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Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code
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Topological quantum error correction codes are known to be able to tolerate arbitrary local errors given
sufficient qubits. This includes correlated errors involving many local qubits. In this work, we quantify this
level of tolerance, numerically studying the effects of many-qubit errors on the performance of the surface
code. We find that if increasingly large-area errors are at least moderately exponentially suppressed, arbitrarily
reliable quantum computation can still be achieved with practical overhead. We furthermore quantify the effect
of nonlocal two-qubit correlated errors, which would be expected in arrays of qubits coupled by a polynomially
decaying interaction, and when using many-qubit coupling devices. We surprisingly find that the surface code is
very robust to this class of errors, despite a provable lack of a threshold error rate when such errors are present.
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I. INTRODUCTION

Many different approaches to achieving reliable quantum
computation are under investigation [1–5]. The current most
practical known approach, the Kitaev surface code [6,7], calls
for a two-dimensional (2-D) array of qubits with nearest
neighbor interactions and a universal set of quantum gates
with error rates below an approximate threshold of 1% [8–10].
Superconducting qubits with error rates at the surface code
threshold now exist [11].

There is extensive prior work showing the existence of a
threshold error rate when arbitrary quantum error correction
codes are subjected to a wide variety of noise models, including
algebraically decaying two-body correlated noise [12], Gaus-
sian non-Markovian noise [13], and arbitrarily many-body
correlated noise [14]. In this work we focus on the simulated
performance of the surface code below threshold.

To date, when the surface code has been simulated, quantum
gates have only had the potential to introduce errors on
the qubits they manipulated directly. In reality, manipulating
any given qubit may disturb the state of a large number
of surrounding qubits. Not all types of disturbance are
particularly dangerous. Small random or systematic rotations
of surrounding qubits lead only to independent random errors.
Only correlated many-qubit errors deserve specific attention.
This distinction is discussed in detail in Sec. II. In this work
we present a detailed study of precisely how well the surface
code can handle this class of correlated errors.

Another important class of errors that has not received
attention to date is those that would arise in an array of
qubits interacting directly with one another via a polynomially
decaying interaction, such as the Coulomb or magnetic dipole
interaction, or via a device coupling to many qubits. Pairs of
qubits initially antiparallel can both flip without changing the
energy of the total system. Two-qubit errors can, therefore,
appear on widely separated qubits. We also present a detailed
study of this class of correlated errors.

The discussion is organized as follows. In Sec. II, the
meaning of independent and correlated errors is discussed in
detail. In Sec. III, the surface code is briefly reviewed, our
method of modeling local many-qubit errors is described, and
simulation results of this case are presented. In Sec. IV, our

method of modeling nonlocal two-qubit errors is described,
and simulation results are presented. Section V concludes.

II. INDEPENDENT AND CORRELATED ERRORS

Before presenting a study of correlated errors, it is worth
discussing exactly what is and what is not a correlated error.
For illustrative purposes, we center the discussion around a
hypothetical quantum computer consisting of a 2-D array of
mobile spins on a cooled substrate. A global magnetic field
Bz sets the energy difference between |0〉 and |1〉. Local
solenoids above and below the default location of each spin
provide localized ac and dc fields to drive arbitrary single-qubit
rotations. Pairs of spins are moved into close proximity to raise
the strength of the magnetic dipole interaction and implement
two-qubit entangling gates. For simplicity, we also imagine the
solenoids can be used, when desired, as sensitive magnetic field
detectors for qubit readout. See Fig. 1. This example maps well
to architectures based on superconducting qubits [15], spin
qubits [16], and quantum dots [17], and has features common
to architectures based on ion traps [18], optical lattices [19],
and many others.

We now consider various error sources, and whether they
are, or are not, correlated error sources. First, we consider
small fluctuations in the global magnetic field Bz, which will
lead to small undesired systematic Z rotations on all qubits.
At first glance, this may seem like the ultimate correlated
error. However, provided the fluctuations are small and error
detection is frequent, each individual small angle Z rotation
will just look like a small probability of a Z error on each qubit.
When performing error detection, most of the time no errors
will be detected, as unwanted phase rotations will be removed
by observation the majority of the time. This is a special case of
the quantum Zeno effect [20]. Any detected errors will appear
random and independent. A global fluctuating field leads to a
correlated probability of error p on all qubits, but the errors
themselves will not be correlated, and the probability of errors
from this noise source on any given pair of qubits will be
p2. Note that it is critical that the fluctuations are small and
error detection frequent—for example, if a global π rotation
accumulates, this will indeed lead to a global correlated error.
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FIG. 1. (Color online) Hypothetical quantum computer architec-
ture consisting of mobile spins on a cold substrate, each spin with
its own hypothetical solenoid for readout and single-qubit gates,
with two-qubit gates achieved by bringing neighboring spins closer
together to increase the strength of the magnetic dipole interaction.
This example has features in common with many physical architec-
tures under investigation, especially those based on superconducting
qubits.

