned
back on, projecting the data qubits to an eigenstate of all the
stabilizers, while maintaining it in an eigenstate of X̂L.

B. Measurement

Measuring a logical qubit uses a procedure nearly the
reverse of that used for initialization. As with initialization,

16Note that even though these stabilizers only measure three data
qubits, the geometry of the array ensures that two pairs of the three
data qubits are also measured by X̂ stabilizers, so the stabilizer
measurements still all commute: If, for example, the Ẑ stabilizer
measures data qubits a, b, and c, one adjacent measure-X qubit will
measure a and b, and the other will measure b and c.
17It might seem that the isolated data qubits need to be measured

d times along Ẑ to maintain error detection in time, but the single
measurements in this step are combined with the concurrent three-
terminal measurements of the adjacent Ẑ stabilizers, and compared
to the prior four-terminal Ẑ stabilizer measurements, to provide
sufficient distance (continuity) in time.
18It turns out that easy initialization is never used in practice, as

X-cut (Z-cut) logical qubits always need to be initialized in the ẐL

(X̂L) basis; see, for example, the discussion of logical CNOTs between
logical qubits of the same type in Sec. XIV D.

032324-17

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

measurement can be classified as easy or difficult. For an
easy measurement, the measure qubits in the qubit holes are
simply turned on, with the stabilizer measurement projecting
the logical qubit onto a stabilizer eigenstate, with the stabilizer
eigenvalue equal to the logical qubit measurement outcome
(determined in a fault-tolerant manner by completing d surface
code cycles). If this is done for the X-cut qubit shown in
Fig. 15(a), we turn on the two measure-X qubits in the holes,
whose measurement projects the data qubits adjacent to them
into an X̂aX̂bX̂cX̂d product eigenstate. This constitutes an X̂L

measurement of the logical qubit, with the X̂L eigenvalue equal
to the stable value of Xabcd . If there is a pending X̂L operator
on that qubit, nothing happens, while if there is a pending ẐL

operator, the sign of the measurement outcome is reversed.
Note that this process destroys the logical qubit, which must
be reinitialized to be used again.

For a difficult measurement, which would be used to, for
example, measure the X-cut qubit in the ẐL basis, we use the
measurement process illustrated in Fig. 15. Details are given
in Appendix D.

A completely analogous process is used to perform an easy
measurement of ẐL or a difficult measurement of X̂L for a
Z-cut qubit.

XI. ERRORS DURING STABILIZER MANIPULATIONS

Our initialization and measurement procedures, especially
the difficult ones, involve turning stabilizers on and off, switch-
ing stabilizers from four- to three-terminal measurements
and back, measuring individual data qubits, and resetting
(reinitializing) data qubits to eigenstates of X̂ or Ẑ. These
processes are not used just for initialization and measurement,
but also form the heart of the topologically implemented
CNOT operation as well as the logical Hadamard. These
manipulations would seem to allow errors to occur in some
undetectable fashion, as we are manipulating the very structure
that stabilizes the quiescent states. However, as long as this
kind of manipulation is done in the appropriate way, it turns
out the quiescent state is still protected.

Consider, for example, the Ẑ eigenstate difficult initializa-
tion of an X-cut qubit that appears in Fig. 14. Passing from
panel (a) to panel (b), we turn off a number of X̂ stabilizers and
convert some of the Ẑ stabilizers from four- to three-terminal
measurements, isolating data qubits 1, 2, and 3 from the array.
Passing from panel (b) to panel (c), we perform data qubit
ground state resets, and passing from panel (c) to panel (d), we
turn the stabilizers back on. It would seem that errors could
occur on the isolated data qubits 1, 2, or 3 or on the data qubits
bordering the long cut in panels (b) and (c).

Consider first the isolated data qubits: Ẑ errors on these data
qubits will have no effect, as these data qubits are measured
along Ẑ in panel (b) of Fig. 15, a measurement that is not
affected by Ẑ errors and are then reset to |g〉 in panel (c), a
process that is also immune to Ẑ errors. These data qubits
are then rejoined with the array and fully stabilized in panel
(d), with Ẑ errors taken care of in the usual way. An X̂ error
on one of these data qubits will, however, have an effect:
If this occurs between panels (a) and (b), the X̂ error will
reverse the measurement MZ of the affected data qubit, but by
computing the product of this Ẑ measurement with the two

(a) (b)

(c) (d)

MZ

MZ

MZ

g

g

g

XL

ZL

FIG. 15. (Color online) Z-axis (difficult) measurement process
for an X-cut logical qubit. We start (a) with an X-cut qubit, for
which we display the logical operators X̂L and ẐL, and begin the
measurement (b) by turning off the measure-X qubits between the
two qubit cuts while also switching the neighboring measure-Z
qubits from four- to three-terminal measurements. We measure the
unstabilized data qubits along Ẑ. The product of the measurement
outcomes is the measurement of ẐL. A pending ẐL operator would
have no effect, while a pending X̂L would be used to reverse the sign
of this measurement outcome. We then (c) reset the qubits to their
ground states |g〉 and (d) destroy the logical qubit by turning on all
the stabilizers.

three-terminal Ẑ measurements adjacent to that data qubit,
and comparing these products with the corresponding four-
terminal measurements that occurred prior to panel (b), this
error can be detected and localized, and we can correct the data
qubit Ẑ measurement outcome. An X̂ error between panels (b)
and (c) will be erased by the ground-state reset of the data qubit,
and an X̂ error between panels (c) and (d) will be detected by
the usual stabilizer cycle, given that we know the data qubit
state prior to the stabilizers being turned on.

Now consider the data qubits bordering the cut: X̂ errors
will be detected in the usual way, as each of these data qubits
is stabilized by two Ẑ stabilizers, which is sufficient to detect
and locate these kinds of errors. A Ẑ error on one of these
qubits will generate a change of sign in the one X̂ stabilizer
that monitors that data qubit; this could then be interpreted
either as a measurement error on that stabilizer (as it is an

032324-18

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

isolated error), or as a data qubit error. A measurement error
would, however, disappear as the surface code cycle continues,
so by comparing results in time, the error can be identified as
a data qubit error, and any measurements then corrected.

In summary, maintaining the surface code error detection
is done by careful combinations of measurements before and
after a stabilizer manipulation, sometimes involving measure-
ments of individual isolated qubits that are combined with
three-terminal stabilizers, sometimes by slightly modifying
the error-locating algorithms when errors occur on only partly
stabilized data qubits (such as those on the edge of a cut).
This can, however, be done with the same fault tolerance as
in the rest of the surface code array, and this means that these
manipulations, as long as they respect the distances needed
for fault tolerance, both in space and in time, do not affect the
stabilization required for proper operation.

XII. LARGER LOGICAL QUBITS

We can create logical qubits by turning off, for example,
two Ẑ stabilizers some distance apart, creating two small holes
with X boundaries. As shown in Fig. 11(a), ẐL is a chain of
Ẑ operators surrounding one of the holes, involving only four
physical qubit Ẑ operators, equal to the number of data qubits
on the boundary of the hole. Similarly, the X̂L operator is a
chain of three X̂ operators linking the two Z-cut holes. We
could put the holes further apart, increasing the distance for
X̂L, but this would, of course, not increase the length of the
ẐL loop. An error chain with the same length as ẐL or X̂L can
emulate these logical operators, corrupting the logical qubit in
an undetectable manner; this therefore sets the distance d that
determines the relation between the physical qubit error rate
p and the resulting logical error rate PL emerging from the
matching algorithm, as discussed in Sec. VII. For the logical
qubits in Fig. 11 we have d = 3, and if we separate the holes
further, d = 4 is the limit, determined by number of data qubits
bordering a qubit hole.

The error-handling ability is significantly improved if we
increase the size and spacing of the two holes, as this will
increase the number of physical qubits involved in ẐL and
X̂L. Here we describe how to create a five-stabilizer Z-cut
hole, increasing the number of physical qubit operators in the
ẐL loop from four to eight, significantly improving the error
tolerance. The two larger holes that now make up the logical
qubit can also be moved further apart, lengthening the operator
chain for X̂L and improving its stability as well; if the X̂L

chain is increased to eight physical qubit operators, then we
have a distance d = 8 logical qubit. This distance must be
preserved in all logical qubit operations, and operations that
involve turning stabilizers on or off must also be spaced
in time by at least d = 8 surface code cycles, in order to
preserve the temporal spacing needed for error matching of, for
example, measurement errors. Even larger qubits can of course
be created; turning off 16 Ẑ stabilizers and 9 X̂ stabilizers in
a square pattern would create a d = 16 Z-cut logical qubit
(the identity of the qubit is determined by whether it is a loop
of Ẑ operators that encloses the qubit holes or a loop of X̂L

operators, the former corresponding to a Z-cut qubit and the
latter an X-cut).

XL

ZL

MX

MXZs1

Zs2 Zs3

Zs4
Xs1

1

2

3

4 5

6

7

8

MXMX

FIG. 16. (Color online) Z-cut qubit with a five-stabilizer hole,
showing only the upper qubit multicell hole. The logical operator ẐL

is the chain ẐL = Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5Ẑ6Ẑ7Ẑ8, shown in red (gray). The
four Ẑ stabilizers Ẑs1, Ẑs2, Ẑs3, and Ẑs4 are turned off along with the
X̂ stabilizer X̂s1 and the four internal data qubits measured along X

for error tracking. The initial value of ẐL is equal to the product of
the four Ẑ stabilizer measurements just prior to turning the stabilizers
off (note this stabilizer product commutes with each of the individual
data qubit measurements MX).

The process to make a larger Z-cut qubit is outlined in
Fig. 16; a completely analogous process is used to make larger
X-cut qubits. Details are given in the figure caption and in
Appendix E.

The process shown in Fig. 16 initializes the qubit in an
eigenstate of ẐL, with an eigenvalue equal to the product of
the stable measurement outcomes of the four Ẑ stabilizers in
the cut. Initializing the qubit instead in an X̂L eigenstate can be
done using a procedure analogous to that described in Sec. X.

Measuring a larger qubit is also similar to the procedure
for measuring small qubits. If we want to measure the logical
qubit in Fig. 16 along ẐL, an easy measurement, we turn
on the four Ẑ and the one X̂ stabilizer in the hole; the
ẐL eigenvalue is equal to the stable product of the four Ẑ

stabilizers, Zs1Zs2Zs3Zs4 = ±1 (where, e.g., Zs1 = Z1,abcd is
the measurement outcome of the stabilizer Ẑs1). If we want
instead to measure the logical qubit along X̂L, a difficult
measurement, we follow a procedure analogous to that for
the difficult measurement of a small qubit, shown in Fig. 15:
We open the strip of Ẑ stabilizers through which the X̂L

chain passes, turn the adjacent X̂ stabilizers from four- to
three-terminal measurements, and measure each of the isolated
data qubits along X̂.19 The resulting X̂ eigenvalues of each data
qubit are multiplied together, and their product is the value of
XL. Finally, we reset these data qubits to their ground states

19In our initial description, we only required the ability to measure
qubits along Ẑ; an X̂ measurement in addition would be useful here,
but the equivalent can be performed by first performing a Hadamard
operation on the qubit, followed by a Ẑ measurement.

032324-19

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

|g〉 and turn all the stabilizers back on, destroying the logical
qubit.

XIII. MOVING QUBITS

We have shown how to create and initialize logical qubits
in the surface code array. We discuss later how the single
logical qubit gates ŜL, T̂L, and the Hadamard ĤL, all required
to perform quantum algorithms, can be performed on these
logical qubits. We turn now to the very interesting method
used to entangle logical qubits. This can be done in a very
elegant way by moving the logical qubit holes around on
the 2D array, providing a central functionality of the surface
code. By moving one logical qubit hole between the two holes
of a second logical qubit, thus “braiding” the logical qubits
together, we can perform a logical CNOT. We first, however,
need to learn how to move a logical qubit hole.

Moving a logical qubit is best described in two stages:
first, outlining what we physically do to the surface code
array and, second, describing how we transform the logical
operators X̂L and ẐL, in a way that preserves their identity
while matching what is happening to the data qubits in
the array. The transformations of the logical operators are
described in the context of the Heisenberg representation, so
we start by briefly reviewing the Heisenberg representation of
quantum mechanics (see, e.g., Ref. [44] for a more complete
introduction and [43] in relation to quantum computing).

In quantum mechanics, many processes can be described
by unitary transformations Û , with Û Û † = Û †Û = Î . These
include, for example, changes of basis, changes of repre-
sentation, and the temporal evolution of the system. In the
Schrödinger representation, these unitary transformations are
applied to the wave function, so that |ψ〉 → Û |ψ〉, with the
operators kept static. Hence, for example, wave functions are
time dependent, arising from the application of the evolution
operator Û (t), while operators are not. Inner products are
invariant under a unitary transformation, since

〈φ|ψ〉 → 〈φ|Û †Û |ψ〉 = 〈φ|ψ〉. (15)

However, for the matrix elements of an operator Â we have

〈φ|Â|ψ〉 → (〈φ|Û †)Â(Û |ψ〉) = 〈φ|(Û †ÂÛ)|ψ〉. (16)

As in general Â �= Û †ÂÛ , the matrix elements can change
under a unitary transformation. The second line in Eq. (16)
provides the basis for the Heisenberg representation: We
can equivalently assume the wave function |ψ〉 does not
change under the unitary transformation Û , and instead modify
the operator Â → Â′ = Û †ÂÛ . Hence, for example, in the
Heisenberg picture, operators rather than wave functions
are modified under a change of basis, and operators are time
dependent. The evolution of any measurable quantity will be
the same in the Heisenberg representation as in the Schrödinger
representation, so there is no detectable difference between the
two pictures.

In the surface code, moving and braiding qubits are
transformations that affect both the physical array of qubits as
well as the logical operators. The physical transformations are
not unitary, as these involve projective measurements of the
data qubits, but the transformations of the logical operators
are unitary and are best described using the Heisenberg

Z4
Z3

Z6
Z5

X2

X3

X6
Z7

Z8
Z97

8

9

X1

X2

X3

X1

Z4
Z3

Z5

X2

X3

X1

X6

Z7
Z8

Z9
Z6

ZL

XL

ZL

XL’

’
ZL

e

(a) (b) (c)

FIG. 17. (Color online) Process for moving a Z-cut logical qubit
hole vertically down by one cell in the 2D array. (a) Logical qubit
with X̂L = X̂1X̂2X̂3 and ẐL = Ẑ3Ẑ4Ẑ5Ẑ6. (b) We extend the ẐL

operator by multiplying it by the Ẑ stabilizer just below the lower
qubit hole: Ẑe

L = (Ẑ6Ẑ7Ẑ8Ẑ9)ẐL = Ẑ3Ẑ4Ẑ5Ẑ7Ẑ8Ẑ9. We next turn
off this Ẑ stabilizer and also turn the surrounding four-terminal X̂

stabilizers into three-terminal stabilizers, leaving data qubit 6 without
any stabilizer measurements. We perform an X̂ measurement of data
qubit 6 (using either an idle measure-Z qubit or directly measuring
the data qubit, as shown). (c) We define the extended operator X̂′

L by
multiplying X̂L by X̂6: X̂′

L = X̂6X̂L = X̂1X̂2X̂3X̂6. We now turn on
the Ẑ stabilizer just above qubit 6; we wait d surface code cycles in
order to properly establish the value of this stabilizer. We define Ẑ′

L

as the product of this Ẑ stabilizer and Ẑe
L: Ẑ′

L = Ẑ6Ẑ7Ẑ8Ẑ9.

representation. We assume for this discussion that no errors
occur on the physical qubits or during measurements; we
discuss error handling after we have worked through the
error-free description.

A. One-cell logical qubit move

In Fig. 17 we illustrate how to move a logical Z-cut qubit
hole downwards by one cell in the 2D array. We remind the
reader that a logical Z-cut qubit is created by turning off a pair
of Ẑ stabilizers, creating two Z-cut holes. The logical qubit has
the logical operators X̂L = X̂1X̂2X̂3 and ẐL = Ẑ3Ẑ4Ẑ5Ẑ6,
where we define ẐL as the loop of Ẑ operators surrounding
the lower Z-cut hole. A detailed step-by-step description of
the move process is given in Appendix F.

We first describe the physical operations involved in the
move, which take two complete surface code cycles. To begin,
we wait for the current surface code cycle to finish over the
entire array. Before starting the next cycle, we instruct the
control software not to measure the Ẑ stabilizer just below the
qubit hole that we are moving; that is, the control circuitry
will turn off that measure-Z qubit in the next surface code
cycle. This means that data qubit 6 will not be measured
by a Ẑ stabilizer (see Fig. 17). We also convert the two
measure-X qubits adjacent to data qubit 6 from four-terminal
to three-terminal measurements; that is, these measure-X
qubits will not include data qubit 6 in their CNOTs in the next

032324-20

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

surface code cycle. We then perform the next surface code
cycle, during which we measure data qubit 6 along X̂ and
obtain its eigenvalue X6; this measurement is used for tracking
errors, as discussed below, and for monitoring the sign of the
redefined X̂L operator, also discussed below. After completing
this cycle, we turn on the measure-Z qubit in the original lower
Z-cut hole, so it begins to perform a normal CNOT cycle. We
also convert the two measure-X qubits that monitor data qubit
6 back to four-terminal measurements, so they again include
data qubit 6 in their CNOT cycles. We perform the next surface
code cycle, which completes the physical operations for the
move. To establish all stabilizer values in time, we then wait an
additional d − 1 surface code cycles. Altogether, this one-cell
move takes 1 + d surface code cycles.

While performing the physical operations, we also need
to manipulate the definitions of the two logical operators ẐL

and X̂L to preserve their functionality. Before we perform
any physical operations, we redefine ẐL so that it encloses
two stabilizer cells, its original cell plus the one below it, by
multiplying ẐL by the four Ẑ operators, Ẑ6Ẑ7Ẑ8Ẑ9, that make
up the Ẑ stabilizer below the qubit hole. We term the new
extended operator Ẑe

L, which is given by

Ẑe
L = (Ẑ3Ẑ4Ẑ5Ẑ6)(Ẑ6Ẑ7Ẑ8Ẑ9) = Ẑ3Ẑ4Ẑ5Ẑ7Ẑ8Ẑ9, (17)

as shown in Fig. 17(a). We complete the first surface code cycle
of the move, turning off the lower Ẑ stabilizer and measuring
data qubit 6. We redefine the X̂L operator by multiplying it by
X̂6, giving

X̂′
L = X̂1X̂2X̂3X̂6; (18)

see Fig. 17(b).
We next complete the second surface code cycle of the

move, turning the original qubit hole stabilizer back on. We
redefine Ẑe

L by multiplying it by the four Ẑ operators that
make up the stabilizer that was just turned on, Ẑ3Ẑ4Ẑ5Ẑ6,
giving

Ẑ′
L = (Ẑ3Ẑ4Ẑ5Ẑ6)Ẑe

L = (Ẑ3Ẑ4Ẑ5Ẑ6)(Ẑ3Ẑ4Ẑ5Ẑ7Ẑ8Ẑ9)

= Ẑ6Ẑ7Ẑ8Ẑ9. (19)

The two new logical operators Ẑ′
L and X̂′

L are now as drawn
in Fig. 17(c). Note the new logical operators still share a
single data qubit and commute with all the stabilizers, so these
continue to define a logical qubit. The process of moving the
qubit hole involves operations similar to those used for the easy
and difficult initializations, so error processes are as discussed
in Sec. XI.

B. By-product operators

One problem that is created in the move transformation is
that the extension of X̂L through multiplication by X̂6 can
yield an extended X̂′

L that differs in sign from X̂L; this will
occur if the measurement outcome X6 = −1. Similarly, the
final Ẑ′

L can differ in sign from ẐL, depending on the product
of the two Ẑ stabilizer measurement outcomes involved in
the move. Given the initial state |ψ〉 prior to the transfor-
mation, the transformation coupled with these sign changes
results in

|ψ〉 → X̂
′pZ

L Ẑ
′pX

L |ψ ′〉, (20)

where |ψ ′〉 is the desired state, which would result if there
were no sign changes in the logical operators. Hence, we
must operate on the resulting state with the operator product
Ẑ

′pX

L X̂
′pZ

L to regain the desired state |ψ ′〉.
The additional bit- and phase-flip operators appearing in

Eq. (20) are called “by-product operators.” The power pX

appearing in Eq. (20) is determined by whether a sign change
occurred in X̂L during the move, with pX = 0(1) if a sign
change did not (did) occur; the power pZ is determined
similarly for sign changes in ẐL. The by-product operator
Ẑ′

L corrects the sign of the transformed X̂′
L through their

anticommutation relation, and the by-product operator X̂′
L

similarly corrects Ẑ′
L.

We do not actually apply the by-product operators as
explicit gates; instead, we simply track these additional X̂L

and ẐL operators in the control software, as discussed in
Sec. IX. These corrective operators are thus applied only
when the logical qubit is measured, reversing the sign of a
ẐL measurement if that qubit has an X̂L by-product operator
and reversing the sign of an X̂L measurement if that qubit has a
ẐL by-product operator. Two corrective X̂L’s or two corrective
ẐL’s cancel, as X̂2

L = Ẑ2
L = ÎL.

