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Current quantum computing architectures lack the size and fidelity required for universal fault-tolerant
operation, limiting the practical implementation of key quantum algorithms to all but the smallest problem
sizes. In this work we propose an alternative method for general-purpose quantum computation that is ideally
suited for such “prethreshold” superconducting hardware. Computations are performed in the n-dimensional
single-excitation subspace (SES) of a system of n tunably coupled superconducting qubits. The approach is not
scalable, but allows many operations in the unitary group SU(n) to be implemented by a single application of
the Hamiltonian, bypassing the need to decompose a desired unitary into elementary gates. This feature makes
large, nontrivial quantum computations possible within the available coherence time. We show how to use a
programmable SES chip to perform fast amplitude amplification and phase estimation, two versatile quantum
subalgorithms. We also show that an SES processor is well suited for Hamiltonian simulation, specifically
simulation of the Schrodinger equation with a real but otherwise arbitrary n x n Hamiltonian matrix. We discuss
the utility and practicality of such a universal quantum simulator, and propose its application to the study of

realistic atomic and molecular collisions.
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I. INTRODUCTION AND MOTIVATION

A. The promise of quantum computation

A universal quantum computer, if one could be built,
would transform information technology by providing vastly
increased computational power for certain specialized tasks,
such as quantum simulation [1-5] and prime factoriza-
tion [6,7]. Superconducting electrical circuits operating in the
quantum regime [8,9] have emerged as an extremely promising
platform for realizing a large-scale, practical machine. Yet
the quantum algorithms actually demonstrated to date—with
any architecture—have been limited to only tiny, few-qubit
instances [10-33]. In superconducting circuit or circuit QED
implementations, which benefit from the inherent scalability
of modern solid-state electronics, this barrier in qubit number
does not reflect any limitation of the underlying device
fabrication or infrastructure requirements, but rather that larger
problem sizes would also require longer computations and
hence additional coherence. Quantum algorithms typically
have (uncompiled) circuits that are spatially narrow but
temporally very deep. In this work we propose an alternative
approach to superconducting quantum information processing
that allows one to circumvent this restriction and realize much
larger computations within the available coherence time.

A general-purpose quantum computer that is useful for
practical applications must, of course, be error corrected and
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scalable. The standard model of an error-corrected quantum
computer is the gate-based fault-tolerant universal quantum
computer, where “errors” acting on all device components and
at any step during the computation can be corrected as long as
they are weak enough—below an error threshold [34-36]—
and not highly correlated in space or time [37—40]. Scalability
means that the number of physical qubits required to perform a
particular computation—the physical volume of the quantum
computer—scales as a polynomial function (preferably linear)
of the problem size. It also means that it is actually possible,
in practice, to add more qubits.

A realistic picture of an error-corrected superconducting
quantum computer based on the surface code [41,42] is
beginning to emerge [43]. The surface code is the most
practical, best performing fault-tolerant approach known to
date, and is especially amenable to implementation with
superconducting circuit technology. However, the resources
required for a practical machine are considerable: Fowler
et al. [43] estimated that factoring a 2000-bit number would
require about 2 x 10® physical qubits, using Beauregard’s
modular exponentiation [44] and a surface code quantum com-
puter operating at 99.9% fidelity. If there were no decoherence
or noise, and no errors of any kind to correct, then it would
be possible to factor an N-bit number with the Beauregard
algorithm using only 2N + 3 ideal qubits, or 4003 ideal
qubits in the case considered. Thus, error correction imposes
a physical qubit overhead of 2 x 10%/4003 ~ 5 x 10*. Note
that in quantifying the error-correction overhead here we
distinguish between ideal (error free) qubits—the fictional
entities usually appearing in quantum algorithms—and logical
qubits, which must also include the many additional ancillas
necessary for fault-tolerant gate implementation. Similarly,
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You ef al. [45] estimated that it would take about 5 x 10°
physical qubits to calculate the ground-state energy of a
100-spin transverse-field Ising model to 99% accuracy using
the same 99.9%-fidelity surface code quantum computer. This
well known statistical mechanics model maps especially well
to a quantum computer, and for N spins on a line would
require only N + 1 ideal qubits for a calculation of the
ground-state energy (using iterative phase estimation). So the
physical/ideal ratio in this quantum simulation example is
5 x 10%/101 &~ 5 x 10*, the same as for factoring. Therefore
we expect that, in practice, surface code error correction will
impose an overhead of

No. of physical qubits ~ 10%, )

No. of ideal qubits

where we have allowed for future optimization and other
improvements. Crudely, a factor of about 10 in the overhead
estimate comes from replacing ideal qubits with enough logical
qubits to both encode those ideal qubits and to distill the
auxiliary states needed to perform fault-tolerant operations
on them, and a factor of about 10* comes from replacing
each logical qubit with enough physical qubits to enable a
sufficiently long computation.

B. Prethreshold quantum computation

The complexity of building even a small fault-tolerant uni-
versal quantum computer suggests that this objective may take
some time to achieve. In the meantime, experimental quantum
information processing is limited to either the very small
problem sizes discussed above, or to nonuniversal approaches
such as analog quantum simulation [5,46—48], quantum
annealing [49,50], or other special-purpose methods [51,52].
In this work we label any quantum computation without an
error-corrected universal quantum computer as prethreshold,
referring to the threshold theorems of fault-tolerant quantum
computation, because exceeding a fidelity threshold is a
necessary condition for large-scale error correction.