Second, consider crosstalk when driving a single-qubit gate.
Under the assumption of widely separated spins and small
solenoids, each solenoid will look like a magnetic dipole
and the field seen by other spins will decay cubically with
separation. The driving field will, therefore, induce cubically
decaying small-angle rotations in all spins in the computer.
For the same reason that small fluctuations in the global field
Bz do not lead to correlated errors, this polynomially decaying
crosstalk will also not lead to correlated errors. Provided the
total error seen by any given qubit as a result of the sum of all
crosstalk from all other actively manipulated qubits remains
small, errors seen by the quantum error detection machinery
will remain independent and sufficiently rare to be correctable.

Third, consider the possibility that our hypothetical quan-
tum computer is unshielded and located near an infrequent but
energetic radiation source. Consider a hypothetical energetic
particle that locally strongly heats the substrate on impact,
but otherwise causes no physical degradation of the system.
Imagine that the heating thermally randomizes spins in some
neighborhood of the impact, with the neighborhood size
proportional to the energy of the impact, and the probability
distribution of increasingly energetic impacts decaying expo-
nentially. Suppose furthermore that the cooling power per unit
area of the substrate is sufficiently high to remove the excess
heat in a small constant amount of time. This hypothetical
scenario would lead to spatially correlated large-area errors
with larger areas exponentially suppressed. Noise of this
generic form shall be considered in Sec. III. This section
also considers the possibility of polynomial suppression of
larger-area errors.

Fourthly, consider direct magnetic dipole spin-spin inter-
actions. A pair of antiparallel spins can spontaneously flip
with no increase or decrease in energy of the system. The
probability of this occurring is proportional to the interaction
strength, which decays cubically. Pairwise noise of this form
is two-body correlated noise. Note that each pairwise noise
event requires the exchange of a virtual photon, so multiple
pairwise noise events are random and uncorrelated. We shall
consider noise of this generic form in Sec. IV.

Finally, imagine that spins are sufficiently separated to
make the direct dipole-dipole interaction negligible; however
there are elements in the physical construction that behave
like inductive loops around each column of spins. These could
be control lines or long-range qubit-qubit coupling elements.

Now any pair of initially antiparallel spins in a given column
can flip. Such a noise source would not be suppressed with
increasing qubit separation. This form of noise shall also be
considered in Sec. IV.

Undoubtedly other forms of noise could be considered;
however we feel that the four correlated error classes listed
above, namely, (1) large-area exponentially decaying, (2)
large-area polynomially decaying, (3) arbitrary qubit pairs
polynomially decaying, and (4) qubit pairs in columns nonde-
caying, cover the vast majority of basic behaviors likely to be
found in physical devices. We would be happy to extend our
work to cover other error classes of interest to the community,
and welcome suggestions.

III. SURFACE CODE PERFORMANCE WITH LOCAL
MANY-QUBIT ERRORS

For our purposes, a distance d surface code is simply a
(2d − 1) × (2d − 1) 2-D array of qubits capable of protecting
a single qubit of data by periodically executing a particular
quantum circuit designed to detect errors [10]. If we assume
that each quantum gate in the periodic circuit has an error rate
p, then given a distance d surface code we can use simulations
to calculate the probability of a logical error per round of
error detection pL, namely, the probability pL that we fail to
protect the single qubit of data distributed across the lattice
of qubits. Figure 2 shows pL as a function of p and d using
asymptotically optimal error suppression techniques [21]. This
is our baseline performance. Introducing large-area errors will
degrade this performance.

Consider Fig. 3, which defines two quantities �i, �j that
have meaning during the application of a quantum gate and
will enable us to define our error models. We shall consider
two particularly severe models of many-qubit errors, each with
a single tunable parameter n determining its strength. Unlike
in Sec. II where large-area errors were motivated by a particle
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FIG. 2. (Color online) Probability of logical X error per round of
fault-tolerant error detection pL as a function of the depolarizing error
probability p for a range of distances d = 3, . . . ,25 when exploiting
knowledge of correlations between X and Z errors. Referring to the
left of the figure, the distance increases top to bottom. Quadratic,
cubic, and quartic lines (dashed) have been drawn through the lowest
distance 3, 5, and 7 data points obtained, respectively.
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Δj

Δi

FIG. 3. Each dot represents a qubit. If a quantum gate is applied
to the two qubits within the vertical rectangle, the qubit within the
square is said to have �i = 2 and �j = 2, namely, the minimum
(i,j ) coordinate differences with any qubit acted on by the gate.

impact example, we shall associate such errors with every
application of every quantum gate.

