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Quantum logic with weakly coupled qubits
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There are well-known protocols for performing controlled NOT (CNOT) quantum logic with qubits coupled by
particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for
quantum computation involve qubits or qubits and resonators coupled by more complicated and less symmetric
interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level
systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful
variations and extensions of the solution are given for common special cases.
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I. QUANTUM GATE DESIGN

Experimental realizations of gate-based quantum compu-
tation require the accurate implementation of universal two-
qubit operations such as the controlled-NOT (CNOT) quantum
logic gate [1]. Finding the best way to achieve this for a specific
experimental architecture is a principal goal of what we refer to
as quantum gate design. The CNOT problem can be informally
stated as follows: Specify the dimension N of the relevant
Hilbert space, and a Hamiltonian

H (ξ1, ξ2, . . . , ξK ) (1)

with some experimental control over K parameters ξ1, . . . , ξK .
How should the control parameters be varied to generate
CNOT logic in the computational basis {|00〉, |01〉, |10〉, |11〉}?
For a closed system this is a control problem in the unitary
group U(N ). N is not necessarily equal to 4 because the
Hamiltonian might include auxiliary non-qubit states (not
in the computational basis) that help implement the logic.
For example, an effective strategy (see, for example, Strauch
et al. [2] and DiCarlo et al. [3]) is to use an anticrossing of
the |11〉 state with a noncomputational state |aux〉 to generate
a 2π rotation in the two-dimensional subspace {|11〉, |aux〉}.
This implements the gate

CZ ≡

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ (2)

in the computational basis, out of which a CNOT gate can
be constructed by pre- and postapplication of single-qubit
Hadamard gates (see below). Another important example
is Cirac and Zoller’s use of vibrational modes to mediate
quantum logic between the internal qubit states of trapped
ions [4,5].

In the familiar U(4) case, the Hamiltonian (1) can be written
in terms of Pauli matrices and their tensor products. The
resulting coupled-qubit model usually allows control of some
of the single-qubit operators—enough to perform arbitrary
SU(2) rotations on each qubit—and possibly of the qubit-
qubit coupling. For certain commonly occurring forms of the
qubit-qubit interaction, including the highly symmetric cases
of Ising-like σ z

1 σ z
2 interaction [1] and Heisenberg-like σ 1 · σ 2

interaction [6], effective protocols for implementing CNOT

gates have been established. However, many architectures
being considered for quantum computation involve qubits or
qubits and resonators coupled by more complicated and less
symmetric interactions, or would be more accurately modeled
as such.

Here we investigate the general problem of weakly but
otherwise arbitrarily coupled qubits, and use perturbation
theory combined with other quantum gate design techniques to
derive a simple and widely applicable CNOT pulse construction.
Useful variations and extensions of the basic solution are
given for common special cases, and the intuitive geometric
picture we employ—related to the Weyl chamber description
introduced by Zhang et al. [7]—will be useful elsewhere in the
design of quantum logic gates. We assume unitary evolution,
which is sensible given the generality of our result and the
wide variation in experimental coherence times.

Zhang et al. [7] and Zhang and Whaley [8] have addressed
the problem of two-qubit gate construction using similar
methods applied to a variety of coupled-qubit models, but
focused on steering with continuous rf control as opposed
to the short pulses considered below. One of us has recently
investigated the implementation of CNOT gates using constant
rf driving [9,10] and also moderately detuned qubits [11], pro-
viding constructions complementary to those presented here.
Time-optimal and other direct quantum control approaches are
especially useful for strongly coupled and/or strongly driven
qubits, or to optimize performance in the presence of specific
decohering and/or noisy environments [12–18], but early
quantum logic demonstrations might best be accomplished
using the simple perturbative protocol described here.