Table I compares three broad approaches to quantum
computation with prethreshold hardware: Small system refers
to gate-based computations with a few qubits, which have been
used to test fundamental concepts of quantum information
processing, demonstrate hardware functionality, and assess
qubit and gate performance. The single-excitation subspace
(SES) method is also general purpose, but should enable
quantum speedup (this is discussed below). However neither
approach is scalable. Analog quantum simulation and other

TABLE 1. Three approaches to prethreshold quantum computa-
tion and simulation. The left column lists the attributes achievable by
an error-corrected universal quantum computer.

small system SES method analog QS/spec. purp.

arb. accuracy
arb. runtime

scalable X J
universal Vv X
speedup 4 V4
X X
X X

X X X &_ X
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scalable, special-purpose approaches trade universality for a
faster route to speedup.

The SES quantum computer described in this work is
universal in the sense that it can implement any gate-based
algorithm or quantum circuit. As a simulator it can directly
emulate any (real) Hamiltonian, including time-dependent
Hamiltonians. When we refer to a simulated Hamiltonian in
this context we mean a Hamiltonian written in some basis—a
real, symmetric matrix with no special structure. We assume
that the Hamiltonian matrix to be simulated has been specified
externally, as is typically the case when using a classical
computer. The SES processor solves the Schrodinger equation
defined by this Hamiltonian.

The superconducting SES method introduced here has
features in common with the single-photon protocols of Reck
et al. [53] and Cerf et al. [54], as both use only one excitation,
and therefore do not utilize genuine entanglement. The optical
realization uses a recursive algorithm to first decompose a
given n x n unitary U of interest into a sequence of SU(2)
beam-splitter transformations. This decomposition determines
an arrangement of beam splitters, phase shifters, and mirrors,
that will unitarily transform n input ports (optical modes)
to n output ports according to the desired U. However,
the superconducting realization is better suited for quantum
simulation than the optical approach because the Hamiltonian
is directly programmed. In particular, to optically simulate
Schrodinger evolution under a given Hamiltonian matrix H,
one would have to first compute the evolution operator e
on a classical computer, and then decompose it into beam-
splitter transformations, but avoiding the classical computation
of e "H! (or the time-ordered exponential if H is time
dependent) is the motivation for the quantum computation
in the first place [55]. Neither the superconducting SES nor
the single-photon optical approaches are scalable—they both
require exponential physical resources—and should not be
considered as viable alternatives to the standard paradigm of
error-corrected universal quantum computation. But they are
both suitable prethreshold methods.

II. QUANTUM COMPUTATION IN THE SES

A. Hardware model: The programmable SES chip

Consider the following model of an array of n coupled
superconducting qubits,

Hy = ZGiCjCi + % Zgii’ ol ® o, (2)

written in the basis of uncoupled-qubit eigenstates. Here i,i’ =

1,2,...,n, and
= : 3)
¢ 0 0/}

The €; are qubit transition energies and the g;; are qubit-qubit
interaction strengths; both are assumed to be tunable. (Factors
of N are suppressed throughout this paper.) g; is a real,
symmetric matrix with vanishing diagonal elements. We also
require microwave pulse control of at least one qubit, and
simultaneous readout (projective measurement in the diagonal
basis) of every qubit. The model (2) describes a fully connected
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FIG. 1. (Color online) Circuit layout for n =5 SES processor,
with the crosses representing Josephson junctions. Each horizontal
circuit is an Xmon qubit with capacitance C, tunable junction
inductance L;, and n — 1 additional coils (each with self-inductance
L, and mutual inductance m) for coupling to other qubits. Dotted
lines indicate dc and microwave control lines for each qubit, as well
as readout circuits. Each coupler wire contains a Josephson junction
with inductance L. tuned by a magnetic flux . Control lines for

SES matrix elements g,, ...,g;s are also indicated. This circuit is
discussed further in Appendix B.

MW
RO

network or complete graph of qubits, which we refer to as an
SES processor. This should be contrasted with /ocal quantum
computer models that have coupling only between nearby
qubits (nearest neighbors, for example). The SES method
can be applied with a wide variety of qubit-qubit interaction
types (see Appendix A), but without loss of generality
we restrict ourselves here to the simple ¢* ® o coupling
of (2). Alternatively, tunably coupled resonators (with tunable
frequencies) can be used instead of qubits [56]. Although we
assume an architecture based on superconducting circuits (or
circuit QED), the SES method might apply to other future
architectures as well.

The quantum computer model (2) might be considered
unscalable, because of the O(n?) tunable coupling circuits
and wires, a position that we also adopt here. In gate-based
universal quantum computation, the fully connected and local
quantum computer models are equivalent in the sense that any
quantum circuit implemented by a fully connected quantum
computer can be implemented by a local quantum computer
after adding chains of SWAP gates, which only introduce
polynomial overhead. However, this equivalence is restricted
to the standard gate-based approach and does not apply here.

Superconducting qubits have been reviewed in Refs. [8]
and [9]. Although the model (2) can be realized with several
qubit designs, the transmon qubit [57] currently has the best
performance [58—-61]. For concreteness we assume a qubit
frequency € /27 in the range of 5.45 to 5.55 GHz and coupling
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strength g/2m in the range —50 to 50 MHz. An n-qubit
SES processor also requires n(n — 1)/2 coupler circuits and
the associated wires or waveguides. A variety of tunable
couplers can be used for this purpose. Here we consider
a modification of the tunable inductive coupler developed
by Chen et al. [61] for superconducting Xmon qubits; this
design has been demonstrated to implement tunability without
compromising high coherence. Our modification replaces the
direct electrical connection of each qubit to a coupler circuit
wire with an inductive coupling to the wire, which scales
better. An SES chip layout that avoids excessive crossovers
is illustrated in Fig. 1. The tunable interaction strength g for
this coupler design is derived in Appendix B.