We can also look at what happens to our description of
the 2D array wave function |ψ〉 in terms of the stabilizer
and logical qubit subspaces. Prior to the move, we have
|ψ〉 = |Q〉|qL〉; after the move, we have X̂

′pZ

L Ẑ
′pX

L |ψ ′〉 =
X̂

′pZ

L Ẑ
′pX

L |Q′〉|q ′
L〉, where |Q′〉|q ′

L〉 is the desired state. The
by-product operators affect only the logical state, so we can
write the equivalent to Eq. (20) as

|qL〉 → X̂
′pZ

L Ẑ
′pX

L |q ′
L〉, (21)

where |q ′
L〉 is the desired logical state.

C. Multicell logical qubit move

We can easily generalize the one-cell move to a multicell
move. A multicell move can be done in the same number of
surface code clock cycles as a one-cell move, and we can
translate the logical qubit hole over an unlimited number of
cells. Multicell moves are performed by extending the one-cell
move to a contiguous strip of cells. A multicell move is shown
in Fig. 18 for a Z-cut qubit hole, using a somewhat more
abstract representation than we used in Fig. 17; we have mostly
dropped identification of the individual physical qubits, but the
analogy with Fig. 17 should be clear. Details for the multicell
move are given in the figure caption and in Appendix G.

Briefly, ẐL is extended by multiplying it by all the
stabilizers through which the logical qubit is to be moved,
giving the extended Ẑe

L:

Ẑe
L = (Ẑs2Ẑs3, . . . ,Ẑs,n)ẐL. (22)

Here each stabilizer operator Ẑsj represents the product of the
four Ẑ operators on the four data qubits surrounding the j th
stabilizer cell. These stabilizers are then turned off, and the
four-terminal X̂ stabilizers adjacent to the strip switched to
three-terminal measurements. The unstabilized data qubits in
the strip are all measured along X̂, and X̂L is extended by
multiplying it by all the X̂ operators on these data qubits,

X̂′
L = (X̂1, . . . ˆ,Xn−1)X̂L. (23)

032324-21

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

(a)

LX̂

LẐ

iZ s2

iZ s3

i
s,nZ

…

LX̂

e
LẐ

eX 1

eX 2

e
n-1X

…

fZ s2

f
s, n-1Z

fZs1

…

LX̂

LẐ

’

’

(b) (c)

FIG. 18. (Color online) Process for moving a Z-cut logical
qubit hole through multiple cells, using a simplified representation
where the X̂L chain is a blue (light) line linking the logical
qubit holes and passing through the data qubits (open circles), and the
ẐL loop is in red (gray). The upper (gray) and lower (white) Z-cut
holes enclose idle Ẑ stabilizers; the outlines of these holes have
measure-X qubits on the vertices with data qubits on the edges. (a)
Initial state, showing the logical operators X̂L and ẐL, with the initial
(premove) software-corrected Ẑ stabilizer measurement outcomes
Zi

s2,Z
i
s3, . . . ,Z

i
s,n. The Ẑ stabilizers involved in the next step are

shown with thin black outlines; the j th stabilizer Ẑs,j is the stabilizer
cell marked by that stabilizer’s initial measurement outcome Zi

s,j .

(b) Extension of ẐL to Ẑe
L, with X̂ measurements of the isolated

data qubits yielding the measurement eigenvalues Xe
1,X

e
2, . . . ,X

e
n−1

[data qubits filled in blue (light)]. (c) Final state, with Ẑ′
L the shifted

ẐL logical operator and X̂′
L the extended chain for X̂L, with the Ẑ

stabilizers (thin black outlines) turned back on; after waiting d surface
code cycles, we establish the software-corrected final (postmove)
measurement outcomes Z

f

s1,Z
f

s2, . . . ,Z
f

s,n−1.

We complete the move for ẐL by then multiplying Ẑe
L by all

the stabilizers except the one that is in the new shifted qubit
hole,

Ẑ′
L = (Ẑs1Ẑs2, . . . ˆ,Zs,n−1)Ẑe

L

= (Ẑs1, . . . ˆ,Zs,n−1)(Ẑs2, . . . ˆ,Zs,n)ẐL

= Ẑs1Ẑs,nẐL = Ẑs,n, (24)

where we use the fact that Ẑ2
sj = Î and that ẐL = Ẑs1; that is,

the original ẐL is just the set of four Ẑ data qubit operators
that define Ẑs1. After the move, we wait an additional d − 1
surface code cycles to establish all stabilizer values in time.

By-product operators may be appear due to any sign
changes that occur to the logical operators X̂′

L and Ẑ′
L during

this move; see Appendix G for details.
A completely analogous process is used to move X-cut

logical qubit holes, exchanging the roles of the X̂ and Ẑ

stabilizers and measurements.

We note that multicell moves can be done very quickly, as
a very long cut can be made in just one step of the surface
code cycle, and the qubit holes moved in 1 + d surface code
cycles, the same as for a one-cell move. This therefore enables
long-distance interaction and communication between logical
qubits, a very powerful capability.

D. Errors during move transformations

In Sec. XI we discussed the handling of errors when the
surface code stabilizers are being manipulated, where we
focused on errors occurring when an X-cut logical qubit
is initialized in a ẐL eigenstate. A very similar discussion
applies to errors that occur during the move transformations,
with some differences in the details. The data qubits that are
left isolated during the move can suffer from both Ẑ and
X̂ errors; X̂ errors have no impact, as they are erased by
the single data qubit X̂ measurements during the move. Ẑ

errors will be detected by computing the product of each data
qubit X̂ measurement with its corresponding three-terminal X̂

stabilizer measurement, and comparing this product with that
stabilizer’s prior four-terminal X̂ measurement (this is how X̂

errors were handled in Sec. XI). Ẑ errors on the data qubits
bordering the cut are detected and localized by the two X̂

stabilizers that monitor each of these data qubits. An X̂ error
on one of these data qubits changes the sign of the solitary
Ẑ stabilizer that monitors that data qubit, but this error will
persist in time and can thus be distinguished from a stabilizer
measurement error by waiting d surface code cycles.

XIV. THE BRAIDING TRANSFORMATION
AND THE LOGICAL CNOT

A braiding transformation is a particularly important type
of move. A braid comprises a pair of multicell moves involving
one of the two holes in a double-cut logical qubit. The shifted
hole travels over a path that forms a closed loop in the 2D
array, starting and ending in the same location, with the first
move taking the hole partway around the loop, and the second
move completing the loop. As with the move transformations,
braids are described in terms of their effect on the logical qubit
operators.

Most importantly, as we shall see, the braid transformation
can entangle two logical qubits, in a way that makes the braid
transformation equivalent to a logical CNOT.

A. Braid transformation of one logical qubit

We begin by describing the braid transformation of a single
logical qubit, using as an example the Z-cut logical qubit.
In Fig. 19 we show the transformation of the X̂L operator
and in Fig. 20 that of the ẐL operator. The braid shifts the
qubit hole along a path that, in this example, encloses an area
containing only fully stabilized cells; we discuss below what
happens when the braid path encloses another logical qubit
hole. The braid’s first move shifts the qubit hole eight cells
along the path (for a general braid transformation, this can be
any number of cells between one and the array distance d less

032324-22

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

LX̂
eX1
eX2
eX3
eX4

eX5
eX6

eX7

eX8 LX̂
eX9

eX10
eX11

eX12

(a) (b) (c) (d) (e)

LX̂’ ’’

f
sX 2

f
sX 3

f
sX 4

f
sX 5

f
sX 6

f
sX 7

f
sX 8

f
sX 9

fX 1s

(f)

LX̂ ’’’

FIG. 19. (Color online) Braid transformation of a single Z-cut qubit in a fully stabilized array, showing steps affecting the X̂L operator
[delineated in blue (dark)]. (a) Double Z-cut qubit with the logical operator X̂L, showing the three data qubits (open circles) that define the
logical operator. (b) Extended opening (heavy gray) for first move in the braid. Data qubits isolated by the extension are measured in X̂ with
outcomes Xe

1, . . . ,X
e
8. (c) The X̂L operator (blue, dark) is extended to X̂′

L = X̂1, . . . ,X̂8X̂L. (d) Second move in the braid, which again involves
measuring isolated data qubits in X̂. (e) The X̂′

L operator is extended to X̂′′
L and now includes the original chain linking the two qubit holes and

in addition a closed loop of operators. (f) The closed loop is completely stabilized by the nine X̂ stabilizers X̂s1, . . . ˆ,Xs9 [blue (dark) squares].
We can thus reduce the operator chain X̂′′

L to a chain X̂′′′
L that is identical to the original X̂L, other than possible sign changes. The sign changes

are captured as in the multicell move by defining the power pX through (−1)pX ≡ X
f

s1X
f

s2, . . . ,X
f

s9 = ±1, given by the product of all the X̂

stabilizer measurement outcomes enclosed by the X̂′′
L loop. The power pX = 0(1) determines whether a ẐL by-product operator does not (does)

appear, multiplying the final wave function.

than the total number of cells in the braid path).20 This move
is completed before the second move is started, meaning that
all the stabilizers that were switched off during the move have
been turned back on (except for the last cell). After waiting
d surface code cycles, to catch measurement errors during
the first move, the second multicell move is then performed,
shifting the qubit hole the remaining four cells in the path
and returning the hole to where it started. The braid cannot be
completed in a single multicell move, as this would isolate the
part of the surface code array enclosed by the braid.

20Moving the hole so that after this move it ends up less than d cells
from the start point would effectively reduce the array distance and
thus reduce the fault tolerance during the braid transformation.

As can be seen in Figs. 19 and 20, the braid transforms
the two logical operators X̂L and ẐL in somewhat different
ways. The X̂L operator for this qubit is a chain of three
data qubit X̂ operators linking the two holes [Fig. 19(a)].
As shown in Figs. 19(b)–19(e), this operator is extended in
each of the moves, such that after the second move, the X̂′′

L

operator in Fig. 19(e) includes the original chain of three
data qubit operators in addition to a closed loop of X̂ op-
erators, X̂loop = X̂1, . . . ˆ,X12. This closed loop encloses only
fully stabilized cells, with stabilizers X̂s1, X̂s2, . . . ˆ,Xs9, so
X̂loop = X̂s1, . . . ,X̂s9. The quiescent state |ψ〉 is necessarily an
eigenstate of X̂loop, with eigenvalue given by the measurement
outcomes of the enclosed stabilizers, Xloop = Xs1, . . . ,Xs9.
Another way to understand this is that the closed loop of

7

Z
LẐ

i

s
Z 2

i

s
Z 3

i
sZ 4

i
sZ 5

i
sZ 6

i
sZ

i

sZ 8

i
s 9 LẐ

i
sZ 10

i
sZ 11

i
sZ 12

i
sZ 13 LẐ

LẐ

(a) (b) (c) (d) (e)

e

LZ ˆe

f
sZ 2
f

sZ 3

f
sZ 4

f
sZ 5

f
sZ 6 Z

Z f
s8

f
s7

f
sZ 10

f
sZ 11

f
sZ 12

f
sZ 9

f
sZ 1

’

’
’’

FIG. 20. (Color online) Braid transformation of a ẐL operator on a single Z-cut qubit in a fully stabilized array. (a) Double Z-cut qubit
with ẐL in red (gray); data qubits are open circles; dashed line linking the two qubit holes does not represent an operator. (b) Extended opening
[solid red (gray) loop] for first move in the braid. The premove Ẑ stabilizer outcomes Zi

s2, . . . ,Z
i
s9 are all equal to ±1. The Ẑe

L operator [solid
red (gray) loop] is extended from ẐL, Ẑe

L ≡ Ẑs2, . . . ˆ,Zs9ẐL. (c) The extended opening is closed up by turning on the stabilizers Ẑs1, . . . ,Ẑs8

and waiting d surface code cycles to obtain the error-corrected outcomes Ze
s1, . . . ,Z

e
s8. The new Ẑ′

L operator is the red (gray) loop formed by
four data qubit Ẑ operators, equal to Ẑ′

L = (Ẑs1, . . . ˆ,Zs8)(Ẑs2, . . . ˆ,Zs9)ẐL. (d) Second move in the braid, which involves extending Ẑ′
L to Ẑe′

L ,
using the associated Ẑ stabilizer outcomes. (e) The final Ẑ′′

L is a closed loop of four data qubit operators identical to the original ẐL. Ẑ′′
L may

differ in sign with respect to ẐL, captured by defining (−1)pZ ≡ (Zf

s9, . . . ,Z
f

s12)(Zi
s10, . . . ,Z

i
s13)(Zf

s1, . . . ,Z
f

s8)(Zi
s2, . . . ,Z

i
s9) = ±1. The power

pZ determines whether an X̂L by-product operator appears, multiplying the final wave function.

032324-23

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

operators X̂loop can be deformed through all the enclosed X̂

stabilizers, leaving only a product of measurement outcomes.
The ẐL operator is the loop of physical qubit Ẑ operators

that encloses the lower qubit hole. As shown in Fig. 20, the
braid transformation alternately extends and then collapses the
operator loop that surrounds the Z-cut hole, once for each of
the two moves; other than sign changes from Ẑ stabilizers that
the loop passes over, the final ẐL loop is the same as the initial
loop. The difference between the transformation of X̂L and ẐL

is the key to how the braid acts as a CNOT.
Details of the braid transformation involving just one

logical qubit are given in the captions for Figs. 19 and 20, with
a discussion of the sign changes and by-product operators
given in Appendix H. Note that in Figs. 19 and 20, while we
separate the actions that affect the X̂L operator from those that
affect ẐL, all X̂ measurements of the isolated data qubits and
measurements of the Ẑ stabilizers are performed as part of the
braid, independent of what logical operators are involved in the
transformation, just as they are for the one-cell and multicell
moves.

B. Braiding two qubits

We now turn to the less trivial situation where the braid
path encloses another logical qubit hole. The easiest way to
understand this is to examine how operators on the two logical
qubits are transformed by the braid. The two-qubit operators
will be outer products of the single-qubit operators X̂L, ẐL,
and ÎL. The ŶL operator is the product of ẐL and X̂L, and its
transformation can be understood in terms of the X̂L and ẐL

transformations.
We quickly review two-qubit operators, using as an example

X̂L ⊗ ẐL. We write the two-qubit logical state as |aLbL〉,
where |aL〉 represents the state of the first logical qubit and
|bL〉 that of the second qubit. The notation X̂L ⊗ ẐL means
that X̂L acts on the first qubit state |aL〉, and ẐL acts on the
second qubit state |bL〉. Using the eigenstates |gL〉 and |eL〉 as
basis states, the outer product X̂L ⊗ ẐL can be represented in
the standard two-qubit basis |gLgL〉, |gLeL〉, |eLgL〉, |eLeL〉 by

the 4 × 4 matrix

X̂L ⊗ ẐL =
(

0 1

1 0

)
⊗

(
1 0

0 −1

)

=

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ . (25)

We will see that the braid transforms each two-qubit
operator into some other two-qubit operator, with the outcome
depending on the particular pair of operators and on the order in
which their product is formed (so that, e.g., X̂L ⊗ ẐL does not
transform the same way as ẐL ⊗ X̂L). The outcome of a braid
also depends on what types of qubits we are braiding together;
we focus here on braiding a Z-cut qubit through an X-cut qubit,
as shown in Fig. 21. As we will see, only a braid between a
Z-cut and an X-cut qubit yields an operator transformation that
is equivalent to a logical CNOT. It is not possible to obtain the
desired CNOT transformations when braiding two Z-cut qubits
together, or two X-cut qubits; we discuss these situations in
Sec. XIV D.

In Fig. 21, the Z-cut qubit is in the upper part of the figure,
with the braid moving the lower Z-cut hole of this qubit around
a closed loop. The X-cut qubit is in the lower part of the
figure, with the braid taking the Z-cut hole between the two
X-cut holes, enclosing the upper X-cut hole in the braid loop.
As we work out later, proving that a braid is equivalent to a
CNOT only involves showing that 4 of the 16 possible two-qubit
operator combinations transform correctly; these are X̂L ⊗ ÎL,
ÎL ⊗ X̂L, ẐL ⊗ ÎL, and ÎL ⊗ ẐL. The transformations for all
the other two-qubit combinations of X̂L, ẐL, and ÎL can be
constructed from these four. Here we give a brief outline of
these transformations, with details given in Appendix I.

X̂L1 ⊗ ÎL2 → X̂L1 ⊗ X̂L2. Figure 21 shows the transfor-
mation of X̂L1 on the first, Z-cut qubit, with no operation
(ÎL2) on the second qubit. As with the empty loop braid, the
extension of X̂L1 operator chain in the two moves creates an

(a)

L2X̂

L1X̂
eX1
eX2
eX3
eX4

eX5
eX6

eX7

eX8 L1X̂
eX9

eX10
eX11

eX12

(b) (c) (d) (e)

L1X̂’ ’’

f
sX 2

f
sX 3

f
sX 4

f
sX 6

f
sX 7

f
sX 8

f
sX 9

fX 1s

(f)

L1X̂ ’’’

L2Î

Z-cut

X-cut

FIG. 21. (Color online) A braid on a Z-cut qubit, where the lower Z-cut hole of the qubit is braided around the upper X-cut hole of an X-cut
qubit. The braid’s effect on the X̂L1 operator on Z-cut qubit 1 is displayed. (a) Z-cut qubit (above) and X-cut qubit (below) with corresponding
logical operators; data qubits are shown as open circles. (b) Extension for first move in braid, where data qubits are measured along X̂, with
measurement outcomes Xe

1,X
e
2, . . . ,X

e
8. (c) X̂L1 operator is extended in length to X̂′

L1. (d) Extension for second move in braid, where data
qubits are measured along X̂ with measurement outcomes Xe

9, . . . ,X
e
12. (e) X̂′′

L1 operator is extended in length, comprising the original chain
plus a closed loop of data qubit operators, the loop enclosing the upper hole of the X-cut qubit. (f) The loop part of the X̂′′

L1 operator is moved
through the enclosed stabilized cells, leaving a loop of X̂ data qubit operators that is equal to X̂L2 on the second qubit, with X̂L1 unchanged
from before the braid (other than possible sign changes).

032324-24

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

(a)

L2X̂

(b) (c)

L1ÎZ-cut

X-cut
L2X̂

L1Î
L1Î

L2X̂

(d)

L2X̂

L1Î

FIG. 22. (Color online) (a)–(d) Illustration of the braid transformation of the ÎL1 ⊗ X̂L2 operator product. After the move, there is no net
change of either operator.

operator X̂′′
L1 that comprises a closed loop of X̂ operators in

addition to the original operator chain X̂L1. The loop encloses
the X-cut qubit’s upper hole. For the empty loop braid, we
could move the loop through all the enclosed cells, as these
were all stabilized, so the loop operator resolved to a simple
product of measurement outcomes. Here, we cannot do this, as
the X-cut hole is inside the loop and is not stabilized; instead,
we can transform the loop through each stabilized cell, until it
wraps tightly around the X-cut hole. This loop of X̂ operators
is then equivalent to X̂L2, a logical X̂ operation on the second
qubit. The remaining chain of operators in X̂′′′

L1 is the same as
the original X̂L1 chain prior to the braid. We see, therefore, that
the braid takes X̂L1 on the first qubit and ÎL2 on the second qubit
to X̂L1 on the first qubit and X̂L2 on the second qubit, that is,

X̂L1 ⊗ ÎL2 → X̂L1 ⊗ X̂L2, (26)

with details provided in Appendix I.
ÎL1 ⊗ X̂L2 → ÎL1 ⊗ X̂L2. Figure 22 shows the braid trans-

formation of ÎL1 on the first Z-cut qubit with X̂L2 on the second
X-cut qubit. Braiding the Z-cut qubit hole through the X-cut
qubit does not generate any chains of operators from either
qubit that wrap around or otherwise interact with the other
qubit, so the braid transformation in this case does nothing
(other than sign changes). Hence, we find

ÎL1 ⊗ X̂L2 → ÎL1 ⊗ X̂L2 (27)

(details and sign changes in Appendix I).
ÎL1 ⊗ ẐL2 → ẐL1 ⊗ ẐL2. Figure 23 shows the transforma-

tion of ÎL1 on the first Z-cut qubit and ẐL2 on the second X-cut
qubit. In Fig. 23(b), ẐL2 is extended as shown in the figure,
by multiplying it by the Ẑ stabilizers outlined by the dashed
boxes. The first qubit’s hole is then moved through the
path left open by the extension of ẐL2 [Fig. 23(c)]. ẐL2 is
then multiplied by all the stabilizers shown in the dashed
boxes [Fig. 23(d)], leaving behind a loop of Ẑ operators
surrounding the first qubit’s hole, a loop that is exactly a
ẐL1 operation on the first Z-cut qubit, as well as the original
ẐL2 on qubit 2, unchanged from prior to the braid (other
than possible sign changes). The braid therefore performs the
transformation

ÎL1 ⊗ ẐL2 → ẐL1 ⊗ ẐL2. (28)

ẐL1 ⊗ ÎL2 → ẐL1 ⊗ ÎL2. Finally, we consider the braid
transformation of ẐL1 on the first qubit with ÎL2 on the second

qubit. Braiding the first qubit hole through the second qubit
drags the loop of Ẑ operators along as it did for the empty loop
braid, but as the loop preserves its closed form during the two
moves, it does not generate a chain or loop of operators that
can act on the second qubit, so the braid transformation does
nothing (other than sign changes). Hence, we find

ẐL1 ⊗ ÎL2 → ẐL1 ⊗ ÎL2. (29)

L2Ẑ

L1Ẑ

L1Î

L2Ẑ

(a) (b)

(c) (d)

sZ 7

sZ 1 sZ 2 sZ 3

sZ 4

sZ 5

sZ 6
‘

ˆ ˆ ˆ

ˆ

ˆ

ˆˆ

Z-cut

X-cut

FIG. 23. (Color online) Braid transformation of ÎL1 ⊗ ẐL2. (a)
Prior to the move, displaying ÎL1 on qubit 1 and ẐL2 on qubit 2. Data
qubits are shown as open circles where relevant. (b) The ẐL2 operator
is extended by multiplying it by a set of stabilizers (dotted boxes),
resulting in the heavy red (gray) line that is equivalent to the original
ẐL2, with the exception of possible sign changes. (c) Qubit 1’s hole
is moved through the path opened up by extending ẐL2. (d) ẐL2 is
moved back to its original form, leaving behind a loop of Ẑ physical
qubit operators that comprise a ẐL1 operator on qubit 1.