When applying a gate with error rate p, a single random
number x is generated. If x < p, the qubits involved in the
gate will suffer random equally likely Pauli errors (with no
chance of an identity error). Every other qubit in the surface

code will suffer random equally likely errors I , X, Y , Z if at
the location of the qubit x < p/n�i+�j (exponential model) or
x < 0.1p/rn, where r =

√
�i2 + �j 2 (polynomial model).

The motivation behind the exponential model’s use of a non-
Euclidean metric is qubits with a negligible direct qubit-qubit
interaction that instead must be coupled via physical devices
that are themselves noninteracting. In this scenario, qubits are
physically well separated. The hypothetical energetic particle
discussed in Sec. II should be imagined as significantly raising
the temperature or photon count of a specific component, and
each successive device should provide additional isolation
leading to Manhattan distance exponential suppression of
the unwanted effects. The polynomial model is motivated by
qubits that are closely spaced with thermal errors radiating
through the substrate. All gates, including initialization,
Hadamard, CNOT, measurement, and identity, are assumed to
have a nonzero probability of suffering from such large-area
errors during their implementation.

Figure 4 shows the performance of the surface code with
exponential model large-area errors and n = 2, 10, 100, and

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1 × 10-5 1 × 10-4 1 × 10-3 1 × 10-2 1 × 10-1

Lo
gi

ca
l X

 e
rr

or
 p

ro
ba

bi
lit

y 
p L

Depolarizing probability p

d=3
d=5
d=7
d=9

d=11
d=13

(a) n = 2

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1 × 10-5 1 × 10-4 1 × 10-3 1 × 10-2 1 × 10-1

Lo
gi

ca
l X

 e
rr

or
 p

ro
ba

bi
lit

y 
p L

Depolarizing probability p

d=3
d=5
d=7
d=9

d=11

(b) n = 10

(c)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1 × 10-5 1 × 10-4 1 × 10-3 1 × 10-2 1 × 10-1

Lo
gi

ca
l X

 e
rr

or
 p

ro
ba

bi
lit

y 
p L

Depolarizing probability p

d=3
d=5
d=7

(d) n = 1000n = 100

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1 × 10-5 1 × 10-4 1 × 10-3 1 × 10-2 1 × 10-1

Lo
gi

ca
l X

 e
rr

or
 p

ro
ba

bi
lit

y 
p L

Depolarizing probability p

d=3
d=5
d=7
d=9

FIG. 4. (Color online) Probability of surface code logical X error per round of error detection for various code distances d and physical error
rates p when increasingly large-area errors are exponentially suppressed by a factor of (a) n = 2, (b) n = 10, (c) n = 100, and (d) n = 1000.
Referring to the left of each graph, distance increases top to bottom. It can be seen (b) that even when n = 10, meaning a single-qubit gate with
error rate p has a probability p/10 of triggering a correlated plus-shaped five-qubit error, and p/100 of triggering a correlated diamond-shaped
13-qubit error, and so on, and two-qubit gates similarly trigger higher weight errors, that robust and efficient exponential suppression of logical
error can still be achieved.
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FIG. 5. (Color online) Probability of surface code logical X error per round of error detection for various code distances d and physical
error rates p when increasingly large area errors are polynomially suppressed as (a) r2/10, (b) r3/10, (c) r4/10, (d) r5/10. Referring to the
left of each graph, distance increases top to bottom. When suppression is quadratic, arbitrarily low logical error rates cannot be achieved at
any finite value of p. For higher order polynomial suppression, arbitrarily low logical error rates can be achieved, however logical error is only
suppressed polynomially with code distance, which may in some cases lead to unacceptable qubit overhead.

1000. It can be seen that performance is still measurably
degraded even for n = 1000; however strong exponential
suppression of logical error at fixed p can still be achieved
even for n = 10. To be quantitative, at an operating error rate
of p = 10−3, in the absence of large-area errors (Fig. 2), a
distance d = 7 surface code achieves a logical error rate per
round of error detection of p = 2.0 × 10−6. For n = 1000,
this is degraded to p = 2.4 × 10−6. This level of degradation
would have negligible practical impact, with very slightly
larger code distances required to compensate. Even for n = 10,
where the logical error rate is degraded to p = 6.7 × 10−5, the
degradation can be fully compensated by using a larger d = 11
code, leading to an approximate factor of (11/7)2 ∼ 2.5
additional qubits, independent of the size of the quantum
computation protected in this manner. A factor of 2.5 overhead
is significant but not excessively onerous, and we therefore
claim that even quite moderate exponential suppression of
large-area errors is tolerable in a practical manner when using
the surface code.