B. Single-excitation subspace

The idea we explore in this paper is to perform a quantum
computation in the n-dimensional single-excitation subspace
of the full 2"-dimensional Hilbert space. This is the subspace
spanned by the computational basis states

|l')ECJ-L|00-~'0>:|O~'~1,‘"-0), “)

withi = 1,2, ...,n. We call the set of |i) the SES basis states.
It is simple to prepare the quantum computer in an SES basis
state from the ground state |00 - - - 0), and it will remain there
with high probability if the following conditions are satisfied:

(1) The coupling strengths |g;;/| are much smaller than the
€;, which is usually well satisfied in superconducting circuits.

(2) Single-qubit operations such as w and /2 rotations
about the x or y axes are not used during the computation.
However, 27 rotations are permitted and are very useful (these
can be implemented as z rotations, which do not require
microwaves).  rotations about x or y can be used to prepare
SES basis states from the system ground state |00 - - - 0).

(3) The quantum computation time is significantly shorter
than the single-qubit population relaxation time 7.

An SES pure state is of the form

W) => ali), Y lal>=1. ©)
i=1 i=1

For example, the states (5) include the maximally entangled
W-type state

D)+ 12)+ -+ [n)
Jn

[10---0) +01---0) +---+00---1)

= . (6)
NG

Although the state (6) is entangled and could be used to violate
Bell’s inequality, the entanglement is somewhat artificial [62]
as there is only one “particle.”

|unif)

C. SES Hamiltonian

The advantage of working in the SES can be understood
from the following expression for the SES matrix elements of
model (2), namely

Hiir = (i|Hyeli') = € 8iir + giir- (N

062309-3



MICHAEL R. GELLER et al.

Because the diagonal and off-diagonal elements are directly
and independently controlled by the qubit frequencies and
coupling strengths, respectively, we have a high degree of
programmability of the SES component of the quantum com-
puter’s Hamiltonian. This property allows many n-dimensional
unitary operations to be carried out in a single step, bypassing
the need to decompose into elementary gates, and also
enables the direct quantum simulation of real but otherwise
arbitrary time-dependent Hamiltonians. However, we have
some restrictions:

(1) H;i is always real, whereas the most general Hamil-
tonian matrix is complex Hermitian. The experimentally
available control parameters, consisting of n qubit frequencies
and n(n — 1)/2 coupling strengths, are sufficient to control the
n(n + 1)/2 independent parameters of ann x n real symmetric
matrix.

(2) There are experimental limitations on the range of
values that the ¢; and g;; can take. We define gn.x to be the
magnitude of the largest coupling available in a particular
experimental realization; a current realistic value is about
50 MHz.

We will leave the discussion of possible generalizations to
complex SES Hamiltonians for future work. The limitations
on the ranges of the ¢; and g;;» do not, by themselves, limit
the class of Hamiltonians that can be simulated, because a
model Hamiltonian intended for simulation is first rescaled to
conform to that of the SES chip (this is explained below).

It will be useful to refer to a “typical” SES Hamiltonian H,
which we assume to have the following properties: H is a real,
symmetric matrix with each element taking values in the range
—Zmax tO gmax. This form follows from (7) after removing an
unimportant term proportional to the identity matrix,

H — H — sl ®)

where .t is a convenient (possibly time-dependent) reference
frequency. Then we assume that the qubit frequencies ¢; can
be tuned within £ g« of wrr, and we assume that the couplers
can be tuned between — gnax t0 gmax- A possible choice for ¢
is the mean qubit frequency (1/n) ), ;.

It will also be useful to consider the statistical properties of
an ensemble of typical SES matrices. We can always write a
time-independent SES Hamiltonian in the standard form

H = 8max K, (9)

where K is a real symmetric matrix with every element
satisfying

-1 <Ky < 1. (10)

We define a real random matrix ensemble of dimension # as
follows: The n diagonal elements are independent random vari-
ables K;;, each uniformly distributed between —1 and 1. The
n(n — 1)/2 elements K;_; are independent random variables
also uniformly distributed between —1 and 1. The remaining
elements K;.; are fixed by the symmetry requirement. The
standard deviation of each element is o, = 1/+/3.

The first property we study is the mean spectral band-
width of K, the difference between the largest and smallest
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FIG. 2. (Color online) Spectral bandwidth of K matrices versus
n. Data (open circles) are averaged over 1000 random instances of
K. The solid line is the function 1.58 x n%%. The dashed line is the
function (4/+/3) x /.

eigenvalues. Let A} < A, < -+ - < A, be the ordered eigenval-
ues of K. From the Wigner semicircle law [63] we expect that,
in the large-n limit,

d — 21— do/n = St (an

where the overbar denotes averaging over the ensemble defined
above. The bandwidth of typical SES states in an n-qubit
processor therefore scales at large n as

Emax - Emin - % &max l’l% (12)

In Figs. 2 and 3 we plot the simulated bandwidth of K as
a function of n, and compare the simulation data with the
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FIG. 3. (Color online) Spectral bandwidth for larger n. The solid
line is the function 2.06 x n®>2. The dashed line is the function

(4/+/3) x /.
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asymptotic form (11). From Fig. 2 we conclude that for modest
SES matrix sizes,

Emax - Emin ~ 158 &max n0-58~ (13)

The second property we study is the mean level spacing of
K. Let

AL =

n—1

1

— > i A (14)
i=1

be the mean spacing between adjacent eigenvalues. Averag-

ing (14) over the ensemble defined above, we expect that in

the large-n limit

A A -3, (15)

In Fig. 4 we plot the simulated average level spacing of K
as a function of n, and compare the simulation data with the
asymptotic form (15). From Fig. 4 we conclude that for modest
SES matrix sizes,

AE 2 1.89 guax n %, (16)

The results (13) and (16) give two relevant energy scales
present in a typical SES spectrum.