II. WEAKLY COUPLED QUBITS

In a wide variety of physical systems being considered for
quantum computation, the Hamiltonian for a pair of coupled
qubits can be written (suppressing h̄) as

H =
∑
i=1,2

[
−εi

2
σ z

i + �i cos(εi t + φi) σx
i

]

+
∑

µ,ν=x,y,z

Jµν σ
µ

1 ⊗ σ ν
2 , (3)

with Jµν a 3×3 real-valued tensor (possibly adjustable). The
Hamiltonian (3) is written in the basis of eigenstates (|0〉 and
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|1〉) of uncoupled qubits with energy level spacings εi , and
the parameters εi and �i (with �i � εi) are assumed to be
experimentally controllable. More general single-qubit control
is often available but will not be needed here. Our principal
assumption is that of weak coupling: The magnitude of the Jµν

are assumed to be small compared with the εi .
Two-qubit logic gates will be implemented by combining

certain entangling operations, performed with tuned (ε1 =ε2)
qubits, together with single-qubit operations performed with
detuned or decoupled qubits [19]. In a frame rotating with the
frequency of the tuned qubits, the Hamiltonian (3) reduces
approximately to [20]

H ≈
∑
i=1,2

�i

2

(
cos φi σ

x
i − sin φi σ

y

i

) + H, (4)

where

H ≡ J
(
σx

1 σx
2 + σ

y

1 σ
y

2

) + Jzz σ z
1 σ z

2 + J ′(σx
1 σ

y

2 − σ
y

1 σx
2

)
.

(5)

Here

J ≡ Jxx + Jyy

2
and J ′ ≡ Jxy − Jyx

2
(6)

are real coupling constants. In the computational basis,

H =

⎛
⎜⎝

Jzz 0 0 0
0 −Jzz γ 0
0 γ ∗ −Jzz 0
0 0 0 Jzz

⎞
⎟⎠ , (7)

where

γ ≡ 2(J + iJ ′) = |γ | eiϕ. (8)

To obtain Eq. (4) we have assumed that the Jµν and �i

are small compared with the qubit frequency and have
neglected the resulting rapidly oscillating terms with vanishing
time-averages; this is the usual rotating-wave approximation
(RWA). Although nine coupling constants are present in Eq.
(3), only three parameters appear in H, making a general
analysis possible. The terms in Eq. (5) multiplying J and Jzz

are symmetric under qubit-label exchange, whereas the J ′ term
is antisymmetric and therefore vanishes when the physical
qubits in question (and their operating biases) are identical.
Furthermore, in the common case of J ′ =0 (which must occur
when the qubits are identical but can also occur when they are
not), H commutes with itself at different times when J and Jzz

are time dependent, leading to additional flexibility (in the form
of “area” theorems) for pulse design that we will use below. We
emphasize that H is a universal Hamiltonian, applying to any
pair of tuned, weakly coupled qubits. Coupled-qubit models
with nondiagonal single-qubit terms can be put in the form (3)
after transformation to the uncoupled eigenstate basis.

The CNOT pulse sequence derived below is valid whenever

J 2 + J ′2 �= 0. (9)

The condition (9) excludes qubit-qubit interactions of the Ising
form

δH = g σ z
1 σ z

2 , (10)

for which an effective single-entangling-pulse construction is
already known, as well as interactions such as

δH = g
(
σx

1 σx
2 − σ

y

1 σ
y

2

)
, (11)

that vanish in the RWA.

III. CARTAN DECOMPOSITION

The trajectory in U(4) that the evolution operator

U ≡ T e−i
∫ t

0 H dτ (12)

traces out during Schrödinger evolution (T is the time-ordering
operator) can be viewed by factoring out local (single-qubit)
rotations

u ∈ SU(2) ⊗ SU(2). (13)

A convenient way to achieve this is to use the fact that any
element of U(4) can be written as

U = eiφ upost Aupre, (14)

with

A(x, y, z) ≡ e−i(x σx
1 σx

2 +y σ
y

1 σ
y

2 +z σ z
1 σ z

2 ), (15)

for some local rotations upre and upost, real-valued coordinates
(angles) x, y, and z, and global phase φ. This formula can be
derived by using a Cartan decomposition of the Lie algebra
su(4) [12,21–23]. The central component A, which we call
the entangler, characterizes the nonlocal or entangling part of
U and is a periodic function of its coordinates with period
2π . By performing the decomposition (14) at each time t and
forming the vector 
r ≡ (x, y, z), we can view the evolution
of the nonlocal part of U as a trajectory 
r(t) through the
three-dimensional toroidal space of entanglers [7]. A special
property of Eq. (15) is that the generators σx ⊗ σx , σy ⊗ σy ,
and σ z⊗ σ z all commute (they form a Cartan subalgebra). The
minus sign introduced into the exponent of Eq. (15) simplifies
the analysis in the common special case of J ′ =0.