A striking difference between Fig. 2 (no large-area errors)
and Fig. 4 (large-area errors) is the linear suppression of logical

error in the latter for low values of p at a fixed code distance
d as p is reduced further. This is due to the fact that any single
error has the potential to cause a logical error, and at low values
of p multiple temporally nearby gate errors become unlikely
and the dominant logical error process becomes single large-
area errors. Note that at fixed low p, logical error suppression
is still exponential with increasing d.

We now consider polynomial suppression of large-area
errors (Fig. 5). If large-area errors are only quadratically
suppressed, adding an additional ring of qubits at distance
r from any given qubit adds an O(1/r) amount of error to
that qubit; hence larger lattices of qubits will always be more
error-prone and no threshold error rate will exist. For any
rate of suppression greater than quadratic, arbitrarily reliable
quantum computation can be achieved in principle, as the total
error seen by any given qubit in an infinite lattice of qubits is
bounded by a multiple of p.

At a moderately high error rate such as p = 10−3 and
modest code distances, the dominant logical error contribution
is from multiple temporally local errors. Such logical errors
are exponentially suppressed with increasing code distance.
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To be explicit, for n = 4, the polynomial of best fit through
the data at p = 10−3 is order 8 in d, and for n = 5 the best
fit polynomial is order 16, clearly demonstrating that, in the
high p low d regime, logical errors from single large-area
physical errors are not dominant. At very large code distances,
the quadratic growth of the number of gates per round of error
detection and the exponential suppression of logical errors
from multiple temporally local gate errors is expected to lead
to weak O(1/dn−2) suppression of logical error due to single
very large-area errors; however this regime is outside what we
can currently reach with simulations.

Based only on currently accessible parameter ranges, at
p = 10−3 the polynomial n = 4 and n = 5 overhead to achieve
a given logical error rate is similar to the exponential n = 10
overhead. If the computation being protected by the surface
code is not too large, it therefore may well be the case that
the desired logical error rate can be reached without excessive
overhead with only polynomial suppression of large-area er-
rors at the physical level. Formally, however, it should be noted
that the resources required to achieve computation with logical
error ε would grow polynomially with 1/ε for sufficiently
small ε, which is not efficient in the computer science sense.

IV. SURFACE CODE PERFORMANCE WITH NONLOCAL
TWO-QUBIT ERRORS

Only two-body interactions are observed in nature between
fundamental particles, meaning the large-area multiqubit
errors considered in the previous section could only arise
from uncontrolled engineered multiqubit interactions within a
quantum computer or other exotic effects, such as the radiation
heating model described in Sec. II. Unwanted two-body
interactions, such as uncompensated Coulomb or magnetic
dipole interaction, give rise to qualitatively and quantitatively
different behavior. In this section, we shall focus on long-
range effects, and will, therefore, not consider interactions
that decay exponentially quickly. As we shall see, even
weakly polynomially decaying long-range interactions are
quite tolerable, further justifying not considering exponentially
decaying two-body interactions.

Any interaction between qubits is a potential source of
unwanted evolution and hence error. When simulating the
surface code using an array of qubits with polynomially
decaying two-body interactions, if the characteristic gate error
rate is p, at the beginning of each round of error detection
each pair of qubits shall be modeled as suffering two-qubit
depolarizing noise with probability Ap/rn. We shall focus
on the most severe n = 2 case, and two values A = 1 and
A = 0.1. The performance of the surface code with these two
different levels of additional noise is shown in Fig. 6.

It should be stressed that, as with quadratically suppressed
large-area errors, any qubit in an infinite 2-D lattice of qubits
will suffer unbounded error and the surface code will fail.
However, it can be seen that for the finite-size qubit arrays
considered in simulations, robust suppression of logical error
can be achieved even for the most severe A = 1 case. The
effect of a lack of a threshold error rate can be observed at
p = 2 × 10−3 where the d = 25 logical error rate is higher
than that for d = 11. Nevertheless, at error rates p < 10−3, the
observed logical error rate suppression trend with increasing
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FIG. 6. (Color online) Probability of surface code logical X error
per round of error detection for various code distances d and physical
error rates p when all pairs of qubits suffered two-qubit noise once per
round of error detection with probabilities (a) p/r2 and (b) 0.1p/r2.
Referring to the left of each graph, distance increases top to bottom.

code distance suggests that extremely low logical error rates
can be achieved before using larger code distances starts to
hurt. Note that for A = 1 and p � 5 × 10−4 the observed
logical error rates are less than or equal to those observed for
n = 10 exponential large-area errors, meaning the overhead
will be less than the factor of 2.5 calculated in the previous
section, for moderate values of d.