Any unitary quantum circuit or operation acting on g qubits
can be mapped to and implemented on an SES chip with
n = 29 qubits (this exponential growth of n is what makes the
SES method unscalable). We can say that the SES processor
simulates the g-qubit system, with the advantage of being able
to perform multiqubit operations in a single step. This feature
provides the computational advantage of the SES approach
and is illustrated throughout this paper. It will be useful to
specify an explicit one-to-one mapping between the bases of
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the associated Hilbert spaces, which we take to be

[00---0) «<— |1)=1]10---0),
[00---1) «— [2) =|01---0),

[11---1) < |29) = [00---1). (17)
~——— ~——
g qubits n=24 qubits

The left-hand sides are the standard computational basis states
of the simulated g-qubit system (not to be confused with
the computational basis states of the n-qubit SES processor).
Similarly, any unitary quantum circuit or operation acting on
q d-level qudits can be mapped to and implemented on an
SES processor with n = d? qubits; the natural mapping is a
straightforward generalization of (17).

The operation of a real SES chip will be nonideal, and it
is important to consider the effects of decoherence and other
errors on its performance. This is discussed in detail in Sec. IV.
The main conclusion is that although decoherence and unitary
control errors do limit the accuracy of an SES computation or
simulation, the effects of decoherence are much less restrictive
here than with the standard gate-based approach (hence the
ability to implement larger problem sizes). In practice, the
complexity of fabricating a large programmable SES chip will
likely limit its application before decoherence does.

III. APPLICATIONS OF THE SES METHOD

A. Uniform state preparation

Our first example will be to generate the entangled state (6)
in a single step: Consider the real n x n Hamiltonian

H= gmasztarv (18)
where
11 1
L5 3 3
1
5 0 0 0
1
Kw=|2 0 0 L (19)
1
5 00 - 0

The Hamiltonian (18) describes a graph where qubit 1 is sym-
metrically coupled to all other qubits, which are themselves
uncoupled (a star network). The case of 9 qubits is shown in
Fig. 5.

The SES chip is initially prepared in basis state |1). Only
two eigenfunctions—Ilet us call them |1/, )—have overlap with
[1), so the evolution is effectively a two-channel problem.
The spectrum is as follows: States |+) have energy Ey =
gmax(1 & /n)/2; all other eigenfunctions are degenerate with
E = 0. Evolution for half a period corresponding to the

splitting /7 gmax, namely

T
tge = ——, (20)
N gmax
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6

FIG. 5. Star network for n = 9 uniform state preparation.

leads to the desired operation

1 L 1
2 2
Hige || - : 0 0 1 f
Mgy — . I
e [1)= exp lﬁ : [1) = |unif),
L0 0
(21)

apart from a phase. This can be implemented in a few ns with
superconducting circuits.

We would like to make a few remarks that apply to this
application, as well as to many others: First, the magnitude
of the interaction strength used in (18) is arbitrary; any
convenient interaction strength g¢ satisfying 0 < go < gmax 18
sufficient. To make the operation as fast as possible, however,
we have chosen gg = gmax- Second, it is not necessary to use a
time-independent interaction strength. Any single-step “pulse
sequence” of the form

e~ Mae (22)

with
H =gk (23)
and K a constant (time-independent) matrix, satisfies an area

theorem

T e—ifg(T)K dt — e—thqc’ (24)

where
/g(t)dt = 80 lqc (25)

and T is the time-ordering operator. The identity (24) implies
that any time-dependent coupling g(¢) satisfying (25) can be
used, simplifying experimental implementation.

B. Grover search algorithm

Next we show how to use a programmable SES chip to
implement the Grover search algorithm [64], which introduced
the powerful amplitude amplification technique that has led to
speedup for many other algorithms. Grover’s procedure for a
single marked state |i) in a database of size n is

(WO lunif) ~ [i), with B=|ZJn]. (26)

PHYSICAL REVIEW A 91, 062309 (2015)

Here

W = 2|unif) (unif| — 7

2—n 2 2 2
2 2—n 2 2
1
L 2 2—n 2 (27)
n . . .
2 2 2 2—n

is a unitary operator that performs an inversion about the
average,

0; = B 28)

1

is the oracle, a diagonal matrix with the ith element equal
to —1 and the others equal to 1, and |unif) is the uniform
superposition (6).

The W operator (27) can be implemented in a single step
by using the SES Hamiltonian H = gmax Kfun, With

o 1 1 --- 1
1 0o 1 --- 1
1 1 0 --- 1
Kw=1|. . . e (29)
1 1 1 0
for a time
b4
th = . (30)
n Zmax
This leads to the desired operation
0 1 1
1 0
T
exp| —i— |- =+ . =W, 31)
1 1 0

up to a phase factor.