The decomposition (14) into an entangler A, local rotations
upre and upost, and phase factor eiφ is not unique. This means
that the trajectory 
r(t) corresponding to some actual physical
evolution is not unique. But the different options for A at
each time t are evidently locally equivalent (differing by pre-
and postapplication of local rotations and a multiplicative
phase factor). Furthermore, in the common special case
of J ′ =0, a particularly natural continuous solution [given
in Eq. (19) below] can always be chosen which has the
simplifying property that the local rotations and phase factor
are equal to the identity along the entire trajectory: The
local rotation and global phase angles vanish. We note that
the usefulness of the decomposition (14) goes far beyond
its somewhat technical role here: (i) In architectures where
local operations can be performed quickly and accurately
(they are “free”), the decomposition allows one to focus
directly on the remaining nonlocal part; (ii) The local rotations
associated with successive gates can often be combined;
And (iii), some of the experimental error incurred when
implementing an entangler—the component that does not
change the equivalence class—can be corrected by modifying
the u’s.

012320-2



QUANTUM LOGIC WITH WEAKLY COUPLED QUBITS PHYSICAL REVIEW A 81, 012320 (2010)

The concepts of local equivalence and local equivalence
classes have wide application in gate design. Makhlin [24] has
constructed an explicit formula for three quantities that can be
used to test for local equivalence. The CNOT gate [25]

CNOT ≡

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ (16)

has Makhlin invariants G1 = 0 and G2 = 1 (G1 is generally
complex). Two members U and U ′ of U(4) are locally
equivalent if and only if their Makhlin invariants are identical,
in which case we write U ∼ U ′. When restricted to a certain
(nearly) tetrahedral region—a Weyl chamber—the angles x,

y, and z are in one-to-one correspondence with the Makhlin
invariants, leading to a unique 
r and a useful geometric
description of the local equivalence classes of U(4) [7]. For
our purposes, however, it will be convenient to work in the
full toroidal space of entanglers and not restrict 
r to a Weyl
chamber [26].

IV. CNOT CONSTRUCTION FOR THE CASE OF J ′ =0

First we consider the common special case of
Hamiltonian (5) with J ′ =0, which includes the case of
identical qubits. Assuming tuned qubits and no rf drive, the
evolution (12) dramatically simplifies to

U = A(x, y, z) (17)

with entangler coordinates

x = y =
∫ t

0
J dτ,

(18)

z =
∫ t

0
Jzz dτ.

This evolution follows a curve in the vertical plane x = y.
The trajectory for the case of time-independent J and Jzz

is illustrated in Fig. 1. The fact that the coordinates (19) of
the generated entangler depend only on time-integrals of the
coupling constants indicates a type of robustness and flexibility
of the associated experimental pulse sequence, analogous
to the area theorem for single-qubit rotations within the
RWA. The closest CNOT-class entanglers are at 
r = (±π

4 , 0, 0),
(0,±π

4 , 0), and (0, 0,±π
4 ), which cannot be reached with

one application of H unless J vanishes. In this Ising case,
A(0, 0, π

4 ) or A(0, 0,−π
4 ) is obtained after

∫
Jzz dτ = ±π

4
(mod 2π ). (19)

Generating one of these entanglers corresponds to generating
a particular member of the CNOT equivalence class; either one
is sufficient. A possible Ising pulse sequence (executed from
right to left) is [27]