By making the computer quasi-2-D, namely, a finite width
one-dimensional (1-D) strip, the physical error seen at any
given qubit would only grow logarithmically with increasing
strip length, very likely permitting a usefully large number
of logical qubits with usefully low logical error rates to be
achieved. Other techniques, such as building an array with
carefully arranged walls capable of shielding the problematic
interaction, or coupling widely separated finite arrays with
other types of quantum communication, are also possible. In
short, even severe long-range two-qubit quantum errors that are
only suppressed quadratically with increasing qubit separation
can be handled with practical overhead.
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FIG. 7. (Color online) Probability of surface code logical X error
per round of error detection for various code distances d and physical
error rates p when all pairs of qubits in each column of the surface
code suffer two-qubit noise once per round of error detection with
probabilities (a) p and (b) 0.1p. Referring to the left of each graph,
distance increases top to bottom.

The final class of error we shall consider are those arising
from large-scale coupling elements that interact with many
qubits, specifically entire columns of the surface code in the
situation we shall model. Our basic motivating system is a
chain of spins in a global magnetic field and shared inductive
loop. Any pair of antiparallel spins can spontaneously flip, so
we shall model this as a probability Ap of error for every qubit
pair in each column. Note that there is no suppression of this
error with increasing qubit separation. Since any given qubit
in a column has an increasing number of potential partners to
flip with as the size of the surface code grows, there will again
be no formal threshold error rate. We again focus on A = 1
and A = 0.1. Data are shown in Fig. 7.

For A = 1 [Fig. 7(a)], it can be seen that at p = 10−3 the
lowest possible logical error rate is achieved with a distance 15
code. Figures 6 and 7 are qualitatively very similar as in both
an array of qubits with quadratically suppressed interactions
between all pairs of qubits and an array of qubits with
columns coupled by single devices introducing errors with
no suppression with increasing distance, the total error seen

by any given qubit grows with code distance. When A = 0.1
[Fig. 7(b)], at p = 10−3 it can be seen that very low logical
error rates can be achieved with modest code distances. Again,
despite the lack of a threshold error rate, this class of errors is
tolerable with low overhead in practice.

V. CONCLUSION

We have shown that moderate exponential suppression of
large-area errors is sufficient to observe strong exponential
suppression of logical error with increasing code distance d.
A factor of 10 suppression of each successively larger-area
class of physical errors leads to just a factor of 2.5 additional
qubits to achieve the same logical error observed without large-
area errors when gates have characteristic error p = 10−3.
Overhead is negligible (<10%) for moderately large algorithm
sizes and a factor of suppression of 103. Since 5+ body errors
are expected to be exceedingly rare in most physical setups, it is
reasonable to expect that this higher level of error suppression
is experimentally achievable and that large-area errors can,
therefore, mostly be ignored when analyzing the surface code.

A second class of errors, namely, long-range two-qubit
errors, has been shown to be remarkably tolerable, with even
lower overhead than the exponentially suppressed large-area
errors for p � 10−3. This is surprising as such noise, from a
formal point of view, results in no threshold error rate, meaning
arbitrarily reliable quantum computation cannot be achieved
at any finite error rate. Nevertheless, sufficiently low logical
error rates for practical purposes can be achieved with modest
code distances.

In all cases where a threshold error rate exists, it remains
well above 10−3 and in most cases does not stray far from the
baseline threshold error rate of approximately 0.5%. This is in
line with expectations as the correlated errors introduced in the
simulations are typically at least an order of magnitude less
likely than the baseline gate errors, meaning they have low
impact around the threshold error rate. The only exception
to this is n = 2 exponentially suppressed large-area errors,
where weight 5 errors, for example, are only half as likely as
single-qubit errors, resulting in a degradation of the threshold
error rate to just above 10−3.

Collectively, these results imply that large-area and long-
range errors pose no fundamental barriers to practical large-
scale quantum computation, as both classes of error, from a
practical point of view, can be well handled by the surface
code. Experimentally, the implication is that, in a large device,
one should focus on the gate error rate observed when the
maximum possible number of qubits in the array are being
actively manipulated in parallel. The parallel error rate is the
figure of merit required to determine whether a physical device
can be used to achieve low logical error rates.
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