032324-25

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

In general, a braid transformation leaves logical operators
that are built from closed loops of data qubit operators
unchanged, and there is no braid-induced interaction with the
other qubit hole. By contrast, logical operators that are built
from open chains of data qubit operators linking the two qubit
holes end up leaving a loop of operators surrounding the other
qubit hole. The different braid outcomes arise because the
first logical qubit is a Z-cut qubit, for which the X̂L operator
is an open chain that interacts with the second qubit, while
the second logical qubit is an X-cut qubit, for which the ẐL

operator is an open chain that interacts with the first qubit.
The braid is made of two move transformations that induce

sign changes in the first qubit’s logical operators, which appear
as qubit 1 by-product logical operators X̂L1 and ẐL1 acting
on the surface code wave function, as was discussed for the
one-cell and multicell moves. The braid transformation also
generates sign changes in the second qubit’s logical operators,
even though that qubit is not displaced during the braid. These
sign changes generate qubit 2 by-product logical operators
X̂L2 and ẐL2 acting on the wave function. Details regarding
the by-product operators are given in Appendix I.

We now turn to a discussion of the CNOT gate, and
make clear why the transformations we have detailed actually
identify the braid as a CNOT between two logical qubits.

C. The CNOT gate

The two-qubit CNOT gate is a fundamental gate for quantum
computation. One of the two qubits in the CNOT serves as the
control, and the other as the target. In the standard two-qubit
basis |gg〉, |ge〉, |eg〉, |ee〉, the CNOT is represented by the
4 × 4 real matrix

Ĉ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ . (30)

If the control qubit is in |g〉, the target qubit state is unchanged,
while if the control qubit is in |e〉, the target qubit undergoes
an X̂ bit flip, exchanging |g〉 and |e〉. Note that Ĉ is Hermitian,
Ĉ† = Ĉ, and unitary, ĈĈ† = Ĉ†Ĉ = ĈĈ = Î .

One way to test an experimental CNOT gate is to perform
the CNOT on each of the four two-qubit basis states and then do
projective measurements of the result onto each of the four ba-
sis states. These 16 experiments can be compared to the matrix
in Eq. (30) to verify that the CNOT has been implemented cor-
rectly. This is essentially a Schrödinger picture test of the CNOT.

An equivalent method is to use the Heisenberg picture,
by examining the transformation of the various two-qubit
operators due to the action of the CNOT. This would seem
to involve showing that the CNOT performs the correct
transformation for all 16 outer products of pairs of the four
single-qubit operators, Î , X̂, Ŷ , and Ẑ. It turns out one only
needs to show that the CNOT transforms four of these outer
products correctly:

Ĉ†(Î ⊗ X̂)Ĉ = Î ⊗ X̂, (31)

Ĉ†(X̂ ⊗ Î)Ĉ = X̂ ⊗ X̂, (32)

Ĉ†(Î ⊗ Ẑ)Ĉ = Ẑ ⊗ Ẑ, and (33)

Ĉ†(Ẑ ⊗ Î)Ĉ = Ẑ ⊗ Î . (34)

The other 12 relations are either trivial (Î ⊗ Î transforms to
itself) or can be written in terms of these four transformations.
Hence, Ĉ†(X̂ ⊗ X̂)Ĉ = X̂ ⊗ Î is the same as Eq. (32), as can
be seen by multiplying both sides of Eq. (32) by Ĉ† on the
left and by Ĉ on the right and using the fact that Ĉ is unitary.
Combinations such as X̂ ⊗ Ẑ transform according to

Ĉ†(X̂ ⊗ Ẑ)Ĉ = Ĉ†(X̂ ⊗ Î)(Î ⊗ Ẑ)Ĉ

= Ĉ†(X̂ ⊗ Î)ĈĈ†(Î ⊗ Ẑ)Ĉ

= (X̂ ⊗ X̂)(Ẑ ⊗ Ẑ)

= X̂Ẑ ⊗ X̂Ẑ = Ŷ ⊗ Ŷ . (35)

Other combinations involving Ŷ can be worked out using the
identity Ŷ = ẐX̂; hence,

Ĉ†(Ŷ ⊗ Î)Ĉ = Ĉ†(ẐX̂ ⊗ Î)Ĉ = Ĉ†(Ẑ ⊗ Î)(X̂ ⊗ Î)Ĉ

= Ĉ†(Ẑ ⊗ Î)ĈĈ†(X̂ ⊗ Î)Ĉ = (Ẑ ⊗ Î)(X̂ ⊗ X̂)

= ẐX̂ ⊗ Î X̂ = Ŷ ⊗ X̂. (36)

We can therefore validate a CNOT implementation by
verifying that it satisfies the four relations given by Eqs. (31)–
(34). However, these are precisely the four transformations
that we worked out for the braid, so indeed a braid is a CNOT.

Note that the full braid transformation, including all the
operations on the physical data qubits, involves a number of
projective measurements and is therefore not unitary. However,
if we consider the effect of the braid on the product |Q〉|qL〉,
while the transformation of the stabilized state |Q〉 is not
unitary, the transformation of the logical state |qL〉 is indeed a
unitary one.

D. CNOT between two Z cut qubits

We have only shown how to perform CNOTs using a braid
with a Z-cut qubit as the control and an X-cut qubit as the
target. We can extend this to a CNOT between two Z-cut
qubits using the circuit shown in Figs. 24(a)–24(c). The circuit
performs a CNOT of the logical Z-cut “target-in” qubit using
the logical Z-cut control qubit, with the Z-cut “target-out”
qubit carrying the result. An ancillary X-cut qubit is the target
for the three logical CNOTs in the circuit, so all the CNOTs are
braid transformations between a Z-cut and an X-cut qubit. The
circuit includes two logical measurements, with outcomes MZ

and MX. If the target-in qubit is measured to be in |+L〉 (|−L〉),
with MX = +1 (−1), then the target-out qubit does not (does)
have a ẐL applied to it prior to the CNOT. If the X-cut qubit is
measured to be in |gL〉 (|eL〉), with MZ = +1 (−1), then the
target does not (does) have an X̂L applied to it after the CNOT.

One can verify that this circuit works properly by using
operator transformations, or alternatively by testing it with the
four input basis states |gg〉, |ge〉, |eg〉, and |ee〉 for the control
and target-in Z-cut qubits (dropping the logical subscript L for
now). For example, consider |eg〉, where the control is in |e〉
and the target-in is in |g〉. We write the four-qubit state |abcd〉

032324-26

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

|+ 〉

〉

|+ 〉

〉

Z-cut

control in

Z-cut

control out

Z-cut

target in

Z-cut

target out

control in control out

target in

target out

(a)

(b)

control in control out

target in target out

(c)

X-cut

Z-cut |+ 〉

〉

|+ 〉

〉

X-cut

control in

X-cut

control out

X-cut

target in

X-cut

target out

control in

control out

target in target out

(d)

(e)

(f)

X-cut

Z-cut

control in control out

target in target out

FIG. 24. (Color online) (a) Logical CNOT between two Z-cut qubits. The control, target in, and the second ancilla (in |+L〉) are all Z-cut
qubits, while the first ancilla is an X-cut qubit. The logical CNOTs are all between Z- and X-cut qubits, generated by braiding transformations.
The measure outcomes MZ and MX signal how the output state should be interpreted, as described in the main text. (b) Simplified representation
using braids, with black lines for Z-cut qubits and blue (light) lines for the X-cut qubit. There are a pair of lines for each logical qubit, one line
for each qubit hole. The two lines join when a logical qubit is created or measured. (c) Even more condensed representation. (d) Logical CNOT

between two X-cut qubits. The control, target in, and the first ancilla are all X-cut qubits, while the second ancilla is a Z-cut qubit. The logical
CNOTs are all between X- and Z-cut qubits, generated by braiding transformations with the Z-cut as the control. The measure outcomes MZ

and MX signal how the output state should be interpreted. (e) Simplified representation, with black lines for the Z-cut qubits and blue (light)
for the X-cut qubit. (f) Even more simplified representation.

where a is the top, Z-cut control qubit, b the X-cut qubit, c

the target-out, and d the target-in qubit. The state is initially
|eg + g〉. This state is unchanged after the first CNOT in the
circuit, while the second CNOT yields |ee + g〉. The third
CNOT generates the entangled state |eegg〉 + |egeg〉. We now
measure the second (X-cut) qubit in Ẑ, which can yield two
outcomes.

(1) If the Ẑ measurement of the second (X-cut) qubit
yields MZ = +1 (meaning the second qubit was measured
in |g〉), the state is projected to |egeg〉 with the target-out
qubit in |e〉; with MZ = +1 we do not apply X̂L to this
qubit. The outcome of the target-in qubit measurement has
no effect (a ẐL applied to the target does not affect it),
so we see that the target-out ends up in |e〉, and we have
the circuit performing the transformation |eLgL〉 → |eLeL〉 as
desired.

(2) If instead the Ẑ measurement of the second qubit yields
MZ = −1 (meaning projection of the second qubit to |e〉), after
the measurement the state is |eegg〉 with the target-out in |g〉.
As we have MZ = +1, we need to apply an X̂L to the target-out
qubit, which transforms it to |e〉. Hence, the circuit performs
the same transformation, |eg〉 → |ee〉.

We encourage the reader to test the other possible
input states, to show that |gg〉 → |gg〉, |ge〉 → |ge〉, and
|ee〉 → |eg〉.

There is an analogous circuit for performing a CNOT

between two X-cut qubits, using a Z-cut qubit as an in-
termediate ancillary to perform the braid. This is shown in
Figs. 24(d)–24(f), with a state transfer between the control-in
and control-out qubits.

E. Single-control, multitarget CNOTs

It is frequently necessary to implement single-control,
multitarget CNOTs; these appear, for example, in the distillation
circuits used to purify imperfect states, as we shall see when
we discuss the Ŝ and T̂ gates. It turns out that these kinds of
CNOTs are actually no more complicated than a single-control,
single-target CNOT and, in fact, can be implemented in the
same number of surface code cycles as a CNOT between two
Z-cut or between two X-cut qubits. We display such a circuit
in Fig. 25, implementing a single-control, triple-target logical
CNOT between X-cut qubits. This circuit uses a single Z-cut
qubit as an intermediary to perform the braid transformation,
and an X-cut control-out ancillary to which the control-in

control

target 3

target 2

target 1

FIG. 25. (Color online) Schematic of circuit used to implement a
single-qubit control, triple target logical CNOT (circuit equivalent on
right), using the same notation as was used in Fig. 24. The blue (light)
lines are the logical X-cut qubits used for the control and targets, and
the black line is an ancillary logical Z-cut qubit that serves as an
intermediary between the X-cut qubits. The sequence involves a total
of six logical qubits, analogous to Fig. 24.

032324-27

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

state is transferred during the circuit operation. The Z-cut
intermediary is braided through the control and the three
target qubit holes, a process that can be performed in just
2d surface code cycles, followed by measurements that are
used to interpret the result. This can, of course, be extended
to any number of target qubits, without any additional surface
code cycles needed to complete the operation.

XV. THE HADAMARD TRANSFORMATION

The Hadamard transformation is a single-qubit gate that
in the standard qubit |g〉,|e〉 basis is represented by the 2 × 2
matrix

Ĥ = 1√
2

(
1 1

1 −1

)
. (37)

In the Schrödinger picture, this unitary Hermitian operator21

takes the Ẑ eigenstates |g〉 and |e〉 and transforms them to the
X̂ eigenstates |+〉 and |−〉, respectively. It similarly takes the
|+〉 and |−〉 eigenstates to |g〉 and |e〉. In terms of the Bloch
sphere, the Hadamard is represented by a 180◦ rotation about
an axis in the x-z plane at 45◦ to the z axis. In the surface code,
such arbitrary rotations cannot be performed, so an equivalent
logical rotation is not possible.

In the Heisenberg representation, the Hadamard takes X̂ to
Ẑ, and vice versa, so it satisfies

Ĥ †X̂Ĥ = Ẑ, Ĥ †ẐĤ = X̂. (38)

A logical Hadamard is implemented in the surface code
as shown in Figs. 26–28, with details of the process given in
Appendix J and in Ref. [45]. We start in Fig. 26 with an array
of d = 7 logical qubits. The first step in the process is to isolate
the logical qubit to be transformed from the larger 2D array,
by turning off a ring of stabilizers, isolating the logical qubit
in a separate patch of the 2D array, as shown in Fig. 27(a).
The ẐL operator loop is transformed to a patch-crossing chain
by multiplying it by a number of stabilizers in the patch. By
widening the ring that isolates the logical qubit into a “moat,”
so that the moat engulfs the two qubit holes, the logical qubit is
transformed to a simple “patch” qubit as shown in Figs. 27(b)–
27(d), similar to the d = 5 array qubit we discussed in Sec. VI.

The key to the logical Hadamard is now implemented, by
performing physical Hadamards on all the data qubits in the
patch; this exchanges the X̂L operator for ẐL, and vice versa,
as well as swapping the identities of the X and Z stabilizers
[Fig. 27(e)]. This, however, results in a misalignment of the
stabilizers in the patch with those in the larger 2D array, so
we then perform two swaps, from data qubit to measure qubit,
then from measure qubit to data qubit, shifting the patch by one
stabilizer cell and realigning the stabilizers [Fig. 27(f)]. The
two Z-cut holes are then recreated [Fig. 28(g)] and positioned
so that the Hadamard-transformed X̂L chain ends on the
internal boundary of each hole, and the ẐL chain is multiplied
by a set of stabilizers that returns it to a loop around one of the

21There is an unfortunate collision between the notation for the
Hadamard and the Hamiltonian operators, which both use Ĥ ;
however, we have managed to avoid invoking the Hamiltonian at
any point in this article, so this should not cause confusion.

qubit holes. The qubit holes are then moved to realign them
with their original positions [Figs. 28(h)–28(j)], a move that is
split into two steps to preserve the array distance d. In the final
step, the qubits are rejoined with the main array (as in Fig. 26).

The surface code is used to correct and stabilize any errors
that occur in this process, including potential errors from the
physical Hadamards. This will maintain error correction as
long as the distance d of the “patch qubit” that undergoes
the Hadamard is sufficiently large, and errors in the physical
Hadamards sufficiently rare. The distance d determines the
number of times some of the stabilizer measurements need to
be repeated in the Hadamard process, as noted in the figure
captions. These repeat numbers are therefore specific to this
distance d = 7 geometry [45], and larger distance codes will
require more repetitions.

In this process, we performed physical Hadamards on the
data qubits, and then did two swaps to realign the stabilizers. A
completely equivalent process is to first perform a data qubit-
measure qubit swap, then perform a physical Hadamard on all
the measure qubits, which now store the data qubit states. The
process is completed by swapping the Hadamard-transformed
measure qubit states to the appropriate data qubits, after which
the measure qubits regain their original X̂ or Ẑ stabilizer roles.

XVI. SINGLE-QUBIT ŜL AND T̂L OPERATORS

To complete our set of logical gates, we need surface code
implementations of the ŜL and T̂L operators and their adjoints.
These operators are represented in the standard |gL〉, |eL〉 basis
by the 2 × 2 matrices

ŜL =
(

1 0

0 i

)
, (39)

and

T̂L =
(

1 0

0 eiπ/4

)
. (40)

The ŜL gate is also sometimes called the P or phase gate, and
T̂L is also called the π/8 gate.22

We note the important identities

T̂LT̂L = ŜL (41)

and

ŜLŜL = ẐL. (42)

We also have the identities

T̂L = ŜLT̂
†
L, (43)

and correspondingly

T̂
†
L = Ŝ

†
LT̂L = ẐLŜLT̂L. (44)

As we will see, the circuit used to implement T̂L is probabilistic
and half the time generates T̂

†
L. From Eq. (43), when this occurs

T̂
†
L can be converted to T̂L by application of an ŜL gate. T̂L

can be similarly converted to T̂
†
L by application of ŜL, with

22The π/8 name originates from defining T̂L by the matrix in Eq. (40)
multiplied by an overall (and unimportant) phase factor of e−iπ/8.

032324-28

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

XL

ZL

FIG. 26. (Color online) Initial 2D array for the logical Hadamard example. The spacing and size of the Z-cut qubit holes corresponds to
a distance d = 7. The two holes in the center of the array form the logical qubit that is the target for the logical Hadamard and for which we
display the X̂L and ẐL logical operators. The dashed box outlines the limits for what is shown in Figs. 27 and 28.

the result having a by-product ẐL operator; in other words,
ŜLT̂L|ψL〉 = ẐLT̂

†
L|ψL〉, and the ẐL by-product operator is

handled in software.
A high-fidelity logical implementation of ŜL and T̂L

involves special ancilla states. Implementing ŜL relies on the
|YL〉 ancilla state

|YL〉 = 1√
2

(|gL〉 + i|eL〉), (45)

while implementing T̂L relies on the |AL〉 ancilla state

|AL〉 = 1√
2

(|gL〉 + eiπ/4|eL〉). (46)

The |YL〉 and |AL〉 ancilla states are created in a special “short
qubit,” which can be put in an arbitrary but concomitantly
imperfect state, a process known as “state injection.” Once
the state has been injected, the short qubit is increased to
the standard distance d to make it less error prone, and the

032324-29

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

XL

ZL

(a) (b)

(c)

(e) (f)

(d)

MX

MX

XL

ZL

XL
ZL

XL
ZL

XL

ZL
XL

ZL

FIG. 27. (Color online) (a) In the first surface code cycle for the Hadamard, a ring of X̂ stabilizers surrounding the target logical qubit
is turned off, and the four-terminal Ẑ stabilizers on the ring’s borders are reduced to three- and two-terminal measurements. The data qubits
isolated within the ring itself are measured in the Ẑ basis to maintain error tracking with the reduced-size Ẑ stabilizers. This stabilizer
measurement pattern is applied three times (three is specific to the distance-7 qubits used here; see Ref. [45]). (b) The ẐL operator (dashed red
line) is multiplied by all the black outline Ẑ stabilizers, transforming ẐL to a chain of operators (solid red line) going from left to right. (c) In
the next surface code cycle, all X̂ and Ẑ stabilizers in 2D patch outside the dashed box are turned off, widening the ring into a “moat” as in
(d), eliminating the two qubit holes. In the same cycle, all isolated data qubits are measured on the Ẑ basis, except those colored blue (light),
which are measured in the X̂ basis to preserve error tracking with the adjacent three-terminal X̂ stabilizers. Note that the other unstabilized data
qubits do not need to be measured, as changes in their quantum states will be accounted for once their respective stabilizers are turned back
on. (e) Before the next surface code cycle starts, a physical Hadamard is performed on all data qubits, swapping X̂L and ẐL and the stabilizer
identities. (f) Following the Hadamard, a pair of swap operations is performed between each patch data qubit and its neighboring measure
qubits, first between each data qubit and the measure qubit above it, then between each measure qubit and the data qubit to its left. This shifts
the patch by one stabilizer cell in the array, aligning the measure qubits in the patch with those in the larger array. The dashed box shows the
location of the patch prior to these swaps. This sequence continues in Fig. 28.