The oracle (28) can be simply generated by a 27 rotation
on qubit i. This 27 rotation can be implemented as a z
rotation, which does not require microwaves. Each iteration
of the amplitude amplification can therefore be implemented
in just two steps, for any n, allowing even small SES chips to
perform computations that would otherwise require thousands
of elementary gates.

C. Eigenvalue estimation

Next we show how to use a programmable SES processor to
implement energy eigenvalue estimation, an application of the

062309-6
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FIG. 6. Quantum circuit to compute the mth bit of ¢. Here H is
the Hadamard gate, U = ¢~/ with H the model Hamiltonian and ¢
the evolution time, and R, is a z rotation. |v) is an eigenfunction of
H . The last operation is measurement of the first qubit in the diagonal
basis; the result is x,, € {0,1}.

important phase estimation algorithm [65-67] that is used in
many other applications. This example also illustrates how to
translate an algorithm expressed in quantum circuit language
to an SES protocol.

The eigenvalue estimation procedure calculates an M -bit

estimate of the phase ¢ of the eigenvalue e " 279 accumulated
by an eigenfunction |y) under the action of =¥’ If the
evolution time 7 is chosen to satisfy t < 2/ E, the eigenvalue
E (assumed to be positive) can be calculated from E = 2w ¢ /¢.
To reduce the number of required qubits we use the iterative
phase estimation circuit [68] shown in Fig. 6, which uses
only a single ancilla. As the number M of desired bits of
precision increases, one either performs a longer quantum
computation—reusing the eigenfunction |¢)—or performs
M computations in series, each requiring an eigenfunction
preparation step.

The algorithm measures M bits of ¢ one at a time, beginning
with the least significant bit x,;, and working backwards to the
most significant bit x;. Each step (except for the first) uses
knowledge of the previously measured bits. We denote the
bit being measured in a given step by m, with m = M, M —
I,M —2, ...,1. The circuit for step m is shown in Fig. 6,
where the rotation angle is

M
- X
om =7 Y S (32)
j=m+1

which depends on the values of the previously measured bits
Xm+1s -+ s XM-

The main practical difficulty with prethreshold applications
of phase estimation is implementation of the

controlled-e 1 H#2"" (33)

operation, which typically requires a Trotter approximation
(and, in addition, a sparse Hamiltonian). However, the SES
method allows any controlled unitary

controlled-U (34)

to be implemented in a single step when U can (which is
possible when U is symmetric). To see this, assume that U =
e~ "4 where A isareal N x N matrix, and write the 2N x 2N
matrix (34) as

controlled-U = [0)(0| ® Iyxy + [1){1|® e, (35)

where [ is the identity matrix and where we take the first qubit
to be the control. Next map the 2N -dimensional Hilbert space

PHYSICAL REVIEW A 91, 062309 (2015)

to the SES processor according to
0) ® [1) <— [1),
0) ® |2) «— [2),

|0) ® [N) «— |N),
D ®|1) «<— [N+1),
1) ®12) «— [N +2),

[1) ® IN) <— |2N). (36)

The operation (34) can therefore be written as

0
g o

which can be implemented by an SES processor in a single
step. The elements 0 and A on the right-hand side of (37) are
each N x N matrices, with 0 the zero (null) matrix.

We turn now to the SES eigenvalue estimation protocol:
Let H be areal N x N model Hamiltonian on which we wish
to perform phase estimation, and denote the basis of H by
{11),]12), ...,|N)}. The SES implementation requires n = 2N
qubits. The first objective in the protocol is to prepare the initial
state

controlled-e 4 = exp [—i <g

10) ® [¥) (38)

of Fig. 6, where |¢) is an eigenfunction of H. We will perform
the state preparation adiabatically, which is restricted to states
of minimum or maximum energy; here we prepare the ground
state of H and estimate the ground-state energy E.

Adiabatic ground state preparation is usually implemented
by programming a convenient initial Hamiltonian H, that
does not commute with H, relaxing into the ground state of
Hj, and then slowly changing the system Hamiltonian from
Hy to H. However, in the SES approach it is necessary to
use nonequilibrium adiabatic evolution, because the physical
ground state |0)®" is outside the SES. The processor is initially
prepared in the basis state |1). The next step is to produce the
SES state equivalent to

1) +12) +---+ [N)

10) ® , (39
VN
which, according to the map (36), is
1 N4 |N
D+ 12)+---+] )_ 40)

VN

Note that (40) is a uniform superposition of the first half of
SES basis states. To prepare this we use a variation of (21),
namely

ID+12)+---+IN)
VN ’

e M| 1) = (41)

where

KS ar 0
H = gmax < Ot 0) (42)
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is a 2N x 2N block-diagonal Hamiltonian. Here K, is an
N x N matrix of the form (19), and 0 is the N x N zero
matrix. The operation time in (41) is

T
te = —. (43)
& \/N 8max
This completes the preparation of the input (40) to the adiabatic
evolution stage.
At the beginning of the adiabatic evolution stage we
program the SES Hamiltonian to be

Hy | 0
= (54) (44
where Hp is an N x N Hamiltonian with the following
properties:
(1) Hp is real.
(2) [Ho,H]# 0.
(3) The ground state of Hy is the uniform superposition
state (40).
(4) The ground state is separated from the other eigenstates
by an energy gap that is a nondecreasing function of N.
A possible choice when N is a power of two is the
“transverse field” Hamiltonian
log N
Hy = —gmax Z Gix~ (45)
i=1

However, the explicit matrix forms of (45) for large N are
complicated and the tensor-product structure is somewhat
artificial for our purposes. Instead we use