CNOT = e∓i π
4 H2 Rz

(
∓π

2

)
1

Rz

(
∓π

2

)
2

A
(

0, 0,±π

4

)
H2,

(20)

x

y

z

Cθ
π/4

π/4

Rx(π)1

FIG. 1. (Color online) Three-dimensional space of entanglers A,
showing the six members A(± π

4 , 0, 0),A(0,± π

4 , 0), and A(0, 0, ± π

4 )
of the CNOT equivalence class (solid/green circles) closest to the
identity (open/red circle). The Schrödinger evolution resulting from
Eq. (5) with fixed positive J and Jzz is indicated by the black trajectory,
interrupted by the application of a fast π pulse. The (purple) square at

r = ( π

4 , π

4 , 0) is locally equivalent to the CNOT × SWAP and SWAP ×
CNOT gates, and the blue star at 
r = ( π

4 , π

4 , π

4 ) is locally equivalent to
the SWAP.

where

H ≡ i Rx(π ) Ry

(π

2

)
(21)

is a Hadamard gate.
Another important special case occurs when Jzz vanishes,

often called an XY interaction [28]. Here one can follow
the general two-entangling-pulse protocol detailed below to
generate the canonical CNOT gate (16) or, alternatively, one
can generate the entangler A(π

4 , π
4 , 0) or A(−π

4 ,−π
4 , 0) in

a single shot. These entanglers are locally equivalent to
both

CNOT × SWAP

and

SWAP × CNOT,

where

SWAP ≡

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ (22)

is the SWAP gate. The gates CNOT × SWAP and SWAP × CNOT

are as effective as Eq. (16) in the sense that any quantum
circuit written in terms of CNOT gates can be immedi-
ately rewritten in terms of the swapped versions with no
overhead. These gates are also equivalent to double-CNOT

gates, consisting of a pair targeting each qubit in succession
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(see remark [25]):

SWAP × CNOT = CNOT × (
SWAP CNOT SWAP

)
CNOT × SWAP = (

SWAP CNOT SWAP
) × CNOT.

The effectiveness of the double-CNOT gate is discussed in
Ref. [29], where quantum circuits implementing arbitrary
two-qubit unitary transformations with three CNOT gates
or three double-CNOT gates (the minimum numbers possi-
ble) are given. Pulse sequences for constructing a SWAP ×
CNOT gate from the entangler A(π

4 , π
4 , 0) or A(−π

4 ,−π
4 , 0)

are

SWAP × CNOT = ± i
[
Rx

(
±π

2

)
1

Rx

(π

2

)
2

]

×
[
Ry

(π

2

)
1
Ry

(
±π

2

)
2

]
Rx

(
−π

2

)
2

×A
(
±π

4
,±π

4
, 0

)
Ry

(
−π

2

)
2
. (23)

Operations grouped together in square brackets can be per-
formed simultaneously.

Although CNOT-class entanglers farther from the origin
(and not shown in Fig. 1) can be reached in one shot for
special values of Jzz/J , a faster and more generally applicable
protocol is to interrupt the evolution with a fast refocusing π

pulse applied to either qubit. A pair of such pulses enclosing
an interval of tuned qubit evolution

· · · Rx(−π ) e−i
∫
H dτRx(π ) · · · (24)

can be viewed as transforming the interaction Hamiltonian
during that interval to (note sign changes)

R†
x(π )HRx(π ) = J

(
σx

1 σx
2 − σ

y

1 σ
y

2

) − Jzz σ z
1 σ z

2 , (25)

causing the reflection illustrated in Fig. 1 and allowing the
evolution to reach any entangler on the positive x axis (or
negative axis for J < 0). Similarly, Ry(π ) rotations would
cause a reflection toward the y axis. In what follows we will
apply refocusing pulses to the first qubit.