032324-30

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

(j)

(g) (h)

(i)

XL

ZL

XL

ZL

XL

ZL

XL

ZL

FIG. 28. (Color online) (Continued from Fig. 27) (g) In the next surface code cycle, most of the X̂ and Ẑ stabilizers are turned back on,
leaving two Z-cut enlarged holes and a ring, one stabilizer cell wide, isolating the 2D patch from the array, as in Fig. 27(a). The Z-cut holes are
positioned so that the X̂L chain ends on the internal boundary of each hole. The ẐL chain (dashed red line) is multiplied by all the black outline
Ẑ stabilizers, leaving a ẐL loop (solid red line) that encloses the right Z-cut hole. (h) In the subsequent surface code cycle, and the first step of
returning the Z-cut holes to original locations, the Z-cut holes are expanded and ẐL and X̂L modified accordingly. This move is split in two
steps to preserve the distance d during this process; the process pauses here for d surface code cycles to establish all values in time. (i) In the
second step of returning the Z-cut holes to their original locations, the Z-cuts are expanded to encompass the original positions. The stabilizer
measurements are performed twice. (j) In the final step, the cuts are reduced to their original size, as in Fig. 26. This stabilizer measurement
pattern is applied three times (see Ref. [45]). Following this, the isolated patch is reconnected by turning on the appropriate stabilizers.

imperfect logical state of the standard-distance qubit is then
purified by a high-fidelity process known as “distillation”;
we discuss these steps below. The ŜL and T̂L gates are
then implemented with circuits using logical CNOTs and
Hadamards involving these ancilla states, as shown in Figs. 29
and 30, respectively.

The ŜL gate implementation shown in Fig. 29 involves two
logical CNOTs and two logical Hadamard operations. An input
state |ψL〉 in one logical qubit is deterministically transformed
into ŜL|ψL〉 by interacting with the ancilla qubit in the |YL〉
state. This can be most easily seen by testing the circuit with the
input state |ψL〉 = α|g〉 + β|e〉, where we drop the L subscript
for simplicity. We consider the states |g〉 and |e〉 of |ψL〉 sepa-
rately. For |g〉, the CNOT does nothing, so the |YL〉 ancilla state
transforms according to Ĥ Ĥ |YL〉 = |YL〉. For |e〉, the CNOT

performs an X̂L on the ancilla state, which then transforms
according to Ĥ X̂Ĥ X̂|YL〉 = ẐX̂|YL〉 = −|e〉 + i|g〉, where
we have dropped normalization. Writing the circuit state as
|ab〉, where a represents the input state and b the ancilla, the

circuit produces the output

α|g〉(|g〉 + i|e〉) + β|e〉(−|e〉 + i|g〉) (47)

= α|gg〉 + iα|ge〉 + iβ|eg〉 − β|ee〉 (48)

= (α|g〉 + iβ|e〉)(|g〉 + i|e〉) (49)

= (ŜL|ψL〉)|YL〉, (50)

as desired.

FIG. 29. Logic circuit that implements the ŜL gate. The circuit
uses the ancilla state |YL〉 = (|gL〉 + i|eL〉)/√2, on which two
controlled logical CNOTs and two logical Hadamards are performed,
resulting in the input state |ψL〉 being transformed to ŜL|ψL〉. Note
that as Ŝ

†
L = ẐLŜL, the same circuit transforms |ψL〉 to ẐLŜ

†
L|ψL〉,

where ẐL is a by-product operator.

032324-31

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

AL SL TL
IL

XLZL

FIG. 30. Logic circuit for the T̂L gate. The circuit uses the ancilla
state |AL〉 = (|gL〉 + eiπ/4|eL〉)/√2, which is used to control a CNOT

on the target state |ψL〉, transforming the ancilla to the output state
|φL〉. The CNOT target state is measured along ẐL, resulting in a
projective, probabilistic outcome. Following this, the CNOT control
qubit is processed by a conditional ŜL gate: If the ẐL measurement
MZ yields a +1 outcome, the output state is the desired one,
|φL〉 = T̂L|ψL〉, and the ŜL gate is not applied. If, however, the
measurement yields a −1 outcome, the output is |φL〉 = X̂LT̂

†
L and

the ŜL gate is applied, resulting in the output X̂LẐLT̂L|ψL〉. Note
the double lines represent the classical measurement data with a
probabilistic outcome, with these data controlling the ŜL gate. The
bracketed operators in the output correspond to MZ = +1 (ÎL) and
MZ = −1 (X̂LẐL).

To instead apply Ŝ
†
L, we use the identity Ŝ

†
L = ẐLŜL,

which means we use the circuit shown in Fig. 29 and have
a by-product ẐL appear on the output; in other words, |ψL〉
transforms to ẐL(Ŝ†

L|ψL〉).
The T̂L gate is implemented with the nondeterministic

circuit shown in Fig. 30. Given the input ancilla state |θL〉 =
|gL〉 + eiθ |eL〉, the output |φL〉 of this circuit is

|φL〉 = X̂
pZ

L R̂Z[(−1)pZθ]|ψL〉. (51)

The first operator is a by-product operator, whose power pZ is
equal to 0(1) if the ẐL measurement MZ of the logical qubit
state is +1 (−1). The second operator is a rotation by the
angle θ ,

R̂Z(θ) =
[

1 0

0 eiθ

]
. (52)

For the T̂L gate, the rotation angle is θ = +π/4(−π/4)
depending on the sign +1(−1) of the ẐL measurement.

We can test this circuit with the input state |ψ〉 = α|g〉 +
β|e〉 (dropping the L subscript) and the ancilla state with θ =
π/4 (this is the state |AL〉). Hence, the initial state is

(|g〉 + eiπ/4|e〉)|ψ〉 = α|gg〉 + β|ge〉
+eiπ/4α|eg〉 + eiπ/4β|ee〉. (53)

The CNOT transforms this to

α|gg〉 + β|ge〉 + eiπ/4α|ee〉 + eiπ/4β|eg〉
= (α|g〉 + eiπ/4β|e〉)|g〉 + (β|g〉 + eiπ/4α|e〉)|e〉. (54)

If we measure the second qubit in |g〉, that is, we have the
outcome MZ = 1, the first qubit state is α|g〉 + eiπ/4β|e〉,
which is precisely T̂L|ψL〉, so we have succeeded. If instead
we measure the second qubit in |e〉; that is, the measurement
outcome is MZ = −1, the first qubit state is

β|g〉 + eiπ/4α|e〉 = X̂(eiπ/4α|g〉 + β|e〉)
= eiπ/4X̂(α|g〉 + βe−iπ/4|e〉), (55)

which is X̂LT̂
†
L|ψL〉 multiplied by an overall phase, which can

be neglected.
Hence, approximately half of the times we run the circuit

we will succeed in generating T̂L|ψL〉, signaled by the
measurement MZ = +1. However, the other times we run the
circuit the measurement MZ = −1 will signal the output state

|φL〉 = X̂LR̂Z(−π/4)|ψL〉 = X̂LT̂
†
L|ψL〉. (56)

In this case, to achieve the desired result, we must fix the output
using ŜLT̂

†
L = T̂L. There is a slight complication if there are

by-product X̂L or ẐL operators, which we discuss in the next
section; here we assume there are no by-product operators.
The correction to the output is achieved by applying ŜL

to |φL〉:

ŜL|φL〉 = ŜL(X̂LT̂
†
L|ψL〉) = X̂LŜ

†
LT̂

†
L|ψL〉

= X̂L(ẐLŜL)T̂ †
L|ψL〉 = (X̂LẐL)T̂L|ψL〉, (57)

where we use the identity ŜLX̂L = i X̂LŜ
†
L and drop the

unimportant phase factor of i. Hence, passing the output state
|φL〉 through the ŜL circuit gives the result (X̂LẐL)T̂L|ψL〉,
where X̂LẐL are by-product operators that are handled by the
control software.

If we need to perform T̂
†
L, we use the circuit in Fig. 30,

and about half the time we will get the measurement outcome
MZ = −1, which indicates the circuit produced X̂LT̂

†
L, which

is the desired output (with a by-product operator X̂L). The other
half of the time we get the measurement outcome MZ = +1,
and we can correct the circuit output T̂L|ψL〉 by applying ŜL,
as ŜLT̂L = ẐLT̂

†
L; this is done using the ŜL circuit, with the

output including the by-product operator ẐL that is handled
by the control software.

A. Commuting X̂L and ẐL through ŜL and T̂L

We turn briefly to the issue of commuting the X̂L and ẐL

operators through the ŜL and T̂L gates, which is necessary
if the classical control hardware is to handle all X̂L and ẐL

operations, as discussed in Sec. IX. The commutation relations
are most easily worked out using the circuits that implement
ŜL and T̂L, Figs. 29 and 30.

First we show that ẐL and ŜL commute, which can be seen
by applying the ŜL circuit to the input state ẐL|ψL〉. We have an
implicit ÎL operation on the CNOT target state |YL〉, and we can
commute the operator pair ẐL ⊗ ÎL through the first CNOT, as
ẐL ⊗ ÎL → ẐL ⊗ ÎL. The Hadamard and the identity operator
commute, and ẐL ⊗ ÎL can then be commuted through the
second CNOT. The second Hadamard likewise commutes with
ÎL, so the operator pair ẐL ⊗ ÎL can be commuted through the
entire circuit. Hence, ẐL and ŜL commute. This result should
not be surprising, as the ŜL gate represents a form of logical
rotation about the Ẑ axis, and therefore should commute with
ẐL.

When passing the X̂L operator through the ŜL circuit, we
have for the first CNOT transformation X̂L ⊗ ÎL → X̂L ⊗ X̂L,

032324-32

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

and commuting through the Hadamard, which acts on the
second operator, we have X̂L ⊗ X̂L → X̂L ⊗ ẐL. The second
CNOT performs the transformation X̂L ⊗ ẐL → ŶL ⊗ ŶL, and
the second Hadamard does not affect the second ŶL (other than
an unimportant sign change). Hence, X̂L ⊗ ÎL is transformed
to ŶL ⊗ ŶL, and the control software must note the by-product
operator transformation X̂L → ŶL = ẐLX̂L on the output
state, with the two by-product operators handled in software.
An additional ŶL also appears on the ancilla |YL〉, but as
ŶL|YL〉 = i|YL〉, this does nothing other than the unimportant
phase factor i, which can be ignored.

In summary then, the ŜL gate commutes with ẐL and X̂L

as follows: {
ŜLẐL → ẐLŜL,

ŜLX̂L → ẐLX̂LŜL.
(58)

To show that ẐL and T̂L commute, we use similar reasoning
using the circuit in Fig. 30. As T̂L also represents a form of
rotation about Ẑ, this makes sense. There is a slight wrinkle
when we get the measurement outcome MZ = −1, which
means that a ŜL gate will be applied, in this case to the state
|φL〉 = X̂LT̂

†
L(ẐL|ψL〉). Then we have

ŜL|φL〉 = ŜLX̂LT̂
†
L(ẐL|ψL〉) = X̂LŜ

†
LẐLT̂

†
L|ψL〉

= X̂LẐLŜ
†
LT̂

†
L|ψL〉 = X̂LẐLẐLŜLT̂

†
L|ψL〉

= X̂LT̂L|ψL〉, (59)

which is the desired result, with a by-product operator X̂L that
is handled by the control software.

The commutation of X̂L through the T̂L gate is similar.
We take the input state X̂L|ψL〉, and commute X̂L through
the CNOT with an implicit ÎL operating on the CNOT control
qubit. The CNOT takes ÎL ⊗ X̂L → ÎL ⊗ X̂L. Hence, we have
an additional X̂L that reverses the sign of the terminal MZ

measurement. If after applying this X̂L, the measurement
outcome is MZ = −1, we have the correct output, T̂L|ψL〉.

However, if after applying X̂L, the measurement gives
MZ = +1, the circuit will apply ŜL to |φL〉 = X̂LT̂

†
L|ψL〉.

Using ŜLT̂
†
L = T̂L, and dropping global phase factors, we have

ŜL|φL〉 = ŜL(X̂LT̂
†
L|ψL〉) = X̂LŜ

†
LT̂

†
L|ψL〉

= X̂LẐLŜLT̂
†
L|ψL〉 = X̂LẐLT̂L|ψL〉, (60)

which is as desired, with the appearance of two by-product
operators X̂LẐL.

We summarize the T̂L logic circuit outcomes, as well as the
commutation of T̂L with ẐL and X̂L in Table IV.

B. Short qubits and state distillation

The ancilla |YL〉 and |AL〉 states used in the ŜL and T̂L gates
are X̂L rotations of |gL〉 by 90◦ and 45◦, respectively, which are
not easy to perform in the surface code. Consider a distance
d = 3 Z-cut qubit, with X̂L = X̂1X̂2X̂3 the operator chain
connecting the two Z-cut holes. There is no obvious way to
perform an arbitrary rotation of this logical qubit. For example,
how would we perform a differential rotation of the state |ψL〉
using εX̂L, with the desired final state (ÎL + εX̂L)|ψL〉? One
cannot perform this rotation by operating with Î + εX̂j on

TABLE IV. T̂L logic circuit outcomes and commutation relations
for T̂L with ẐL and X̂L. The measurement MZ indicates which state
is output from the circuit.

Input Output Measurement

|ψL〉 T̂L|ψL〉 MZ = +1
X̂LẐLT̂L|ψL〉 MZ = −1

ẐL|ψL〉 ẐLT̂L|ψL〉 MZ = +1
X̂LT̂L|ψL〉 MZ = −1

X̂L|ψL〉 X̂LẐLT̂L|ψL〉 MZ = +1
T̂L|ψL〉 MZ = −1

each of the j = 1,2,3 data qubits, as this will give the result
(Î + εX̂1 + εX̂2 + εX̂3))|ψL〉, to first order in ε, which is not
what we want. To get around this problem, we need to create a
qubit in which the X̂L chain is just one qubit in length; such a
short qubit would, of course, be error prone, but if we minimize
the number of surface code cycles in which the qubit remains
small, these errors will not accumulate significantly.

We can create and initialize a short X-cut qubit using
the procedure shown in Fig. 31, which is known as “state
injection”; details are in Appendix K.

4

(a) (b)

(c) (d)

6
7

MX

2 3
5

9

8

1

gL +eiθ eL

FIG. 31. (Color online) Sequence to generate a short X cut qubit.
(a) surface code array, with the array extending indefinitely outside
the region shown here. (b) Two X̂ stabilizers are turned off, creating
a short X cut qubit, with a single data qubit separating the two holes.
(c) In the next surface code cycle, the central data qubit (qubit 5)
is measured along X̂ simultaneously with the measurement of the
four-terminal Ẑ stabilizers adjacent to it; the remainder of the array
has the standard surface code cycle for all stabilizers. This creates a
logical qubit initialized in either |+L〉 (X5 = +1) or |−L〉 (X5 = −1).
Prior to starting the next surface code cycle, the central data qubit
is rotated using R̂Z(θ) to the desired final state |gL〉 + eiθ |eL〉. (d)
The surface code stabilization is restarted. After this the short qubit
is enlarged to protect against errors.

032324-33

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

+

〉g

〉

+ 〉

g

〉

〉+

g

SL

〉g

1

2

3

4

5

6

7

SL

SL

SL

SL

SL

SL

FIG. 32. (Color online) Distillation circuit for the |YL〉 ancilla
state. A logical Bell pair is created (dashed box, bottom left), and one
qubit from the pair is encoded with 6 ancilla logical qubits using the
Steane code [14,47]. The seven encoded qubits are then each rotated
with an ŜL gate (dotted blue); the ancilla states used by the ŜL gates
are precisely the |YL〉 states that are being purified, produced in the
first round of distillation by state injection in a short qubit, or are
from a prior round of distillation. The output from each ŜL gate is
then measured along X̂L, and the results indicate whether the output
state |ψL〉 in the other qubit of the Bell pair should be discarded, or
is a purified version of |YL〉, possibly involving a ẐL phase flip (in
software) as discussed in the main text.

The state injected in the short qubit is necessarily imprecise;
even the best possible classically controlled state preparation
will have insufficient precision to achieve error rates below
10−14, needed for our example Shor’s algorithm problem. The
two target states we are interested in, |YL〉 and |AL〉, can, how-
ever, be made significantly more precise through distillation.
This is a probabilistic process in which an imperfect input
state can be purified by multiple executions of a particular
logic circuit, with the output state from each execution rapidly
approaching the perfect desired result. Circuits for distilling
the |YL〉 and |AL〉 ancilla states are shown in Figs. 32 and
33, which implement the 7-qubit Steane [46] and the 15-qubit
Reed-Muller encodings [12], respectively. These circuits may
look very complicated, but the reader should note that these
circuits only involve single-control, multitarget logical CNOTs,
and as discussed in Sec. XIV E, these CNOTs take the same
number of surface code cycles as a single-target logical CNOT.
Hence, to complete the |YL〉 distillation, only six logical CNOT

cycles are needed, and for the |AL〉 distillation, at most eight
such cycles are needed. Hence, the temporal overhead to
complete a distillation is actually relatively small; the surface
code can implement these circuits very efficiently.

In the circuit shown in Fig. 32, a logical Bell pair is created,
and one logical qubit from the pair is entangled with six
other logical qubits using the Steane code. Each of the seven
encoded qubits is then rotated with an approximate ŜL gate,
each of these gates using an approximate |ŶL〉 states as an
ancilla. In the first stage of distillation, each of these ancilla
states is directly produced by state injection in a short qubit,
while in later distillation stages the ancillae will be purified
versions of these states. The distillation circuit generates one
output state |ψL〉 in the other logical qubit of the Bell pair,

and performs seven X̂L measurements of the other qubits.
The measurement outcomes are used to interpret the output
state |ψL〉, by evaluating the three Steane code X̂ stabilizers
X̂S1 = X̂L3X̂L4X̂L5X̂L6, X̂S2 = X̂L2X̂L5X̂L6X̂L7 and X̂S3 =
X̂L1X̂L4X̂L6X̂L7 (numbering as in Fig. 32). These products are
evaluated by taking the appropriate products of the individual
X̂Lj measurements.23 If each of the stabilizer measurement
outcomes {XS1,XS2,XS3} is equal to {+1,+1,+1}, then the
output state |ψL〉 is a purified version of |YL〉 and will be
kept (otherwise the state is discarded). If the product of all the
individual logical measurements is XL1XL2, . . . ,XL7 = −1,
nothing additional is needed, but if this product is +1, then the
output will include a ẐL by-product operator.

If the ancilla |YL〉 states used in the ŜL gates in Fig. 32
are perfect, and the circuit is operated flawlessly, the output
state |ψL〉 will always be a perfect |YL〉. The ancilla |YL〉 states
can, however, suffer from errors; a ŶL error does nothing, as
ŶL|YL〉 = i|YL〉, while ẐL|YL〉 = |Y

L〉 and X̂L|YL〉 = −i|Y

L〉.

If there is a probability p of having an X̂L or ẐL error, and the
circuit is operated flawlessly, then the output state will have
a probability 7p3
 p of having an error. The output will be
successfully distilled with a probability 1 − 7p.

Clearly, the distillation converges rapidly to a nearly perfect
output state. If one cycle of distillation does not result in a
sufficiently accurate output, more cycles can be added. To
run the circuit twice, one needs to prepare at least 72 = 49
approximate |YL〉 input states, with the outputs |ψL〉 of each
distillation circuit providing the seven input states for the
second distillation circuit.24 If the original states have a
probability p of X̂ or Ẑ errors, the first set of output states
will have an error rate 7p3, and the output from the second
distillation an error rate 7(7p3)3 = 74p9, with exponential
improvement. To run the circuit three times, 73 = 343 input
states are required, with an output error rate 713p27, and so
on. Note that if the error rate p is of order 1%, running the
distillation circuit twice generates states with an error rate of
about 10−15, below the target of 10−14 set by the size of the
Shor’s algorithm problem we consider here.

A similar discussion applies to the |AL〉 distillation circuit
shown in Fig. 33. In this circuit, a logical Bell pair is
created, and one qubit from the pair encoded with 14 other
logical qubits using the Reed-Muller code. The 15 qubits
are then rotated with T̂

†
L gates, where each T̂

†
L gate uses an

approximation of the |AL〉 state as an ancilla, from either
a short qubit injection in the first round of distillation or a
previously purified |AL〉 in later rounds.

The T̂
†
L circuit is shown in Fig. 33(b). The T̂

†
L gate is

probabilistic, where given the input |χL〉, about half the time
it generates T̂L|χL〉, signaled by the measurement MZ =
+1, and ŜL is then applied using the circuit in Fig. 29,
giving ŜLT̂L|χL〉 = ẐLT̂

†
L|χL〉, with a ẐL by-product operator

appearing in the output state. The rest of the time the circuit

23Note that the Steane code stabilizers X̂Sj are formed from products
of logical operators and are not to be confused with the surface code
stabilizers.
24Note that this may take more than 49 attempts, as a fraction of the

circuits, of order p, will fail to successfully distill their input states.