Hy = —gmax Krun, (46)

where Ky is an N x N matrix of the form (29). The initial
Hamiltonian (46) has eigenvalues

Ek=-gmm%fyk ke{0,1,....,N —1}, (47)
j=1
where ¢ = ¢?*/V The ground state is

1

1 1
VAR “

1
with energy Eg = —(N — 1)gmax- The remaining eigenfunc-

tions are degenerate with energy Ej.o = gmax-
At later times 0 < 7 < fprep the SES Hamiltonian is varied

as
toep —t (Hy | 0 t (L]0
7ﬂn=£———< )+——( . (49)
forep 0[0)" 1,0 |0
Here
i | Hipr
5 = maxii | Hiil (50)
gmax

is a positive constant that ensures that %H can be programmed
into the SES processor. This stage of the protocol is standard:
In the long-#,, adiabatic limit, the processor will be found at
t = Iprep in the desired state (38) with high probability.
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Next we implement the SES equivalent of the circuit given
in Fig. 6, beginning with the Hadamard gate

H 1 /1 1 51)
NZANSEES VA
which we write as

H:—uC O)w, (52)

0 -1
where
sin Z cos &
u= ( 8 . . 5) . (53)
—cosg sing

Then we have
H® Inxy = — ® Inxn) Ko ' ® Iyxw),  (54)
where K, is the 2N x 2N diagonal matrix

1 0 0 0 0 O 0 O
o1 o0 o O o o0 O

0 0 . 0 0 0 0 0
0 0 0 1 O 0 0 0
K, = (55)
0 0 0 0 -1 O 0 0
0 0 0 0 O 0 0
0 0 0 0 O 0 -1 0
0 0 0 0 O 0 0 -1
B 7 0 0 0 0 0\
0 0 0 0 O
0 0 = 0 0 O
= —exp | —i . (56)

This leads to

e = H® Iyxn, (57)
where H is the 2N x 2N Hamiltonian H = gnax K, with
| —cos (%) sin (%) Inxn

cos? (%) Inxw

Sin2 (%) IN><N

—cos (%) sin () Inxn

K =

(58)

and
T

fge = (59)

g max

The controlled-evolution step has been discussed above
in (34) through (37). Applying this result to the operation (33)

leads to
0 m—1
H) 2 t] . (60)

Here 0 and H are N x N matrices, with H the model
Hamiltonian, which we assume to be real. Now let A be defined

controlled-e#2""'" = exp [—i (g
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as in (50). Then

controlled-e~ H2"'1 — o=iMiac (61)
where
0| 0
H=( > and g = A2"7 1. (62)
0| H 4e

To perform the controlled-evolution operation, the Hamilto-
nian in (62) is to be programmed into the SES processor for a

time 7y.
Finally, we implement the z rotation
R (@) ® Inxn, (63)
where
e*iw/Z

R ()= e 7 = ( 0 e,-g/z) O
This operation can be generated by applying the 2N x 2N
Hamiltonian H = gmax K for a time t4c = @/2gmax-

The final stage of the eigenvalue estimation protocol is the
SES equivalent of ancilla measurement (see Fig. 6), resulting in
the observed value x,, € {0,1}. One way to do this is to perform
a simultaneous projective measurement of every qubit in the
SES processor. If the excitation at iteration m is observed to
be in qubit i, we conclude that

{O if 1<i<N,
X =

<
65
1 if N+1<i<2N. (63)

This result follows from the correspondence (36). The dis-
advantage of this naive measurement protocol is that it fully
collapses the SES wave function, so the eigenfunction |y)
needs to be re-prepared before the next iteration.

A simple variation of this protocol, however, avoids the
state re-preparation step about half the time: Here we simulta-
neously measure only the first N (=n/2) qubits. In this case we
might observe the excitation to be in qubit i € {1,2,...,N},
or we may not find it at all. Then we conclude that

0 if the excitation is observed,
X = . oo (66)
1 if the excitation is not observed.
If x,, = 0 the measurement fully collapses the state, and we
must re-prepare the eigenfunction |¢). But if x,, = 1 we have
learned only that the excitation is in the subspace spanned by

{15 +1).]5+2),....Im}, 67)

which yields no information about |y/).

It is possible to avoid the eigenfunction re-preparation
step altogether by using an example of the ancilla-assisted
SES method: Here we couple an n-qubit SES processor to
an ancilla qubit, with a degree of connectivity that depends
on the application. (The measurement application requires
coupling to n/2 qubits.) Alternatively, we can regard one
of the qubits in a fully connected array of n 4 1 qubits as
an ancilla. The essential point is that the device now leaves
the single-excitation subspace. The only disadvantage of this
measurement protocol is that it requires N steps per iteration.

The idea is to measure the multiqubit operator

0fR0; ® - ®oy ® Inxn, (68)

PHYSICAL REVIEW A 91, 062309 (2015)

()

FIG. 7. Quantum circuit to measure the parity operator (68). The
first qubit is an ancilla and the others are the first N qubits of the
2N-qubit SES processor. The circuit uses N CNOT gates.

which projects qubits i = 1,2,...,N into a state of definite
parity. If at iteration m the eigenvalue of (68) is observed
to be —1, the single excitation is in the subspace spanned
by {|1),|2),...,IN)} and we conclude that x,, = 0. If the
eigenvalue is +1, the excitation is in the space spanned by
{IN+1),|N+2),...,]2N)} and we conclude x,, = 1. The
measurement of the operator (68) can be carried out with a
single ancilla qubit using the circuit given in Fig. 7.