By a direct calculation of Makhlin invariants it can be shown
that entanglers on the x, y and z axes are locally equivalent to
each other and to the controlled-phase gate

Cθ ≡

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

⎞
⎟⎠∼A

(
θ

4
, 0, 0

)
∼A

(
0,

θ

4
, 0

)

∼ A

(
0, 0,

θ

4

)
. (26)

The entanglers at 
r = (±π
4 , 0, 0), shown in Fig. 1 as

solid/green circles, are thus locally equivalent to the CZ
gate (2), and hence to the CNOT gate. The identity

Rx(−π )1 A
(
±π

8
,±π

8
, z

)
Rx(π )1 = A

(
±π

8
,∓π

8
,−z

)
,

with z arbitrary, allows us to reach

A
(
±π

8
,∓π

8
,−z

)
A

(
±π

8
,±π

8
, z

)
= A

(
±π

4
, 0, 0

)
(27)

after two entangling intervals, out of which a CNOT gate can
be constructed according to

CNOT = e∓i π
4 Ry

(
−π

2

)
1

[
Rx

(
∓π

2

)
1

Rx

(
∓π

2

)
2

]

×A
(
±π

4
, 0, 0

)
Ry

(π

2

)
1
. (28)

More explicitly, we can write this pulse sequence as

CNOT = e∓i π
4 Ry

(
−π

2

)
1

[
Rx

(
∓π

2

)
1

Rx

(
∓π

2

)
2

]

×Rx(−π )1A
(
±π

8
,±π

8
, z

)
Rx(π )1

×A
(
±π

8
,±π

8
, z

)
Ry

(π

2

)
1
, (29)

where either A
(

π
8 , π

8 , z
)

or A
( − π

8 ,−π
8 , z

)
is produced by

the application of H for a time such that
∫

J dτ = π
8 or −π

8 ,
depending on the sign of J .

V. ARBITRARY J ′

Here we assume the Hamiltonian (5) with fixed, time-
independent values of J , Jzz, and J ′ (excluding the case
J 2 + J ′2 = 0). When J ′ �=0 there are terms in the Hamiltonian
that are not in the Cartan subalgebra and that break the
symmetry under qubit exchange. Such terms can be eliminated
by performing a z rotation on the second qubit by an angle
ϕ ≡ arg(J + iJ ′),

R†
z(ϕ)2 HRz(ϕ)2 =

√
J 2 + J ′2 (

σx
1 σx

2 + σ
y

1 σ
y

2

)
+ Jzz σ z

1 σ z
2 , (30)

allowing us to reach the CNOT-class entangler

A
(π

4
, 0, 0

)
= Rz(−ϕ)2 Rx(−π )1 e−iHt

×Rx(π )1 e−iHt Rz(ϕ)2. (31)

Here e−iHt represents the action of bringing the qubits into
resonance for a time

t ≡ π

8
√

J 2 + J ′2
. (32)

The complete pulse sequence in this case can be written as

CNOT = ei( 3π
4 )

[
Ry

(
−π

2

)
1

Rx

(
−π

2

)
2

]
Rz(−ϕ)2

×Rx

(π

2

)
1

e−iHt Rx(π )1 e−iHt Rz(ϕ)2 Ry

(π

2

)
1
.

(33)

VI. DISCUSSION

In conclusion, we have investigated the CNOT gate design
problem for a widely applicable four-dimensional model of
weakly but otherwise arbitrarily coupled qubits. The qubit-
qubit interaction Hamiltonian in the RWA can always be
written in the form (5), which contains only three real coupling
constants. In the common case of physically identical (and
identically biased) qubits, J ′ vanishes, and the most general
interaction is that of the anisotropic Heisenberg model. In this
case the time evolution operator is simply given by Eq. (17),
with entangler coordinates (19). Refocusing π pulses applied
to the first qubit reflect that entangler trajectory to the x axis,

012320-4



QUANTUM LOGIC WITH WEAKLY COUPLED QUBITS PHYSICAL REVIEW A 81, 012320 (2010)

leading to the CNOT pulse sequence (29). We note that when
J ′ = 0 the entangling pulses can be generated with either
time-independent or time-dependent interaction parameters
J and Jzz. The case when J ′ �= 0 follows similarly after an
additional single-qubit rotation Rz(ϕ)2, leading to the pulse
sequence (33). Here, however, the entanglers are generated
with fixed interaction parameters by bringing the qubits into
resonance for a time (32).
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