032324-34

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

g

+

g

g

+

+

〉g

〉g

〉g

〉g

〉g

〉

〉

〉g

〉

〉

〉

〉g

〉

〉+

〉

g 〉

+

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15TL†

(a)

(b)
AL TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

TL†

SL χL

χL

XL

ZL

FIG. 33. (Color online) Distillation circuit for the |AL〉 ancilla
state [14,47]. (a) A logical Bell pair is created (dashed box, bottom
left), and one qubit from the pair encoded with 14 ancilla logical qubits
using the Reed-Muller code [12,47]. The 15 encoded logical qubits
are then each rotated with a T̂

†
L gate (dotted blue). The ancillae for the

T̂
†
L gates are the |AL〉 states that are being purified, either prepared by

state injection in a short qubit or produced in a previous distillation
round. Following the T̂

†
L gates, 15 X̂L measurements MX are made,

with the measurement pattern indicating whether to discard the output
state |ψL〉 of the other qubit of the Bell pair or indicating that |ψL〉
is a purified |AL〉 state, possibly with an additional ẐL by-product
operator. (b) Diagram for the T̂

†
L gate, which is similar to the T̂L gate

in Fig. 30, with a CNOT using the imperfect |AL〉 (blue, light) as the
control on the input state |χL〉. When the measurement MZ = −1, the
output is X̂LT̂

†
L|χL〉; the X̂L has no effect when the MX measurement

is made in panel (a). When the measurement MZ = +1, the output is
T̂L|χL〉, and must be corrected (up to by-product operators) using the
ŜL circuit in Fig. 29, giving ŜLT̂L|χL〉 = ẐLT̂

†
L|χL〉. The by-product

operator ẐL will reverse the sign of the measurement MX that occurs
after this gate in panel (a).

generates X̂LT̂
†
L|χL〉, signaled by MZ = −1, with a by-product

X̂L.
The outputs of the T̂

†
L gates are all measured along

X̂L, where the sign of the measurement result MX is
reversed due to the by-product ẐL if the ŜL circuit had

to be used. The pattern of measurement outcomes is
used to evaluate the four X̂ stabilizers for the Reed-
Muller code, X̂R1 = X̂L4X̂L5, . . . ,X̂L11, X̂R2 = X̂L1X̂L2, . . . ,

X̂L7X̂L15, X̂R3 = X̂L2, . . . ,X̂L5X̂L10, . . . ,X̂L13, and X̂R4 =
X̂L1X̂L2X̂L5X̂L6X̂L9X̂L10X̂L13X̂L14 (using the qubit number-
ing in Fig. 33).25 If each of the measurement outcomes
{XR1,XR2,XR3,XR4} is {+1,+1,+1,+1}, the state |ψL〉 of
the other qubit of the Bell pair is a purified |AL〉 state. If the
product of all the measurements XL1XL2, . . . ,XL15 = +1, no
postprocessing is needed, while if this product is −1, then a
ẐL by-product operator will appear.

If the probability of an error containing a ẐL component
in the approximate |AL〉 states is p, the output state |ψL〉 will
have an error rate 35p3. The distillation will succeed with a
probability 1 − 15p, so if p is of order 1%, the distillation will
have to be rerun about one-sixth of the attempts. Additional
distillation cycles, built in the same way as for the |YL〉
distillation, will improve the output exponentially.

XVII. PHYSICAL IMPLEMENTATIONS

We have now covered all the basic aspects of the surface
code approach to quantum computing. We have described all
the gates that are required to implement, for example, Shor’s
algorithm or Grover’s search algorithm. The discussion has
been mostly theoretical, while the motivation for developing
the surface code is, of course, to find a realistic and practical
physical implementation for a quantum computer. There are
a number of physical systems in which this scheme could, in
principle, be implemented, ranging from cold atoms [48,49]
and ions [50–52], to semiconductor-based approaches [53],
to superconducting integrated circuits [54–59]. Each of these
systems has certain advantages and certain disadvantages. For
any system to be a candidate for a surface code implementa-
tion, it must, of course, meet the requirements for single-qubit
and two-qubit gate and measurement fidelities, which is not
true for any system to date, although a number of systems
are close to these requirements. The surface code clearly also
requires a very large number of physical qubits (of order 108 is
probably the smallest number needed for a practical factoring
computer), so a separate requirement is the ability to assemble
and integrate a large number of nominally identical qubits.
Furthermore, the operation and error detection of the surface
code assumes classical logic support, with the classical logic
operating significantly faster than the qubits, in order that
state preparation, qubit interactions, and error tracking can
be maintained with a high level of fidelity.

Given classical processor clock rates of order 3 GHz, it
is difficult to imagine performing the surface code classical
processing if the rounds of error detection are applied much
faster than 106 to 107 Hz. This implies physical quantum gates
of duration 10–100 ns, and hence physical qubit coherence
times of at least 1–10 μs, if the minimum physical gate
fidelities of 99% are to be achieved. Gates operating at

25Again, the Reed-Muller stabilizers here are defined in terms of
logical qubits and should not be confused with the surface code
stabilizers.

032324-35

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

these speeds, and physical qubits with these coherence times,
have already been achieved experimentally in superconducting
systems [60,61]. We believe that a surface code cycle time
of 200 ns is thus a reasonable target. Slower surface code
operation implies higher qubit overhead or longer factoring
times (a surface code cycle time of 2 ms would take 30 yr to
factor a 600-digit number, as per the scaling in Table I, if no
additional qubits were devoted to the task).

The intimate intermingling of classical and quantum logic
requires high-speed interconnects to each qubit, which makes
very dense qubit geometries harder to implement. It will be
challenging to integrate qubits with spacings of order of or less
than 1 μm with classical electronics, while spacings of tens
to hundreds of μm should be more straightforward. Note that
a 104 × 104 array of physical qubits with interqubit spacing
of 100 μm implies a physical size for the 2D array of about
1 × 1 m2, which is perhaps manageable, so “large” qubits are
not unrealistic.

These considerations appear to point to superconducting
circuits as one of the best candidates for implementing the
surface code: All of the physical and operating parameters
for superconducting circuits fall into the ranges discussed
here. There are clearly significant challenges in achieving
sufficient gate and measurement fidelities. This is compounded
by the need for tight integration of superconducting quantum
circuitry with classical logic, all operating in tandem. However,
we believe that with a continued, and significant, investment
in superconducting quantum circuits, and in developing the
necessary accompanying high-speed and closely integrated
classical logic, a quantum computer could be built.

ACKNOWLEDGMENTS

We thank John Preskill for providing us with a brief
history of surface code theory development, and James Wenner
for assistance with numerical simulations. We also thank
Frank K. Wilhelm, Michael R. Geller, Daniel Sank and
James Wenner for their useful comments. M.M. acknowledges
support from an Elings Postdoctoral Fellowship. Support
for this work was provided by IARPA under ARO award
W911NF-08-1-0336 and under ARO award W911NF-09-
1-0375. A.G.F. acknowledges support from the Australian
Research Council Centre of Excellence for Quantum Com-
putation and Communication Technology (project number
CE110001027), with support from the US National Security
Agency and the US Army Research Office under contract num-
ber W911NF-08-1-0527, and by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior
National Business Center contract number D11PC20166. This
article is a contribution of the US Government, not subject to
US copyright.

APPENDIX A: NOTATION

The notation in this article is mostly standard. We use the
following conventions.

(1) Ground state for Ẑ quantization axis: |g〉 = (1
0).

(2) Excited state |e〉 = (0
1).

(3) In the same Ẑ axis basis, the operator Ẑ = σ̂z = (1 0
0 −1),

with eigenvalues +1, −1 for |g〉, |e〉. The measurement MZ

returns these eigenvalues and projects to these respective
eigenstates. Note the Ẑ eigenvalue for |e〉 is smaller than that
for |g〉; the Hamiltonian is positively proportional to −Ẑ.

(4) Operator X̂ = σ̂x = (0 1
1 0) with eigenvalues +1 and

−1 for eigenstates |+〉 = 1√
2
(1

1) = 1√
2
(|g〉 + |e〉) and |−〉 =

1√
2
(1

−1) = 1√
2
(|g〉 − |e〉), respectively. The measurement MX

returns these eigenvalues and projects to these respective
eigenstates.

(5) Operator Ŷ is real, unlike the Pauli σy , with Ŷ =
−iσ̂y = ẐX̂ = (0 1

−1 0).

(6) We have the commutation relations [X̂,Ŷ] = −2Ẑ,
[Ŷ ,Ẑ] = −2X̂, and [Ẑ,X̂] = +2Ŷ (not having an i in the
definition for Ŷ interrupts the cyclic permutation of the Pauli
operators).

(7) Hadamard operator Ĥ = 1√
2
(X̂ + Ẑ) = 1√

2
(1 1

1 −1).

Note that Ĥ |g〉 = |+〉, Ĥ |e〉 = |−〉, Ĥ |+〉 = |g〉, Ĥ |−〉 = |e〉,
Ĥ 2 = Î .

(8) The Ŝ gate is another Ẑ-axis rotation, represented in
the Ẑ basis by the matrix Ŝ = (1 0

0 i).

(9) The T̂ gate is a Ẑ-axis rotation, represented in the
Ẑ basis by the matrix T̂ = (1 0

0 eiπ/4). This gate is also called

the π/8 gate, as one can also write it in the form T̂ =
eiπ/8(e−iπ/8 0

0 eiπ/8). Note that T̂ 2 = Ŝ, Ŝ2 = Ẑ, Ŝ4 = Î .

(10) A CNOT Ĉ in the basis |gg〉, |ge〉, |eg〉, |ee〉, where the
first state is the control and the second the target, is given by

Ĉ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠ . (A1)

Hence, if the control is in |g〉 the CNOT is equivalent to Î

operating on the target, while if the control is in |e〉 the CNOT

is equivalent to X̂ operating on the target.
(11) A Toffoli gate is a three-qubit, controlled-controlled

NOT gate. In the basis |ggg〉, |gge〉, |geg〉, |gee〉, |egg〉,
|ege〉, |eeg〉, |eee〉, where the first and second states are the
two controls and the third state is the target, the Toffoli is
represented by⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Hence, if both controls are in |e〉 the Toffoli is equivalent
to X̂ operating on the target, while otherwise the Toffoli is
equivalent to Î operating on the target.

032324-36

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

TABLE V. Translation between the “traditional” language used
in the published literature (e.g., from Ref. [15]) and the terminology
used here.

Published
terminology (Ref. [15]) This paper

Code state Quiescent state
X syndrome (light) Measure-X (orange, light)
Z syndrome (dark) Measure-Z (green, dark)
Syndrome symbol • Measure symbol •
Data symbol ◦ Data symbol ◦
Z, X, H , I Ẑ, X̂, Ĥ , Î

Smooth boundary X boundary
Rough boundary Z boundary
Rough, primal qubit Single X-cut qubit
Smooth, dual qubit Single Z-cut qubit
Double rough defect (Double) X-cut qubit
Double smooth defect (Double) Z-cut qubit

Measurement Xabcd

Measurement Zabcd

(12) The j th Z (X) stabilizer operator Ẑsj (X̂sj) is a product
Ẑsj = Ẑj,aẐj,bẐj,cẐj,d of its four neighboring a, b, c, and d

physical qubit Ẑ operators (analogously for X̂). Each cycle
of the surface code yields a measurement of these operators,
yielding the measurement outcome Zsj (Xsj).

We have chosen to modify the names we apply to many of
the functional elements in the surface code, using terms we
believe are more suggestive of each element’s function. We
have compiled these name changes as shown in Table V.

APPENDIX B: Ẑ AND X̂ STABILIZER CIRCUITS

In this Appendix, we explicitly work through the operation
of the surface code Ẑ and X̂ stabilizer circuits shown in
Figs. 1(b) and 1(c) of the main text, respectively. For simplicity,
we look at a system with just two data qubits, a and b,
stabilized by one measure-Z and one measure-X qubit; the
extension to the full four-qubit stabilization is straightforward.
The simplified layout and corresponding stabilizer circuits are
shown in Fig. 34, which now involve two CNOTs per measure
qubit instead of the four CNOTs in the full circuit.

The claim is that this circuit will stabilize the two data qubits
a and b in a simultaneous eigenstate of X̂aX̂b and ẐaẐb, that is,
precisely the Bell states listed in Table II in the main text, with
the measurement outcomes corresponding to the eigenvalues
listed in that table. We show how this occurs, using an arbitrary
entangled state of the two data qubits as an input to the circuits
in Fig. 34. Note the circuit will entangle all the qubits together
during the CNOT operations; we write the quantum states in
the form |ψXψaψbψZ〉; that is the first element is the state
of the measure-X qubit, the second and third those of data
qubits a and b, respectively, and the fourth element that of
the measure-Z qubit (this order makes the CNOTs easier to
compute, with the measure-X controlling data qubits a and b,
and the data qubits controlling the measure-Z qubit).

The state after executing the N th step of the circuit is |ψN 〉.
We work through each numbered step in Fig. 34.

H H(b)

(a)

+-

+-

g

1

g

5 62 3 4

I I

a
b

a

b Z

ZX
X

Z

X

Z

X

7 8

aX̂ bX̂ aẐ bẐ

FIG. 34. (Color online) (a) Two data qubits a and b are stabilized
by one measure-Z and one measure-X qubit, connected as shown. (b)
Quantum circuit for the two measure qubits operating on the two data
qubits. The CNOT order is critical: First, the measure-X qubit acts as
the control of the CNOT on data qubits a followed by that on b; the two
CNOTs are preceded and followed by a Hadamard Ĥ . The measure-Z
qubit is then the target of a CNOT with a as the control, followed
by that with b as a control. The two identity Î operators for the
measure-Z process, which are performed by simply waiting, ensure
that the timing on the measure-Z qubit matches that of the measure-X
qubit. The measurement operators that correspond to steps 3 through
6 of the control sequence, followed by the projective measurement at
the end of the circuit, are indicated below the relevant CNOTs, with
the measure-X qubit stabilizing the product X̂aX̂b and the measure-Z
qubit stabilizing ẐaẐb.

Step 1. The measure-X and measure-Z qubits are reset to
their ground states. The data qubits can be entangled in a
general two-qubit state; using the notation |ψaψb〉 where ψa

represents the state of qubit a and ψb that of qubit b, we can
write the data qubit state in the form

|ψab〉 = A|gg〉 + B|ge〉 + C|eg〉 + D|ee〉, (B1)

where the coefficients A, B, C, and D are complex, and we
ignore normalization throughout. The state of the full circuit
is now

|ψ1〉 = |g〉 ⊗ (A|gg〉 + B|ge〉 + C|eg〉 + D|ee〉) ⊗ |g〉
= A|gggg〉 + B|ggeg〉 + C|gegg〉 + D|geeg〉. (B2)

Step 2. The identity Î leaves the state of the measure-Z qubit
unchanged. The measure-X qubit undergoes a Hadamard,
which takes |g〉 → |+〉 = |g〉 + |e〉 and |e〉 → |−〉 = |g〉 −
|e〉 (again, ignoring normalization). The state of the full circuit
is now

|ψ2〉 = A|gggg〉 + A|eggg〉 + B|ggeg〉 + B|egeg〉
+C|gegg〉 + C|eegg〉 + D|geeg〉 + D|eeeg〉. (B3)

Step 3. The first CNOT transforms the states of a control
and target qubit |c t〉 according to |gg〉 → |gg〉, |ge〉 → |ge〉,
|eg〉 → |ee〉, and |ee〉 → |eg〉. By applying the CNOT between
the control measure-X qubit and the target data qubit a, the
first to second element, we obtain

|ψ3〉 = A|gggg〉 + A|eegg〉 + B|ggeg〉 + B|eeeg〉
+C|gegg〉 + C|eggg〉 + D|geeg〉 + D|egeg〉. (B4)

032324-37

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

Step 4. The second CNOT applies the control (the measure-X
qubit) to the target (data qubit b), the first to third element,
yielding

|ψ4〉 = A|gggg〉 + A|eeeg〉 + B|ggeg〉 + B|eegg〉
+C|gegg〉 + C|egeg〉 + D|geeg〉 + D|eggg〉.

(B5)

Step 5. The third CNOT applies the control (data qubit a) to
the target (the measure-Z qubit), the second to fourth elements,

|ψ5〉 = A|gggg〉 + A|eeee〉 + B|ggeg〉 + B|eege〉
+C|gege〉 + C|egeg〉 + D|geee〉 + D|eggg〉.

(B6)

Step 6. The fourth and last CNOT applies the control (data
qubit b) to the target (the measure-Z qubit), the third to fourth
elements,

|ψ6〉 = A|gggg〉 + A|eeeg〉 + B|ggee〉 + B|eege〉
+C|gege〉 + C|egee〉 + D|geeg〉 + D|eggg〉.

(B7)

Step 7. The measure-X qubit undergoes its second
Hadamard, giving

|ψ7〉 = A|+ggg〉 + A|−eeg〉 + B|+gee〉 + B|−ege〉
+C|+ege〉 + C|−gee〉 + D|+eeg〉 + D|−ggg〉

= (A + D)|g〉 ⊗ (|gg〉 + |ee〉) ⊗ |g〉
+ (A − D)|e〉 ⊗ (|gg〉 − |ee〉) ⊗ |g〉
+ (B + C)|g〉 ⊗ (|ge〉 + |eg〉) ⊗ |e〉
+ (B − C)|e〉 ⊗ (|ge〉 − |eg〉) ⊗ |e〉. (B8)

Step 8. The terminal Ẑ measurements are performed on
both the measure-Z and measure-X qubits. Each qubit has
two possible outcomes, +1 for the |g〉 state and −1 for the
|e〉 state. The four possible outcomes and the corresponding
projection to the final state of the data qubits are

{MX,MZ} = {+1,+1}; |ψab〉 = |gg〉 + |ee〉,
{−1,+1}; |gg〉 − |ee〉,
{+1,−1}; |ge〉 + |eg〉,
{−1,−1}; |ge〉 − |eg〉. (B9)

The probabilities to project to each of these states is given
by the modulus-squared of each corresponding amplitude in
Eq. (B8).

Note that the measurement outcomes, and the correspond-
ing states of the two data qubits, are precisely those appearing
in Table II for the Bell states. Hence, given an arbitrary input
state, at the end of the circuit we project the two data qubits
onto one of the four eigenstates of ẐaẐb and X̂aX̂b.

If we take one of the output states in Eq. (B9) and use
it as an input to the stabilizer circuit, one can easily check
that the output will precisely reproduce the input, with the
same measurement outcomes. For example, if we have the
measurement outcome {MX,MZ} = {−1,−1}, the data qubits
end up in the state |ge〉 − |eg〉. This is the input state in Eq. (B1)
with the coefficients A = D = 0 and B = −C = 1. Looking
at Eq. (B8), the amplitude coefficients for A + D, A − D, and

B + C will all be zero, implying the output state will always
project to the input state |ge〉 − |eg〉. Hence, as promised, the
stabilizer circuit returns the same measurement outcomes and
the same data qubit state.

An alternative, and much more compact, way to see this
result is to realize that we can perform the same calculation
using stabilizers to identify the qubit states rather than using
state notation itself (this assumes one has read the discussion
of the Heisenberg representation of the CNOT transformation in
Sec. XIV C.) We write the stabilizers in the form Q̂X ⊗ Q̂a ⊗
Q̂b ⊗ Q̂Z = Q̂XQ̂aQ̂bQ̂Z with subscripts corresponding to
the qubit labeling in Fig. 34, and Q̂j represents either X̂j

or Ẑj on the j th qubit. The initial state of the system, after
initialization of the X and Z qubits, is given by the two stabi-
lizers X̂XÎaÎbÎZ and ÎXÎa ÎbẐZ; this means that the system is in
an eigenstate of these two operator products, and we actually
know what the eigenvalue is for each stabilizer (+1 for each, as
the X qubit is initialized in |+〉 and the Z qubit is initialized in
|g〉). Now, the first CNOT, between X and a, transforms the first
stabilizer to X̂XX̂aÎbÎZ , using the Heisenberg transformation
rule for the CNOT (X̂X ⊗ Îa → X̂X ⊗ X̂a). It does nothing to
the second stabilizer, as ÎX ⊗ Îa is trivially unchanged. The
second CNOT, between X and b, takes the first stabilizer to
X̂XX̂aX̂bÎZ , using the same rule, and again does nothing to
the second stabilizer. The third CNOT, between a and Z, takes
the first stabilizer to X̂XX̂aX̂bX̂Z and the second stabilizer
to ÎXẐaÎbẐZ , using the CNOT transformation Îa ⊗ ẐZ →
Ẑa ⊗ ẐZ . Finally, the fourth CNOT between b and Z, takes the
first stabilizer to X̂XX̂aX̂bÎZ , using X̂b ⊗ X̂Z → X̂b ⊗ ÎZ , and
the second stabilizer to ÎXẐaẐbẐZ . Note that the stabilizers
commute as they each have operators on the two qubits a

and b. Now, the X̂ measurement of the X qubit at the end
gives us the product X̂aX̂b, and does not interfere with the
second stabilizer, as X̂X commutes with that stabilizer. The Ẑ

measurement of Z likewise commutes with the first stabilizer
and gives us the product ẐaẐb. These two measurements thus
completely identify the states of these two qubits.

We note that the sequence of CNOT operations in Fig. 34
is critical for properly producing the measurement stabilizers
X̂aX̂b and ẐaẐb. If instead of using the sequence as given
in Figs. 1(b) and 1(c) (top, left, right, bottom) the clockwise
sequence is used (top, right, bottom, left), then one can work
out the sequence of stabilizer transformations as was done in
the preceding paragraph. The result is the pair of stabilizers
X̂XX̂aX̂bX̂Z and ẐXẐaẐbẐZ . These two stabilizers no longer
commute with the single-qubit measurements of X̂X and
ẐZ , so the final measurements will just give random results.
Likewise, the sequence of CNOTs given in Figs. 1(b) and 1(c)
produces the correct stabilizers for data-qubit pairs on both the
up and the down diagonals.