It is useful to discuss the nonscalability of the SES
method in the context of the eigenvalue estimation application.
Typically N is exponentially large in the number of particles,
making classical simulation impractical. An ideal (error-free)
quantum computer would require only O(log N) qubits to
run the phase estimation circuit of Fig. 6. However, the
large circuit depths required for the controlled evolutions
have limited prethreshold applications to very small examples.
The SES implementation requires 2N qubits, but can perform
the controlled evolutions in a single step.

D. Schrodinger equation solver for time-independent
Hamiltonian matrices

Next we consider the problem of wave function propagation
by areal but otherwise arbitrary time-independent Hamiltonian
H7

l¥) — e y). (69)

This application, and especially its time-dependent extension
discussed below, play to the strengths of the SES chip and
suggest a useful prethreshold computational tool. We assume
that H is a real, symmetric n x n matrix, and we call H the
model Hamiltonian. Here 7 is the length of simulated time (for
example, the duration of some physical process). To map this
problem to an SES processor we first find the smallest positive
constant A such that every matrix element of

H — const x [
H = — (70)

is between — gmax and gmax. Here I is the n x n identity matrix.
When A > 1 we are “compressing” the model Hamiltonian
down to that of the SES chip, whereas when 0 <A < 1
we are expanding it. Such a rescaling is required because
the characteristic energy scales of the model and SES chip
are usually different. With the SES processor we then perform
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the equivalent evolution

[y) — e M |yr), (71)
where
fge = A1 (72)

The total time required to perform a single run of the quantum
computation is therefore

Iqu = fqc + fmeas» (73)

where fneqs 1S the qubit measurement time. For supercon-
ducting qubits we can assume fye,s to be about 100 ns [69],
which includes the time needed for classical post-processing.
(Note that the shortest high-fidelity readout time demonstrated
to date, including resonator ring-down time, is closer to
300 ns [70]. The faster “catch-disperse-release” protocol of
Ref. [69] has not yet been demonstrated).

A single run of the quantum computer (with readout)
simulates a single repetition of an experiment: Initialization,
Schrodinger evolution, and measurement. It is important to
emphasize that such a protocol implements a weak simulation,
providing a single sample from the distribution of possible
measurement outcomes, not the probability distributions them-
selves as is normally computed classically. (This limitation is
not specific to the SES method and applies to state propagation
with an error-corrected universal quantum computer as well).
For some applications the distinction between weak and strong
simulation might be minor. However in other cases it is nec-
essary to estimate the occupation probabilities py,ps, ...,p,
accurately. We discuss the runtime overhead for strong SES
simulation below in Sec. IITF.

How long does a classical simulation of (69) take? This
of course depends on the model Hamiltonian H (including
its dimension n and spectral norm), the value of ¢, and the
classical processor and simulation algorithm used. To assess
the possibility of quantum speedup, however, it is sufficient
to find the minimum time #.| required to classically simulate a
given run of an ideal SES processor, with H a “typical” SES
Hamiltonian (a real n x n random symmetric matrix with all
entries between —gmax and gmax), and #y significantly less than
the coherence time. For this analysis we consider the case

foe = 100 ns and gz“"‘“ = 50 MHz. (74)
T

The total quantum computation time (73) in this example is
therefore about

fqo =200 ns (SES chip). (75)

We have studied the classical simulation runtime #. for
this problem, comparing, on a single core [71], three standard
numerical algorithms:

(1) State propagation via Hamiltonian diagonalization.
For a given H, the unitary matrix V of its eigenvectors and
diagonal matrix D of its eigenvalues are first computed. Then
we numerically compute the product

Ve Pl yilyy, (76)

where |) is the initial state.
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FIG. 8. (Color online) Classical simulation runtime on a single
core [71] versus matrix dimension #n, in seconds. Here the compu-
tational task is solution of the Schrodinger equation with a time-
independent Hamiltonian by matrix diagonalization. Data (circles)
were determined by averaging the runtimes over 1000 random
instances of H. The solid line is the function t4 = 203 x n>'* ns;
the scaling becomes O(n?) at larger n. The runtime for a 630 x 630
Hamiltonian is about 200 ms.

(2) Matrix exponentiation via Padé approximation with
scaling and squaring [72]. Here we directly compute
exp(—iHiq.) and then multiply by [v/).

(3) Krylov subspace projection [73]. In this case the
product exp(—iHiq)|¥) itself is directly calculated.

In all cases we assume an initial state |1) of the form

1

0
, (77)

0

which corresponds to a single SES basis state, and we
average the computation times over 1000 random instances
of H. Although the three methods have similar speed and
accuracy for the particular problem simulated here, the matrix
diagonalization method was the fastest, followed by matrix
exponentiation. We also tested Runge-Kutta integration and
matrix exponentiation via Chebychev polynomial expan-
sion [74], which were not competitive with the above methods
for the specific application considered. In Fig. 8 we plot the
measured single-core runtimes for the optimal classical algo-
rithm (Hamiltonian diagonalization) versus matrix dimension
n. We observe that the quantum simulation time (75) is much
shorter than all of the single-core runtimes considered.