APPENDIX C: X-CUT QUBIT INITIALIZATION
IN A Ẑ EIGENSTATE

In this Appendix we give the detailed steps for the difficult
initialization of an X-cut qubit in the |gL〉 state, as illustrated
in Fig. 14.

(1) We start with a nominally infinite lattice with no qubit
cuts [Fig. 14(a)].

032324-38

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

(2) A column of four measure-X qubits is turned off,
opening a rectangular cut, and the six measure-Z qubits
adjacent to the cut are switched to three-terminal stabilizer
measurements. In order to maintain error tracking, we perform
a Ẑ measurement on the three data qubits 1, 2, and 3 inside the
cut [Fig. 14(b)]; this could be done by direct measurement
of the data qubits, if the hardware implementation allows
this, or by measuring with the idle measure-X qubits in
the cut. The combination of the three-terminal measure-
Z stabilizers and these three single-qubit Ẑ measurements
maintains error detection, as each three-terminal measure-Z
result can be multiplied with the corresponding single data
qubit Ẑ measurement to compare to the prior four-terminal Ẑ

stabilizer measurements.
(3) The data qubits inside the cut are reset to |g〉

[Fig. 14(c)]. This operation will result in the logical qubit
being initialized to |gL〉.

(4) The two measure-X qubits in the middle of the cut are
turned back on, and all the measure-Z qubits are switched back
to four-terminal measurements. The measure-Z outcomes can
be compared with the previous cycle three-terminal measure-Z
outcomes to maintain error detection, accounting, of course,
for the fact that the internal data qubits were set to |g〉. As
the internal data qubits were in |g〉 prior to the measure-X
qubits being turned on, the two measure-X qubits will return
random outcomes; however, the projective measurement of
the measure-X qubits keeps the data qubits in an eigenstate of
ẐL = Ẑ1Ẑ2Ẑ3, as ẐL commutes with all the stabilizers in the
array. The ground-state initialization of the three data qubits
thus ensures that the X-cut qubit is left in the |gL〉 eigenstate
of ẐL.

The third step can be omitted if the measurements in step 2
are nondestructive and leave the data qubits in the measured
eigenstates. In this case, the eigenvalue and corresponding
eigenstate of ẐL will equal the product of the Ẑ measurements
for these qubits; if a different initial state is desired, an X̂L bit
flip can be performed in software.

APPENDIX D: MEASURING AN X-CUT QUBIT
IN THE ẐL BASIS

Here we give the procedure for the difficult measurement
of an X-cut qubit in the ẐL basis, using Fig. 15 in the main
text.

(1) We start with the logical X-cut qubit in some state
[Fig. 15(a)].

(2) We turn off the two measure-X qubits between the two
cuts and also switch the neighboring measure-Z qubits from
four-terminal to three-terminal measurements. We measure
the three data qubits inside the rectangular cut in the Ẑ basis
[Fig. 15(b)]; the product of these measurements is the value
of ẐL. By combining the three-terminal measure-Z outcomes
with the single data qubit Ẑ measurements, we can maintain
the surface code error tracking.

(3) We reset the three data qubits to their ground states |g〉.
This step is not strictly necessary if the Ẑ measurement in the
prior step has a high fidelity for projecting to the Ẑ eigenstates.

(4) We “destroy” the logical qubit by resuming full four-
terminal Ẑ stabilization and turning all the measure-X qubits
back on, leaving us with the original 2D array [Fig. 15(d)].

Because the data qubits were set to |g〉, the measure-X qubits
will report random outcomes on this step.

Note that the measurement MZ of the individual qubits in
step 2 projects the data qubits onto a product eigenstate of
Ẑa , Ẑb, and Ẑc of the three individual qubits, which was not
the state prior to this measurement; however, as ẐL commutes
with the individual Ẑj data qubit operators, this projection
commutes with ẐL, so the product of the individual measure-
ment outcomes ZaZbZc is equal to the eigenvalue ZL of ẐL.

APPENDIX E: MAKING A LARGER QUBIT

Here we describe how to make a distance d = 8 logical
qubit, twice the distance of the logical qubits we have been
discussing, in which only one stabilizer was turned off per
qubit hole. Figure 16, which accompanies this description,
can be found in the main text.

We first define the the logical operator ẐL as the chain

ẐL = Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5Ẑ6Ẑ7Ẑ8. (E1)

This is shown outlined in red (gray) in Fig. 16; the analogous
X̂L chain, which links the two larger-distance qubits, is not
shown.

(1) In one surface code cycle, we stop measuring the four Ẑ

stabilizers Ẑs1, Ẑs2, Ẑs3, and Ẑs4 inside the ẐL loop. Note we
are using a shorthand notation for the stabilizers, where Ẑs1

represents the four-element stabilizer Ẑs1 = Ẑ1aẐ1bẐ1cẐ1d ;
Ẑ1a is the first Ẑ physical qubit operator in the Ẑ stabilizer
loop, etc. The ẐL operator is the product of these four Ẑ

stabilizers, ẐL = Ẑs1Ẑs2Ẑs3Ẑs4, so the initial qubit logical
state will be either |gL〉 or |eL〉, as determined by the product
of the stable outcomes Zs1Zs2Zs3Zs4 = ±1.

(2) In the same surface code cycle, we turn off the one
X̂ stabilizer X̂s1 inside the ẐL loop, and we also turn the
X̂ stabilizers bordering the qubit hole from four-terminal to
three-terminal measurements. We perform X̂ measurements of
the four internal data qubits, projecting them onto a product of
X̂ eigenstates. This can be done either by direct measurements
of these data qubits, if the hardware allows this, or by using
the now-idle measure-Z qubits to perform the measurement.
This measurement allows us to continue to track errors, by
combining these measurements with the three-terminal X̂

stabilizer measurements bordering the hole.

APPENDIX F: ONE-CELL QUBIT MOVE

This appendix describes the details in moving a Z-cut
logical qubit by one cell in the surface code array. The figure
that relates to this process, Fig. 17, is in the main text. The
move involves the following four steps.

(1) We extend the logical operator ẐL by multiplying it by
the set of single-qubit Ẑ operators Ẑ6Ẑ7Ẑ8Ẑ9 that comprise
the Ẑ stabilizer just below the lower Z-cut hole, as shown in
Fig. 17(a):

Ẑe
L ≡ (Ẑ6Ẑ7Ẑ8Ẑ9)ẐL = Ẑ3Ẑ4Ẑ5Ẑ7Ẑ8Ẑ9. (F1)

Ẑe
L now encircles two cells, as illustrated in Fig. 17(b). The

result of operating with Ẑe
L on a quiescent state |ψ〉 is the same

as ẐL, other than a possible sign change from the stabilizer
outcome Z6789 = ±1.

032324-39

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

(2) We turn off the Ẑ stabilizer Ẑ6Ẑ7Ẑ8Ẑ9. We also
switch the two X̂ stabilizers that neighbor data qubit 6 from
four-terminal to three-terminal measurements, so that they
no longer measure data qubit 6. This data qubit is now not
stabilized by any measurements; we therefore perform an X̂

measurement of data qubit 6, projecting it to |+〉 or |−〉 with
the eigenvalue outcome X6 = ±1. This measurement is either
performed directly on the data qubit, if allowed by the physical
implementation, or by the idle measure-Z qubit just below
data qubit 6 [see Fig. 17(a)]. The product of this measurement
outcome with the adjacent three-terminal X̂ stabilizer mea-
surements is compared with the prior four-terminal X̂ stabilizer
measurements to maintain error detection.We extend X̂L to X̂′

L

by multiplying it by X̂6:

X̂′
L = X̂6X̂L = X̂1X̂2X̂3X̂6. (F2)

(3) As the distance d here is only three, we do not need
to wait to stabilize the result. If we perform this process with
a larger distance logical qubit, we would at this point have to
wait d/4 (rounded up) surface code cycles to ensure no chain
can wrap around a qubit hole.

(4) We turn on the Ẑ stabilizer Ẑ3Ẑ4Ẑ5Ẑ6. We also switch
the two X̂ stabilizers that neighbor data qubit 6 back to
four-terminal measurements, so data qubit 6 is now fully
stabilized. A single measurement of each of these stabilizers is
not sufficient to protect against errors, so we wait a minimum
of d cycles to properly establish their values.We define the new
logical operator Ẑ′

L as the product of Ẑe
L and the Ẑ stabilizer

we just turned on, Ẑ3Ẑ4Ẑ5Ẑ6:

Ẑ′
L = (Ẑ3Ẑ4Ẑ5Ẑ6)Ẑe

L = Ẑ6Ẑ7Ẑ8Ẑ9. (F3)

Clearly, Ẑ′
L is the loop shown in Fig. 17(c), and X̂′

L is the
extended chain shown in the same figure.

1. By-product operators

One problem that is created in the move transformation is
that the extension of X̂L through multiplication by X̂6 can
yield an extended X̂′

L that differs in sign from X̂L; this will
occur if the measurement outcome X6 = −1. Similarly, the
final Ẑ′

L can differ in sign from ẐL by the product of the two Ẑ

stabilizer measurement outcomes involved in the move, Z6789

and Z3456. In order to prevent these unwanted sign changes
from occurring, we could multiply X̂′

L by X6 and Ẑ′
L by

Z6789Z3456, which would correct for any sign changes (note
these multipliers would be stable measurement outcomes, not
the operators). However, a more efficient way to account for
this is to instead modify the quiescent state |ψ〉 by using logical
bit and phase flips. It is convenient to define two parameters
pX and pZ , using

(−1)pX ≡ X6, (F4)

and

(−1)pZ ≡ Z3456Z6789. (F5)

With these definitions, pX = 0 (1) if the stable X6 mea-
surement is +1 (−1), that is, if X̂′

L does (does not) have
the same sign as X̂L. Similarly, pZ = 0 (1) if the product
Z3456Z6789 = +1 (−1), that is, if Ẑ′

L does (does not) have the
same sign as ẐL.

Prior to performing any of the steps in the logical qubit
move, the quiescent state is |ψ〉, which we write as |ψpre〉. The
various operations and measurements in the move transform
this to the postmove state, which in the ideal case would be
|ψ ′〉. Due to sign changes in the X̂L and ẐL operators during
the move, the transformation instead gives

|ψ〉 → X̂
′pZ

L Ẑ
′pX

L |ψ ′〉. (F6)

These additional operators are called “by-product” operators.
The expression Eq. (F6) looks complicated but is, in fact, quite
simple: If pX = 0 (1), then X̂′

L has the same (opposite) sign
as X̂L, so Ẑ′

L does not (does) appear in Eq. (F6). Similarly, if
pZ = 0 (1), then Ẑ′

L has the same (opposite) sign as ẐL, and
X̂′

L does not (does) appear. The way the by-product operators
account for the sign change is through the anticommutation
of X̂L and ẐL, as can be seen by operating with X̂L on the
by-product adjusted |ψ ′〉:

X̂′
L

(
X̂

′pZ

L Ẑ
′pX

L |ψ ′〉) = (−1)pXX̂
′pZ

L Ẑ
′pX

L X̂′
L|ψ ′〉. (F7)

If X̂′
L has the same (opposite) sign as X̂L, then pX = 0 (1)

and the sign change is canceled by the factor +1 (−1). Simi-
larly, the presence of the by-product operator X̂

′pZ

L will
guarantee that Ẑ′

L has the same sign when operating on
X̂

′pZ

L Ẑ
′pX

L |ψ ′〉, through their anticommutation.
The by-product operators are just X̂L and ẐL, the bit-

and phase-flip logical operators, and are handled by the
software control system, by changing the signs of any logical
measurements of that qubit in the appropriate fashion: If pX =
0 (1), then a ẐL measurement will not have (will have) its sign
reversed, and similarly for pZ . The by-product operators are
never actually applied to the logical qubits directly.

A more complete description and formal theory for the
by-product (by-product) operators can be found in Ref. [62].

APPENDIX G: MULTICELL MOVES

A multicell qubit shift is performed using the following
steps (Fig. 18 is in the main text).

(1) We extend ẐL to Ẑe
L by defining Ẑe

L as

Ẑe
L = (Ẑs2Ẑs3, . . . ,Ẑsn)ẐL. (G1)

Here Ẑsj is the j th Ẑ stabilizer, that is, Ẑsj = ẐjaẐjbẐjcẐjd ,
the product of the four neighboring data qubit Ẑ operators.
By writing out each Ẑsj in terms of its Ẑ operators, one can
easily convince oneself that Ẑe

L is the chain of Ẑ operators
that forms the extended loop in Fig. 18(b). Note that Ẑe

L can
differ in sign from ẐL, depending on the value of the product
of the premove stabilizer values Zi

s2Z
i
s3, . . . ,Z

i
s,n = ±1; the

by-product operators will be corrected as described above.
(2) We turn off the Ẑ stabilizers Ẑsj now enclosed by Ẑe

L,
and also turn all the four-terminal X̂ stabilizers that border Ẑe

L

to three-terminal stabilizers, leaving all the internal data qubits
disconnected from the surface. In the same surface code cycle,
we measure all the disconnected data qubits along X̂, either
directly or using the now-idle neighboring measure-Z qubits
to perform this measurement. This yields the measurement
outcomes X1, X2, . . . ,Xn−1, each equal to ±1, which when
multiplied by the appropriate three-terminal X̂ stabilizers can

032324-40

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

be compared to the prior values of the corresponding four-
terminal X̂ stabilizers.We define the new X̂′

L operator as

X̂′
L = (X̂1, . . . ,X̂n−1)X̂L. (G2)

One can easily see that X̂′
L is the chain of X̂ operators shown in

Fig. 18(c). Any sign change from the product of measurement
outcomes X1, . . . ,Xn−1 = ±1 will be accounted for with a
by-product operator, and corrected for in any subsequent
measurement.

(3) We define the new logical operator Ẑ′
L by

Ẑ′
L = (Ẑs1Ẑs2, . . . ,Ẑs,n−1)Ẑe

L

= (Ẑs1, . . . ,Ẑs,n−1)(Ẑs2, . . . ,Ẑs,n)ẐL

= Ẑs1Ẑs,nẐL = Ẑs,n. (G3)

One can easily convince oneself that Ẑ′
L is just the loop

of physical Ẑ operators surrounding the lower Z-cut hole
shown in Fig. 18(c), which is algebraically the same as the
nth stabilizer Ẑs,n.We turn on the Ẑ stabilizers Ẑs1, . . .,
Ẑs,n−1 and wait at least d surface code cycles to establish the
values of these stabilizers. The product of the stable postmove
values, Z

f

s1Z
f

s2, . . . ,Z
f

s,n−1 = ±1, will be used to determine
the by-product operators.

(4) We correct the logical wave function for any by-product
operators. We define the by-product powers in the same way
as for the one-cell move,

(−1)pX = X1X2, . . . ,Xn, (G4)

and

(−1)pZ = (
Z

f

s1Z
f

s2, . . . ,Z
f

s,n−1

)(
Zi

s2Z
i
s3, . . . ,Z

i
s,n

)
. (G5)

Using these, we multiply the (ideal) postmove state |ψ ′〉 by
by-product operators to obtain the sign-corrected postmove
logical state:

Ẑ
′pX

L X̂
′pZ

L |ψ ′〉. (G6)

APPENDIX H: SINGLE-QUBIT BRAID TRANSFORMATION

This Appendix gives a more detailed explanation of the
sign changes involved in the braid transformation of a single
qubit. In Figs. 19(a) through 19(f) [Figs. 20(a) through 20(e)],
shown in the main text, we show how the X̂L (ẐL) operator is
transformed by the two moves in the braid. After the extension
for the first move is closed up in Fig. 19(c), X̂L is extended
to X̂′

L by multiplying X̂L by all the data qubits isolated in the
first move:

X̂L → X̂′
L = (X̂1, . . . ,X̂8)X̂L. (H1)

The second move extends X̂′
L to X̂′′

L [Fig. 19(e)], again by
multiplying X̂′

L by all the data qubits isolated in the second
move:

X̂′
L → X̂′′

L = (X̂9, . . . ˆ,X12)X̂′
L. (H2)

These transformations may involve a sign change from X̂L

to X̂′′
L, as with the one-cell and multicell moves, depending

on the stable measurement outcomes of the data qubits used
in the extension of X̂L, which were all measured along X̂.
The sign change is captured by the power pX, (−1)pX =

(Xe
1, . . . ,X

e
8)(Xe

9, . . . ,X
e
12), with each parenthetical set the

product of measurement outcomes from one of the two moves.
The power pX is equal to 0(1) if X̂′′

L has the same (different)
sign from X̂L. Now, the loop of physical qubit operators
encloses only fully stabilized cells, as shown in Fig. 19(e),
and the surface code ensures that the wave function |ψ〉 is an
eigenstate of this loop of operators. Hence, the measurement
product giving pX has to be equal to the product of all the X̂

stabilizers enclosed by the loop:

(−1)pX = (
Xe

1, . . . ,X
e
8

)(
Xe

9, . . . ,X
e
12

)
= X

f

s1X
f

s2, . . . ,X
f

s9, (H3)

the product of the stable measure-X stabilizers X
f

s,j = ±1
enclosed by the loop. A way to see this is to write out each
of the stabilizers X̂s1 through X̂s9 in terms of their four data
qubit X̂j operators and then multiply these all together to get
the product X̂s1X̂s2, . . . ,X̂s9. All the data qubits shared by any
two stabilizers appear twice in this product, and thus cancel as
X̂2

j = Î , leaving only the data qubits on the periphery of this
set of stabilizers. The product (Xe

1, . . . ,X
e
8)(Xe

9, . . . ,X
e
12) that

determines pX is precisely the measurement outcome of these
peripheral data qubits.

The ẐL loop operator is similarly transformed by the braid
to Ẑ′′

L, using two sets of expansions followed by contractions,
and any sign change is determined by the Ẑ stabilizers that
are enclosed in the two expansions. The sign change is equal
to (−1)pZ , where pZ is equal to 0 (1) if Ẑ′′

L has the same
(opposite) sign as ẐL. In terms of all the stabilizer values in
the move, we have

(−1)pZ = (
Z

f

s9, . . . ,Z
f

s12

)(
Zi

s10, . . . ,Z
i
s13

)
× (

Z
f

s1, . . . ,Z
f

s8

)(
Zi

s2, . . . ,Z
i
s9

)
. (H4)

The braid transforms the 2D array wave function |ψ〉 in the
two move operations, ending up after the second move with the
wave function |ψ ′′〉. Any sign changes indicated by the powers
pX and pZ are accounted for by modifying the postbraid state
|ψ ′′〉 using by-product operators that are tracked, and corrected
for, in the control software:

Ẑ
′′pX

L X̂
′′pZ

L |ψ ′′〉. (H5)

The notation reminds us that |ψ ′′〉 is the ideal result, with
no sign changes, but that because of move-induced sign
changes, we need to keep track of these sign changes with the
additional by-product operators appearing in Eq. (H5). Hence,
we see that other than sign changes and by-product operators,
determined by projective measurements during the move and
thus accountable in software, the braid transformation around a
fully stabilized part of the array leaves the two logical operators
of the Z-cut qubit unchanged.

APPENDIX I: TWO-QUBIT BRAID TRANSFORMATION

Here we work through braiding a Z-cut qubit hole through
an X-cut qubit, as shown in Figs. 21–23 (main text). We want to
show that the braid between these two qubit types is equivalent
to a logical CNOT, with the Z-cut qubit as the control and the
X-cut qubit the target. The same result holds when braiding
an X-cut qubit through a Z-cut, with the X-cut qubit still the

032324-41

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

target of the CNOT with the Z-cut as the control, but braiding
two Z-cut qubits or two X-cut qubits requires other logic
circuitry, as discussed in Sec. XIV D.

As we discuss in the main text, it turns out we only need
to show that the braid transforms a total of 4 of the 16 two-
qubit operator combinations correctly in order to prove a braid
is a CNOT: X̂L ⊗ ÎL, ÎL ⊗ X̂L, ẐL ⊗ ÎL, and ÎL ⊗ ẐL. We
consider each of these in turn, in addition to working out the
transformation of X̂L ⊗ X̂L, providing an example of how two
sequential braids are equivalent to an identity operation.

X̂L ⊗ ÎL → X̂L ⊗ X̂L. We first consider the effect of the
braid on the two-qubit operator X̂L ⊗ ÎL = X̂L1ÎL2, as shown
in Fig. 21. The X̂L1 bit flip is directed at the first, Z-cut qubit,
and ÎL2 is directed at the second, X-cut qubit (the subscripts 1
and 2 indicate on which logical qubit the operator acts). In the
first move for the braid, we have

X̂L1ÎL2 → (X̂1, . . . ,X̂8X̂L1)ÎL2 = X̂′
L1ÎL2. (I1)

Note we are mixing logical and physical qubit operators, but as
the logical operators are constructed from products of physical
qubit operators, this is formally acceptable.

In the second move, we have

X̂′
L1ÎL2 → (X̂9, . . . ,X̂12X̂

′
L1)ÎL2 = X̂′′

L1ÎL2. (I2)

As shown in Fig. 21(e), the combination of the two moves of
X̂L1 generates an operator X̂′′

L2 that comprises the original X̂L1

chain along with a closed loop of data qubit operators, with
the loop enclosing the upper hole of the X cut qubit 2, as well
as a number of fully stabilized cells. We can rewrite this as

X̂′′
L1ÎL2 = X̂loopX̂

′′′
L1ÎL2

= (X̂s1, . . . ,X̂s4X̂L2X̂s6, . . . ,X̂s9)X̂′′′
L1

→ X̂′′′
L1X̂L2. (I3)

To obtain this result, we have deformed the closed loop X̂loop

from the transformed X̂′
L1 through each of the enclosed X̂

stabilizers X̂sj , including a loop of physical X̂ bit flips that
wrap tightly around the upper hole of X-cut qubit 2, which
is precisely an X̂L2 bit flip. The X̂ stabilizers resolve to
measurement eigenvalues ±1, leaving the outer product of
logical operators X̂L2X̂

′′′
L1 = X̂′′′

L1X̂L2, as in the last line of
Eq. (I3).

There are a number of sign changes that can occur,
depending on the stabilizer outcomes. We again use powers
pX and pZ to capture these sign changes. The braid of
the first logical qubit generates a sign change (−1)pX1 ≡
(Xe

1, . . . ,X
e
8)(Xe

9, . . . ,X
e
12) = ±1, equal to the product of the

stable single data qubit measurements in the two moves. This
is the same sign change as for an empty-loop braid.

The braid also generates sign changes on the second qubit,
as in the braid we have transformed the identity operator on
that qubit to an X̂L2 logical operator. The sign change is very
similar to that for the first qubit, where we define a power
pX2 given by (−1)pX2 ≡ X

f

s1, . . . ,X
f

s4X
f

s6, . . . ,X
f

s9 = ±1, the
product of the X̂ stabilizers involved in deforming the loop
X̂loop surrounding the second qubit’s upper hole to the loop
that is the X̂L2 operator.

To account for the sign changes from the two logical qubits,
we modify the postbraid wave function |ψ ′′〉 with two by-

product operators Ẑ
pX1
L1 and Ẑ

pX2
L2 , such that we end up with

Ẑ
pX1
L1 Ẑ

pX2
L2 |ψ ′′〉. (I4)

This is not yet the whole story, as we still need to determine
the by-product operators associated with any braid-induced
sign changes of the ẐL1 and ẐL2 operators; see Eq. (I8) for
the complete expression.

Ignoring any by-product operators, the braid therefore
generates the transformation

X̂L ⊗ ÎL → X̂L ⊗ X̂L. (I5)

X̂L ⊗ X̂L → X̂L ⊗ ÎL. Here we apply the braid transforma-
tion to the outer product of two X̂L operators on the two logical
qubits. This is thus a braid transformation of the result of
the braid we just discussed, X̂L ⊗ ÎL → X̂L ⊗ X̂L. A braid is
not a reversible process, as there are projective measurements
involved during the moves, but as we will see, the braid
transformation of X̂L ⊗ X̂L reverses the braid transformation
of X̂L ⊗ ÎL. The simple argument is the following: When we
start with X̂L ⊗ X̂L, the braid process “wraps” the X̂L chain
from the Z-cut qubit 1 around the loop representing X̂L for the
X-cut qubit 2, just as with X̂L ⊗ ÎL. We can again deform the
loop in Z-cut qubit 1’s transformed X̂L through the enclosed
X̂ stabilizers, so that it wraps tightly around the X-cut qubit 2,
giving us the equivalent of two X̂L bit flips on the X-cut qubit 2;
these, however, cancel out (X̂2

L = ÎL), leaving us with ÎL as the
resulting operation on qubit 2. Note there is no net modification
of the Z-cut qubit 1 X̂L operator during this process, other than
by-product operations on the wave function. Hence, we find
X̂L ⊗ X̂L → X̂L ⊗ ÎL under the braid transformation.

We write out the detailed process. For the first move, just
as with X̂L1 ⊗ ÎL2, we have

X̂L1X̂L2 → (X̂1, . . . ,X̂8X̂L1)X̂L2 = X̂′
L1X̂L2. (I6)

In the second move, we have

X̂′
L1X̂L2 → (X̂9, . . . ,X̂12X̂

′
L1)X̂L2

→ (X̂s1, . . . ,X̂s4X̂L2X̂s6, . . . ,X̂s9)X̂′′
L1X̂L2

→ X̂′′
L1X̂

′′
L2X̂L2 → X̂′′

L1ÎL2, (I7)

where we use the double primes on X̂′′
L2 to distinguish the

second X̂L2 logical operator on qubit 2 from the original X̂L2.
However, the product of these X̂L2 operators is the identity, as
in the last line of this equation.

In general, performing the same braid operation twice is
equivalent to an identity, other than the appearance of by-
product operators.

ÎL ⊗ X̂L → ÎL ⊗ X̂L. Consider now a braid involving ÎL1

directed at the Z-cut qubit 1, and X̂L2 directed at the X-cut
qubit 2; this is shown in Figs. 22(a) through 22(d). The X̂L2

operator is a loop of X̂ bit flips on the data qubits surrounding
the X-cut qubit’s upper hole. The braid has no effect on the
identity ÎL1, as the identity involves no operations, so dragging
the upper qubit hole around a closed loop does not leave a trail
of operators from the moving qubit that can interact with the
X-cut qubit 2, and vice versa. Hence, the braid leaves these
two operators unchanged, as in Fig. 22(d), and ÎL ⊗ X̂L →
ÎL ⊗ X̂L (other than by-product operators not shown here).

ÎL ⊗ ẐL → ẐL ⊗ ẐL. Consider now the braid involving
ÎL1 directed at the Z-cut qubit 1, and ẐL2 directed at the

032324-42

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

X-cut qubit 2; this is shown in Fig. 23(a). This is completely
analogous to X̂L ⊗ ÎL but with the roles of the Z- and X-cut
qubits exchanged. We deform the X-cut qubit 2 ẐL2 operator
so that it has the form shown in Fig. 23(b). The qubit 1 hole is
moved through this path until it returns to its original location,
shown in Fig. 23(c). We can then multiply the ẐL2 operator by
all the Ẑ stabilizers shown in the dashed boxes in Fig. 23(d),
Ẑs1,Ẑs2, . . . ,Ẑs7, whose stable measurement outcomes are all
known, using the identity ẐL2 = ẐL1Ẑs1, . . . ,Ẑs7Ẑ

′
L2, where

ẐL1 is the loop of Ẑ data qubit operators surrounding the lower
qubit 1 hole, thus corresponding to ẐL on that qubit, and Ẑ′

L2

is the original ẐL2 chain, as shown in Fig. 23(d). We have thus
generated a ẐL1 phase-flip operation on Z-cut qubit 1. Other
than possible by-product operators, the ẐL2 operation on the
X-cut qubit 2 is not modified by the braid. Hence, we see
that ÎL ⊗ ẐL transforms to ẐL ⊗ ẐL. Performing this braid a
second time, that is, starting now with ẐL ⊗ ẐL, will generate
a second ẐL1 operation on the Z-cut qubit 1, so this will
transform back to the original pair of operators, that is, to (ẐL ·
ẐL) ⊗ ẐL = ÎL ⊗ ẐL, in a manner completely analogous to
X̂L ⊗ X̂L → X̂L ⊗ ÎL.

ẐL ⊗ ÎL → ẐL ⊗ ÎL. Finally, consider the braid transfor-
mation involving a ẐL1 operation on the Z-cut qubit 1, and
ÎL2 directed at the X-cut qubit 2. This situation is completely
analogous to ÎL ⊗ X̂L: ẐL1 is a loop of Ẑ phase flips of the
data qubits surrounding the Z-cut hole, and during the braid
the wave function acquires by-product operators. The loop,
however, does not enclose the X-cut qubit 2 in a way that
interacts with that qubit, so the braid does nothing to X-cut
qubit 2. Hence, we see that other than by-product operators,
ẐL ⊗ ÎL transforms to ẐL ⊗ ÎL.

1. By-product operators for two-qubit transformations

When discussing the X̂L ⊗ ÎL → X̂L ⊗ X̂L transforma-
tion, we gave expressions for the powers pX1 and pX2 that
determine whether there is a sign change associated with the
final X̂L1X̂L2 operators that must be corrected with phase flips
ẐL1 and ẐL2. Braid transformations that result in ẐL1 or ẐL2

operators must similarly be corrected for any unwanted sign
changes in these operators, as determined in the usual way by
the outcomes of the various stabilizer and single data qubit
measurements involved in the braid transformation: If there is
(is not) a sign change due to the braid transformation of the
ẐL1 operator, the power pZ1 = 1 (0), while if there is (is not)
a sign change due to the transformation of the ẐL2 operator,
the power pZ2 = 1 (0). In either case, the transformed state
wave function is modified by the by-product operators X̂

pZ1
L1

and X̂
pZ2
L2 to indicate these sign changes.

Combined with the by-product operators ẐL1 and ẐL2, the
final wave function |ψ ′′〉 following a braid is given by

(ẐL1)pX1 (X̂L1)pZ1 (ẐL2)pX2 (X̂L2)pZ2 |ψ ′′〉. (I8)

APPENDIX J: LOGICAL HADAMARD PROCESS

The process for performing a logical Hadamard on a single
logical qubit is detailed in Figs. 26–28. The detailed sequence
is as follows:

(1) We turn off a ring of X̂ stabilizers surrounding both Z-
cut holes of the logical qubit to be Hadamard-transformed, and
also reduce the Ẑ stabilizers on either side of the ring from four-
to three- and two-terminal measurements, effectively isolating
the target qubit in a patch of the 2D array. The unstabilized data
qubits in the gap between the two Z boundaries are measured
along Ẑ, maintaining the surface code error tracking. This is
shown in Fig. 27(a). By comparing this figure to Fig. 26, it is
apparent that the ring boundary comes very close to the logical
qubits outside the ring, and it may seem that the proximity of
these logical qubits reduces the array distance d to a small
value; however, the internal Z boundary of the moat does not
allow short undetectable error chains to reach the internal X

boundaries of the Z-cut logical qubits outside the ring, so
actually the distance d = 7 is preserved. If any qubits exterior
to the ring were X-cut qubits, however, these would have to
be kept a distance d from the ring. The same applies to the
Z-cut qubit inside the ring; it is also protected by the internal
Z boundary of the ring.

(2) We deform the ẐL loop by multiplying it by all the Ẑs
L

stabilizers shown outline in Fig. 27(b); this leaves us with the
ẐL chain of operators going from the left to the right boundary
of the isolated 2D patch, shown as the horizontal solid line in
Fig. 27(b).

(3) We turn off, or reduce in terminal number, all the X̂

and Ẑ stabilizers inside the ring, creating a “moat,” leaving
those within the dashed box in Fig. 27(c); this leaves us with
the smaller 2D patch shown in Fig. 27(d), eliminating both
qubit holes, with ẐL still crossing from left to right, and X̂L

now crossing from top to bottom. Note this 2D patch is now
just a larger (d = 7) version of the d = 5 array qubit we
discussed earlier (Fig. 3); the two X boundaries on top and
bottom and Z boundaries on left and right make this a logical
qubit with two degrees of freedom. The data qubits just beyond
the two internal X boundaries of the moat are measured in
X̂ to preserve error tracking with the adjacent three-terminal
X̂ stabilizers still active on the inside boundary of the
moat.

(4) We perform the key to this process, executing physical
Hadamards on all the data qubits in the patch. As this changes
the eigenbases from Ẑ to X̂ and vice versa, we change the
identity of the measure qubits from X̂ to Ẑ stabilization and
vice versa, as shown in Fig. 27(e). Also, the X̂L and ẐL logical
operators swap their identities. This step, and the two that
follow, are done in between two cycles of the surface code
(so the measure-X and measure-Z qubits do not perform any
stabilization on the isolated patch during these three steps).

(5) The X̂ and Ẑ stabilizers in the patch are now misaligned
with those in the larger 2D array. To correct this, we perform a
data qubit-measure qubit swap, between each patch data qubit
and the measure qubit directly above it.

(6) We perform a second swap, between each measure
qubit and the patch data qubit to its left, as shown in Fig. 27(f).
The data qubits now hold the Hadamard-transformed logical
state of the patch. The surface code cycle is restarted, with the
measure qubits continuing to measure in X and Z as before
the physical Hadamard, in alignment with the larger 2D array;
the two swaps ensure that the Hadamard-transformed state
in the 2D patch is consistent with this stabilization.

032324-43

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

(7) Most of the X̂ and Ẑ stabilizers isolating the 2D patch
from the 2D array are turned back on, reducing the width of
the moat to a ring one data qubit wide, separating the patch
from the 2D array, as we had in Fig. 27(a). This is done in a
way that creates two logical qubit holes in the patch, as shown
in Fig. 28(g), with the two qubit holes positioned so that the
X̂L operator chain terminates on the internal X boundaries of
the two qubit holes.

(8) The ẐL chain is deformed so it wraps tightly around
the right qubit Z-cut hole, as shown in Fig. 28(g). This is done
by multiplying ẐL by all the outlined Ẑ stabilizers.

(9) The left and right qubit holes are moved in the usual
way around the patch, as shown in Fig. 28(h) partway through
the move transformation, and in Fig. 28(i), after the open cells
have been restabilized, closing the move cut. The holes move
must be split into two steps to avoid reducing the distance d

of logical qubit. We wait d surface code cycles to establish all
stabilizer values in time.

(10) Each of the two Z-cut holes is moved one cell to return
each to its original start point, as shown in Fig. 28(j).

(11) The stabilizers isolating the patch from the 2D array
are all turned back on, reunifying the patch with the array
and completing the Hadamard transformation, after waiting
d surface code cycles to establish the stabilizer values in
time.

APPENDIX K: SHORT QUBITS

Here we outline how to create and inject a state into a short
X-cut qubit (the process for a short Z-cut qubit is completely
analogous, simply exchanging the roles of X and Z). Figure 31
is in the main text.

(1) We start with a completely stabilized section of the 2D
array, as in Fig. 31(a).

(2) We turn off the two X̂ stabilizers X̂1X̂2X̂3X̂5 and
X̂5X̂7X̂8X̂9, creating a pair of X-cut holes. These holes
are separated by just one data qubit, qubit 5; this is the
“short qubit.”.During the same surface code cycle, we perform
measurements of the two Ẑ stabilizers Ẑs1 = Ẑ2Ẑ4Ẑ5Ẑ7

and Ẑs2 = Ẑ3Ẑ5Ẑ6Ẑ7, and at the same time measure data
qubit 5 along X̂, yielding the eigenvalue X5. Note that X̂5

anticommutes with the two Ẑ stabilizers Ẑs1 and Ẑs2, so these
three measurements cannot result in a simultaneous eigenstate
of all three stabilizers. However, the operator formed by the
product Ẑs1Ẑs2 = Ẑ2Ẑ3Ẑ4Ẑ6Ẑ7Ẑ8 commutes with Ẑs1, Ẑs2

and with X̂5, so the simultaneous measurements will select
states that are eigenstates of Ẑs1Ẑs2 and X̂5. The measurement
outcome Zs1Zs2 will be equal to the product of Zs1 and Zs2

from the previous surface code cycle, with X5 = ±1.
(3) We have now created a short qubit that we can

manipulate. We prepare the qubit, presently in a known
eigenstate of X̂5, by applying the appropriate rotation about
the Z axis, using R̂Z(θ) [see Eq. (52)] to put the qubit in
|gL〉 + eiθ |eL〉; the specific rotation will depend on whether
the logical qubit was initialized in |+L〉 (X5 = +1) or |−L〉
(X5 = −1). If we are interested in injecting the |YL〉 state, the
angle θ = π/2, while for the |AL〉 state we would use θ = π/4.

(4) The surface code stabilization sequence is now
restarted, with the two X̂ stabilizers left idle. The two holes
of the qubit can now be separated and enlarged to better

’

S

(a)

MX
MX’

MZ’

Y

T†

(b)

MX
MX’

MZ’

A S

FIG. 35. (Color online) (a) The left panel shows original portion
of the |Ŷ 〉 distillation circuit, involving the Ŝ gate followed by
measurement MX , whereas the right panel shows the expanded Ŝ

circuit displaying the logical CNOT and measurements M ′
Z and M ′

X .
(b) Same as (a) but for a portion of the |A〉 distillation circuit,
involving the T̂ † gate. A conditional Ŝ gate is applied to the upper
qubit if M ′

Z = +1.

protect against errors. The state in the qubit can now be
purified in a distillation process, prior to its use in an ŜL or T̂L

gate.

APPENDIX L: ŜL AND T̂L DISTILLATION SUBCIRCUITS

In this Appendix, we look explicitly at some of the
operations used in the |YL〉 and |AL〉 distillation circuits,
focusing on the terminal ŜL and T̂

†
L gates, respectively,

followed the measurement MX, that is, the last two steps for
each ancilla qubit’s distillation in Figs. 32 and 33. The ŜL

gate as shown in Fig. 29 is deterministic, but to provide a
parallel discussion to the analysis of the |AL〉 distillation, we
instead use the circuit in Fig. 30, replacing the |AL〉 ancilla
state in that circuit with |YL〉. Using |YL〉, this circuit will
execute ŜL, although only about half the time, as using this
nondeterministic circuit the output states need to be corrected
the other half of the time, just as for the T̂L gate.

Figure 35 shows the corresponding subcircuits, along with
equivalent circuits that include the conditional measurements.
As all states and operations will be logical in this Appendix,
we drop the L subscript for compactness.

We first consider Fig. 35(a), which implements the Ŝ gate.
For the state going into the M ′

X measurement, the CNOT

followed by the M ′
Z measurement gives |ψ ′〉 = Ŝ|ψ〉 for

M ′
Z = +1 and |ψ ′〉 = X̂ẐŜ|ψ〉 for M ′

Z = −1.
The result of the subsequent M ′

X measurement is then given
by

M ′
X = MX[Ŝ|ψ〉] (for M ′

Z = +1), and

M ′
X = MX[X̂ẐŜ|ψ〉] (for M ′

Z = −1)

= MX[ẐŜ|ψ〉] = −MX[Ŝ|ψ〉], (L1)

using MX[X̂|ψ〉] = MX[|ψ〉] and MX[Ẑ|ψ〉] = −MX[|ψ〉].
Hence, when the circuit fails to generate Ŝ and instead
generates X̂ẐŜ, the final measurement acquires a minus sign.
This result is summarized in the |Y 〉 column of Table VI.
From these equations, it is easy to see that the net result for
the desired MX measurement is equal to the product of the two
submeasurements

MX[Ŝ|ψ〉] = M ′
XM ′

Z. (L2)

032324-44

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

TABLE VI. Table of measurement outcomes for the Ŝ operation
and M ′

Z and M ′
X measurement. For compactness, the state |ψ〉 has

been dropped from inside the M ′
X measurement brackets. The second

row shows the angle θ for the input state |g〉 + exp(iθ)|e〉 after
application of Ẑ, X̂, or Ŷ errors to the state |Y 〉.

Input |Y 〉 Ẑ|Y 〉 = |Y
〉 X̂|Y 〉 = i|Y
〉 Ŷ |Y 〉 = −i|Y 〉
θ π/2 −π/2 −π/2 π/2

M ′
Z = M ′

X[Ŝ] M ′
X[ẐŜ] M ′

X[ẐŜ] M ′
X[Ŝ]

+1 = −M ′
X[Ŝ] = −M ′

X[Ŝ]

M ′
Z = M ′

X[X̂ẐŜ] M ′
X[X̂Ŝ] M ′

X[X̂Ŝ] M ′
X[X̂ẐŜ]

−1 = −M ′
X[Ŝ] = +M ′

X[Ŝ] = +M ′
X[Ŝ] = −M ′

X[Ŝ]

As the goal of distillation is to reduce errors in |Y 〉, we next
consider the effect of errors on the input |Y 〉 ancilla state, and
how these affect the output measurement. These errors can be
modeled as probabilistic applications of X̂, Ŷ , or Ẑ to the |Y 〉
state, which give Ẑ|Y 〉 = |Y
〉 = |g〉 − i|e〉, X̂|Y 〉 = i|Y
〉,
and Ŷ |Y 〉 = −i|Y 〉, where ±i represents an overall phase
factor that can be dropped. With a general input state given by
|g〉 + exp(iθ)|e〉, the |Y 〉 (|Y
〉) state corresponds to θ = π/2
(θ = −π/2). When we have the erroneous input |Y
〉 state,
that is, θ = −π/2, the M ′

Z = +1 measurement outcome feeds
the state Ŝ†|ψ〉 = ẐŜ|ψ〉 to the measurement M ′

X, while
M ′

Z = −1 feeds the state X̂Ŝ|ψ〉 to the measurement. Table VI
lists the M ′

X measurement results for both M ′
Z outcomes and

all error types and shows that the measurement result MX is
reversed in sign for Ẑ and X̂ errors, signaling the error in the
distillation process. Although Ŷ errors are undetectable (the
overall phase factor cannot be measured), the distillation is not
affected since this error produces no significant change to the
input state Ŷ |Y 〉 = −i|Y 〉. All errors are thus described by X̂

or Ẑ operations and are successfully and directly detected by
the circuit.

For the T̂ † circuit in Fig. 35(b), the measurement outcome
M ′

Z = +1 indicates the circuit produced T̂ |ψ〉, which is
corrected by applying Ŝ, using the identity ŜT̂ = ẐT̂ †, the
desired result accompanied by a by-product ẐL operator. For
M ′

Z = −1, the circuit produces X̂T̂ †|ψ〉. The result of the M ′
X

measurement is thus

M ′
X = MX[ŜT̂ |ψ〉] (for M ′

Z = +1)

= MX[ẐT̂ †|ψ〉] = −MX[T̂ †|ψ〉], and

M ′
X = MX[X̂T̂ †|ψ〉](for M ′

Z = −1)

= MX[T̂ †|ψ〉]. (L3)

Hence, we find for the T̂ † circuit

MX[T̂ †|ψ〉] = −M ′
XM ′

Z. (L4)

For a general ancilla state |g〉 + eiθ |e〉, passing the input
state |ψ〉 = α|g〉 + β|e〉 to the T̂ † circuit generates two
outcomes depending on the M ′

Z measurement. For M ′
Z = +1,

Ŝ is applied and the result α|g〉 + βei(θ−π/2)|e〉 is passed to the
M ′

X measurement. For the M ′
Z = −1 outcome, the conditional

Ŝ is not applied, and instead the result β|g〉 + αeiθ |e〉 =
eiθ X̂(α|g〉 + βe−iθ |e〉) is passed to the M ′

X measurement.
In the latter case the phase factor and the X̂ do not affect

TABLE VII. Table of measurement outcomes for the T̂ operation
and M ′

Z and M ′
X measurements. Columns show ideal input state |A〉

and after application of Ẑ, X̂, or Ŷ errors. Entries with ∨ (“or”) yield
one entry or the other, so approximately half the time succeed and
the other half fail.

Input |A〉 Ẑ|A〉 X̂|A〉 Ŷ |A〉
θ π/4 −3π/4 −π/4 3π/4

M ′
Z = M ′

X[ŜT̂] M ′
X[ŜŜ†T̂ †] M ′

X[ŜT̂ †] M ′
X[ŜŜT̂]

+1 = −M ′
X[T̂ †] = +M ′

X[T̂ †] = M ′
X[T̂] = −M ′

X[T̂]
= −M ′

X[T̂ †] = +M ′
X[T̂ †]

∨ + M ′
X[T̂ †] ∨ − M ′

X[T̂ †]

M ′
Z = M ′

X[X̂T̂ †] M ′
X[X̂ŜT̂] M ′

X[X̂T̂] M ′
X[X̂Ŝ†T̂ †]

−1 = +M ′
X[T̂ †] = −M ′

X[T̂ †] = M ′
X[T̂] = −M ′

X[T̂]
= +M ′

X[T̂ †] = −M ′
X[T̂ †]

∨ − M ′
X[T̂ †] ∨ + M ′

X[T̂ †]

the measurement, so the M ′
X measurement is performed on

α|g〉 + βe−iθ |e〉. For the |A〉 ancilla with θ = π/4, the two
states sent to the measurement are identical, as per (L3). Errors
on the |A〉 ancilla, however, change the angle. For a Ẑ error
the ancilla angle changes to θ = −3π/4, for X̂ it becomes
eiπ/4|A
〉, equivalent to θ = −π/4, and for Ŷ the angle is
θ = 3π/4.

The results for the correct |A〉, as well as for Ẑ, X̂, and Ŷ

errors to the ancilla, are listed in Table VII. To calculate some
of these entries, we used the identity

T̂ = ŜT̂ † =
(

1 + i√
2

Î + 1 − i√
2

Ẑ

)
T̂ †

= eiπ/4T̂ † + e−iπ/4ẐT̂ †. (L5)

A measurement M ′
X of T̂ |ψ〉 thus yields the same as M ′

X on
T̂ †|ψ〉 about half the time (meaning things worked out), while
it yields −M ′

X the other half of the time (meaning we throw
the result away). We see from Table VII that whenever an error
in the |A〉 state generates the incorrect output, it is signaled by
a sign change in the measurement M ′

X, so that state would be
thrown away.

When computing the effect of errors on the input state
|A〉, simulations of the (error-free) logic circuit show that the
T̂ † circuit with the expected Reed code stabilizer outcomes
produces a perfect output when zero, one or two ancilla states
have X̂, Ẑ, or Ŷ errors, but when three or more ancilla states
have errors, the output is purified with a probability scaling as
the error rate p3; statistical arguments indicate that the error
rate should be 35p3 as above. The rate at which the distillation
circuit fails is 1p–15p.

APPENDIX M: ESTIMATING THE TIME AND SIZE
OF A FACTORING CIRCUIT

We provide here a few more details on the surface code
quantum computer size and execution time that are needed to
factor a N = 2000-bit number into its primes.

We use the general Shor circuit as described in Ref. [30],
using the addition circuit described in Ref. [32]. The most
resource-intensive part of Shor’s algorithm is the modular

032324-45

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

exponentiation circuit, which is the backbone of the factoring
algorithm; in this implementation, modular exponentiation
involves 40N3 sequential Toffoli gates, where each Toffoli
gate uses a total of seven T̂L non-Clifford gates, using three
in parallel, then one, then three in parallel again. The T̂L

gate sequence is essentially incompressible and is the most
resource-intensive part of the modular exponentiation circuit,
because each T̂L gate uses up one highly distilled |AL〉 ancilla
state.

A highly time-optimized version of the T̂L circuit from
Ref. [36] indicates that each T̂L gate can be completed in one
measurement time tM , a fraction of the surface code cycle time,
so each Toffoli gate requires a time 3tM to complete. The total
time for the exponentiation circuit is thus 120N3 tM . With a
target measurement time of tM = 100 ns (see Sec. XVII), this
implies 26.7 h to factor a N = 2000-bit number. The remainder
of the surface code must be designed to supply this circuit with
sufficient resources to allow execution in this time.

Each of the T̂L gates consumes one ancilla |AL〉 state,
so in total the exponentiation circuit consumes 7 × 40N3 =
280N3 ≈ 2 × 1012 |AL〉 states. These states must be generated
at a rate sufficient to keep pace with the exponentiation circuit
and generated with a logical error rate sufficiently small that
the exponentiation circuit makes a negligible number of errors;
we would like the rate of errors in the final |AL〉 states to be
much less than PA = (280N3)−1 ≈ 4 × 10−13 to ensure good
fidelity.

With a state injection error rate pI = 0.005 (meaning a
0.5% error rate in the |AL〉 states injected in short qubits), the
first stage of distillation will yield |AL〉 states with an error
rate p1 = 35p3

I ≈ 4 × 10−6, assuming the distillation circuit
is error-free; the second stage will yield states with an error rate
p2 = 35p3

1 ≈ 3 × 10−15. As this error rate is below the target
rate PA for errors in the |AL〉 state, two stages of distillation
are sufficient with this injection error rate.

The distillation circuits are, of course, not flawless; given
a per-surface code step physical qubit error rate of p = 10−3,
we must find the surface code distance d that yields a
sufficiently low logical error rate. The second and last stage
of distillation for an |AL〉 state takes 16 logical qubits (15
ancillae plus 1 logical qubit for the Bell pair) and is executed
in 8 × 1.25 × d2 surface code cycles, including the various
CNOTs in a compressed format and sufficient distance d2 in
time, as we perform this distillation with a surface code
distance d2. The prior (first) stage of distillation requires
more logical qubits, using 15 × 16 logical qubits (15 sets of
distillation circuits, each with 16 logical qubits), operated with
a surface code distance d1 in 10d1 surface code cycles. We want
to reduce the distance d in the first stage of distillation over that
in the second stage, as this reduces the required surface code
footprint; the distance reduction will concomitantly increase
the logical error rate over that of the following stage, but these
errors will be distilled out.

For the second and final stage of distillation, an error rate
PL2 per surface code cycle with a distance d2 surface code will
yield an |AL〉 error rate of about 16 × 2 × 3 × 1.25d2 × PL2 =
120d2PL2 (16 logical qubits, two types of logical qubits,
multiplier of three kinds of error chains, and 5d2/4 surface
code cycles). We need d2 sufficient to keep this error rate below
PA. With an error rate p = 10−3, a distance d2 = 34 code

yields PL2 ≈ 3 × 10−19, with 120d2PL ≈ 1 × 10−15 < PA,
just below the target error rate. For the first stage of distillation,
a logical error rate PL1 with a distance d1 surface code will
generate states with an error rate 15 × 16 × 2 × 3 × 1.25d1 ×
PL1 = 1800d1PL1. This rate can be higher than PA as we distill
the output, so we actually only need 35(1800d1PL1)3 < PA.
A distance d1 = 17 code will give PL1 ≈ 1 × 10−10, so |AL〉
states will be output with an error rate of about 3 × 10−6. The
following distillation stage will reduce this to 1 × 10−15, again
just below the target rate.

The first stage of distillation occupies the largest footprint
in the surface code, since to generate one final purified
|AL〉 state we need 16 × 15 = 240 logical qubits. In a
distance d1 = 17 code, a logical qubit takes 2.5 × 1.25 × d2

1 ≈
900 physical qubits. Hence, the first stage of distillation will
take 240 × 900 ≈ 2 × 105 physical qubits, with the distillation
taking 10d1 = 170 surface code cycles. The second and
final stage uses a d2 = 34 code, so one logical qubit takes
2.5 × 1.25 × d2

2 ≈ 3600 physical qubits. The distillation then
takes 16 × 3600 ≈ 6 × 104 physical qubits and about 340
surface code cycles. The surface code footprint occupied by the
first stage can be reused in the second stages, so in total about
200 000 physical qubits are required to generate a sufficiently
purified |AL〉 state, which takes about 500 surface code cycles.
The surface code footprint used to generate this one state is
active in a volume comprising a square pyramid in space-time,
with a large base for the first stage of distillation, reduced
by a factor of about three in the subsequent stage. The full
footprint can thus be used to generate three |AL〉 states in the
same number of surface code cycles, forming what we call the
“AAA factory.”

Each surface code cycle involves single physical qubit
resets and gates, physical qubit CNOTs, and readout of the
measure qubits; as discussed in Sec. XVII, we believe a 200-ns
time for this cycle is not unreasonable, limited mostly by the
measurement time tM , which we take as 100 ns, but also in part
by microwave technology as well as by classical processing
speeds. Hence, a AAA factory can produce three |AL〉 states
every 500 × 200 ns ≈ 100 μs and can generate 3 × 109

states in the 26.7-h factoring time. The 280N3 ≈ 2.2 × 1012

required |AL〉 states translates to then needing about 800
AAA factories working in parallel, and thus 800 × 2 × 105 ≈
2 × 108 physical qubits. The remainder of Shor’s algorithm
requires about 2N = 4000 logical qubits, which in a d2 = 34
distance surface code takes about 4000 × 3600 ≈ 1.4 × 107

additional physical qubits, adding about 10% to the AAA
factory footprint, for a total of about 220 × 106 physical
qubits.

Improving the performance of the surface code can reduce
these numbers somewhat. Eliminating the first stage of |AL〉
distillation (so we only did one round of distillation) would
require a state injection error rate pI � (PA/35)1/3 ≈ 2 ×
10−5, which is probably not realizable. Improving the physical
qubit error rate by a factor of ten, to p = 10−4, would
reduce the distance d at the top level, allowing a d2 = 16
top-level surface code, with PL2 ≈ 3 × 10−19. The first stage
of distillation with 240 logical qubits could be run using a
d1 = 8 code with PL1 ≈ 3 × 10−15, with an output error rate
of ≈ 4 × 10−11. The total footprint for a AAA factory would

032324-46

SURFACE CODES: TOWARDS PRACTICAL LARGE-SCALE . . . PHYSICAL REVIEW A 86, 032324 (2012)

then be 240 × 2.5 × 1.25 × d2
1 ≈ 5 × 104 physical qubits and

would produce |AL〉 states at twice the rate due to the reduction
in the code distance, so only half the number of factories would
be needed, for a total of about 20 × 106 physical qubits. The

2N = 4000 computational qubits in a d2 = 16 surface code
would take 4000 × 800 ≈ 3 × 106 qubits. The overall surface
code could thus be implemented with about 30 × 106 physical
qubits, albeit with no change in the overall execution time.

[1] P. W. Shor, Algorithmic Number Theory: First International
Symposium, ANTS-I, Lecture Notes in Computer Science 877,
edited by L. M. Adleman and M.-D. A. Huang (Springer,
New York, 1994), p. 289.

[2] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[3] L. K. Grover, in Proceedings of the Twenty-Eighth Annual ACM

Symposium on the Theory of Computing (STOC), edited by
G. L. Miller (ACM, New York, 1996), pp. 212–219.

[4] S. B. Bravyi and A. Y. Kitaev, arXiv:quant-ph/9811052.
[5] E. Dennis, A. Y. Kitaev, A. Landahl, and J. Preskill, J. Math.

Phys. 43, 4452 (2002).
[6] D. Gottesman, Ph.D. thesis, Caltech, 1997.
[7] A. Y. Kitaev, in Proceedings of the Third International Confer-

ence on Quantum Communication, Computing and Measure-
ment, edited by O. Hirota, A. S. Holevo, and C. M. Caves
(Plenum Press, New York, 1997).

[8] A. Y. Kitaev, Russian Math Surveys 52, 1191 (1997).
[9] A. Yu. Kitaev, Ann. Phys. 303, 2 (2003).

[10] M. H. Freedman and D. A. Meyer, Foundations of Computa-
tional Mathematics 1, 325 (2001).

[11] C. Wang, J. Harrington, and J. Preskill, Ann. Phys. 303, 31
(2003).

[12] R. Raussendorf, J. Harrington, and K. Goyal, Ann. Phys. 321,
2242 (2006).

[13] R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504
(2007).

[14] R. Raussendorf, J. Harrington, and K. Goyal, New J. Phys. 9,
199 (2007).

[15] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev.
A 80, 052312 (2009).

[16] A. G. Fowler, D. S. Wang, and L. C. L. Hollenberg, Quantum
Inf. Comput. 11, 8 (2011).

[17] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Phys. Rev.
A 83, 020302(R) (2011).

[18] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg, Phys.
Rev. Lett. 108, 180501 (2012).

[19] G. Duclos-Cianci and D. Poulin, Phys. Rev. Lett. 104, 050504
(2010).

[20] G. Duclos-Cianci and D. Poulin, Information Theory Workshop
(ITW) (IEEE, Piscataway, NJ, 2010), pp. 1–5.

[21] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber,
and M. A. Martin-Delgado, Phys. Rev. X 2, 021004
(2012).

[22] J. R. Wootton and D. Loss, arXiv:1202.4316v2 [quant-ph].
[23] A. G. Fowler, A. C. Whiteside, A. L. McInnes, and A. Rabbani,

arXiv:1202.6111 [quant-ph].
[24] D. S. Wang, A. G. Fowler, C. D. Hill, and L. C. L. Hollenberg,

Quantum Inf. Comput. 10, 780 (2010).
[25] H. Bombin, G. Duclos-Cianci, and D. Poulin, arXiv:1103.4606

[quant-ph].

[26] A. J. Landahl, J. T. Anderson, and P. R. Rice, arXiv:1108.5738
[quant-ph].

[27] P. Sarvepalli and R. Raussendorf, Phys. Rev. A 85, 022317
(2012).

[28] K. M. Svore, D. P. DiVincenzo, and B. M. Terhal, Quantum Inf.
Comput. 7, 297 (2007).

[29] F. M. Spedalieri and V. P. Roychowdhury, Quantum Inf. Comput.
9, 666 (2009).

[30] V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147
(1996).

[31] S. Beauregard, Quantum Inf. Comput. 3, 175 (2003).
[32] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton,

arXiv:quant-ph/0410184.
[33] C. Zalka, arXiv:quant-ph/9806084.
[34] R. Van Meter, K. M. Itoh, and T. D. Ladd,

arXiv:quant-ph/0507023.
[35] A. Y. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical

and Quantum Computation (American Mathematical Society,
Providence, RI, 2002).

[36] A. G. Fowler (unpublished).
[37] N. D. Mermin, Quantum Computer Science: An Introduction

(Cambridge University Press, Cambridge, 2007).
[38] M. A. Nielsen and I. L. Chuang, Quantum Computa-

tion and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[39] P. W. Shor, Phys. Rev. A 52, R2493 (1995).
[40] J. Edmonds, Canad. J. Math. 17, 449 (1965).
[41] J. Edmonds, J. Res. Natl. Bur. Stand., Sect. B 69, 125

(1965).
[42] A. G. Fowler, arXiv:1208.1334 [quant-ph].
[43] D. Gottesman, in Proceedings of the XXII International Col-

loquium on Group Theoretical Methods in Physics, edited by
S. P. Corney, R. Delbourgo, and P. D. Jarvis (International Press,
Cambridge, MA, 1999), pp. 32–43.

[44] J. J. Sakurai, in Modern Quantum Mechanics: Revised Edition,
edited by San Fu Tuan (Addison-Wesley Publishing, Reading,
MA, 1994).

[45] A. G. Fowler, arXiv:1202.2639 [quant-ph].
[46] A. M. Steane, Proc. R. Soc. London A 452, 2551 (1996).
[47] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316

(2005).
[48] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[49] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267

(2012).
[50] D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, Rev.

Mod. Phys. 75, 281 (2003).
[51] R. Blatt and D. Wineland, Nature 453, 1008 (2008).
[52] D. Kielpinski, C. R. Monroe, and D. J. Wineland, Nature 417,

709 (2002).

032324-47

http://dx.doi.org/10.1103/PhysRevLett.79.325
http://arXiv.org/abs/arXiv:quant-ph/9811052
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1063/1.1499754
http://dx.doi.org/10.1070/RM1997v052n06ABEH002155
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1007/s102080010006
http://dx.doi.org/10.1007/s102080010006
http://dx.doi.org/10.1016/S0003-4916(02)00019-2
http://dx.doi.org/10.1016/S0003-4916(02)00019-2
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1016/j.aop.2006.01.012
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevLett.104.050504
http://dx.doi.org/10.1103/PhysRevX.2.021004
http://dx.doi.org/10.1103/PhysRevX.2.021004
http://arXiv.org/abs/arXiv:1202.4316v2
http://arXiv.org/abs/arXiv:1202.6111
http://arXiv.org/abs/arXiv:1103.4606
http://arXiv.org/abs/arXiv:1108.5738
http://dx.doi.org/10.1103/PhysRevA.85.022317
http://dx.doi.org/10.1103/PhysRevA.85.022317
http://dx.doi.org/10.1103/PhysRevA.54.147
http://dx.doi.org/10.1103/PhysRevA.54.147
http://arXiv.org/abs/arXiv:quant-ph/0410184
http://arXiv.org/abs/arXiv:quant-ph/9806084
http://arXiv.org/abs/arXiv:quant-ph/0507023
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.4153/CJM-1965-045-4
http://arXiv.org/abs/arXiv:1208.1334
http://arXiv.org/abs/arXiv:1202.2639
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1038/nphys2259
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784

FOWLER, MARIANTONI, MARTINIS, AND CLELAND PHYSICAL REVIEW A 86, 032324 (2012)

[53] M. A. Eriksson, M. Friesen, S. N. Coppersmith, R. Joynt, L. J.
Klein, K. Slinker, C. Tahan, P. M. Mooney, J. O. Chu, and S. J.
Koester, Quant. Info. Proc. 3, 133 (2004).

[54] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,
357 (2001).

[55] M. H. Devoret and J. M. Martinis, Quant. Info. Proc. 3, 163
(2004).

[56] J. Q. You and F. Nori, Phys. Today 58, 42 (2005).
[57] J. Clarke and F. K. Wilhelm, Nature 453, 1031 (2008).
[58] R. J. Schoelkopf and S. M. Girvin, Nature 451, 664 (2008).
[59] D. P. DiVincenzo, Phys. Scr., T 137, 014020 (2009).

[60] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani,
A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I.
Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf,
Phys. Rev. Lett. 107, 240501 (2011).

[61] M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C.
Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. O’Connell,
D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N.
Korotkov, A. N. Cleland, and J. M. Martinis, Science 334, 61
(2011).

[62] R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys. Rev. A
68, 022312 (2003).

032324-48

http://dx.doi.org/10.1007/s11128-004-2224-z
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1007/s11128-004-3101-5
http://dx.doi.org/10.1007/s11128-004-3101-5
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1038/451664a
http://dx.doi.org/10.1088/0031-8949/2009/T137/014020
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1103/PhysRevA.68.022312