Our objective is to achieve speedup relative to a state-of-the-
art supercomputer, not a single core. The classical simulation
runtime ¢, should then be evaluated on a supercomputer,
using an optimally distributed parallel algorithm. However, we
can bound the parallel performance by using the single-core
result and assuming perfect parallelization efficiency: We
approximate a petaflop supercomputer by 10° gigaflop cores,
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and conclude that the classical runtime can be no shorter
than 107° times the single-core time. (This is a conservative
estimate because high parallelization efficiency is not expected
for problem sizes smaller than the number of cores). We
therefore conclude that, for this particular state propagation
application, the classical simulation runtime is no shorter than

tq =203 x n*1* fs (classical supercomputer), (78)

while the quantum simulation can be performed in a few
hundred nanoseconds. The break-even dimension according
to (78) is about n = 630 qubits. This is quite large given the
full connectivity requirement, and it is not known whether such
a device could be built in practice. However the break-even
dimension in the time-dependent case (discussed below) is
considerably smaller.

In our estimate of the classical simulation runtime we have
not included the time needed to store the Hamiltonian matrix
in memory or perhaps compute it from a separate procedure.
Similarly, for the quantum simulation time estimate we have
not included the time required to send the n(n + 1)/2 controls
to the qubits and couplers before the simulation. Furthermore,
not every n > 630 simulation will exhibit a speedup; this
depends on the particular simulated Hamiltonian and the
simulated time duration ¢.

An interesting aspect of the Schrodinger equation solver
is that the complexity is O(1): The quantum simulation time
is independent of n. This implies that the SES method yields
an exponential speedup for this application. However such
complexity considerations are probably not meaningful given
that the method is not scalable.

E. Schrodinger equation solver for time-dependent
Hamiltonians: Simulation of molecular collisions

Finally, we discuss what is perhaps the most interesting
application of the SES method known to date, the solution
of the Schrodinger equation with a time-dependent Hamil-
tonian. This is a straightforward generalization of the time-
independent case, but we expect the time-dependent case to be
more useful in practice. In this section we provide a detailed
example of time-dependent Hamiltonian simulation with a
small SES chip.

Time-dependent Hamiltonian simulation is implemented
by varying the SES matrix elements (7) according to some
protocol, which can be done with nanosecond resolution. This
does not require any additional runtime, the time complexity
is still constant, and the total quantum simulation runtime
for a 100 ns evolution is again given by (73). Although the
classical runtime is problem specific, we can again assess
the possibility of speedup by estimating the time required to
classically simulate an ideal SES processor, in this case with all
n? matrix elements varying on a nanosecond time scale. There
are two types of numerical simulation algorithms we consider:

(1) Runge-Kutta integration. Here we solve the system of
coupled ordinary differential equations

a =—iHa. (79)

Although the Runge-Kutta runtime is slower than diagonal-
ization for a time-independent Hamiltonian, it does not slow
down significantly when H is time dependent.
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FIG. 9. (Color online) Classical simulation runtime on a single
core [71] versus matrix dimension n, in seconds. Here the compu-
tational task is solution of the Schrodinger equation with a time-
dependent Hamiltonian by Runge-Kutta integration. Data (circles)
were determined by averaging the runtimes over 1000 random
instances of 7. The solid line is the function 74 = 1.38 x n'? ms.
The simulation time for a 50 x 50 Hamiltonian is about 200 ms.

(2) Time slicing combined with diagonalization. This algo-
rithm is based on an approximate decomposition of the time-
dependent problem into a sequence of constant-Hamiltonian
intervals, each of width Ar. The time Az must be significantly
smaller than the characteristic time scale of matrix element
variation, for example A¢ = 0.1 ns. Then

fge
At
time slices are required, and the classical runtime using this
approach will be approximately Ngjc. times longer than (78).
For the 100 ns evolution, Ny = 1000.

We find that Runge-Kutta integration is the fastest approach
for the specific problem considered here. In Fig. 9 we plot
the measured single-core runtimes for the optimal classical
algorithm (Runge-Kutta integration) versus matrix dimension
n. Bounding the performance of this algorithm on a petaflop
supercomputer by including a factor of 10~ (recall discussion
from Sec. IIID), we conclude that for this application the
classical simulation runtime is no shorter than

Nglice = (80)

1.29

tq = 1.38 x n"~" ns (classical supercomputer), (81)

while the quantum simulation can be performed in a few
hundred nanoseconds. The break-even dimension according
to (81) is around n = 50 qubits. As expected, this value is
much smaller than the break-even in the time-independent
case. An SES Schrodinger equation solver of modest size might
be able to achieve quantum speedup relative to a petaflop
supercomputer.

We turn now to a detailed example of time-dependent
Hamiltonian simulation with a small programmable SES chip.
One particularly interesting application of the method is to
the quantum simulation of atomic and molecular collisions.
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Collisions are especially well suited for SES simulation
because they typically involve modest Hilbert spaces—tens
to thousands of channels—and in the time-dependent formu-
lation involve Hamiltonians that are naturally bounded in time.
In particular, the initial and final asymptotic Hamiltonians
for neutral scatterers are diagonal (in the adiabatic basis),
whereas the off-diagonal elements rapidly turn on and then
off during the collision itself, inducing transitions between the
channels. Although the Born-Oppenheimer potential energy
surfaces used here do require a classically inefficient elec-
tronic structure precomputation, the largest potential energy
surface calculations [75,76] are far ahead of the largest
classical collision simulations performed to date [77-79].
SES implementation of the semiclassical Born-Oppenheimer
problem therefore has the potential to push molecular collision
simulations to new unexplored regimes. (We note that there
are related chemical reaction simulation methods developed
by Lidar et al. [80] and by Kassal et al. [81] that do not
require a precomputed potential surface, but these require an
error-corrected quantum computer to implement and are not
prethreshold methods). Another useful feature of the scattering
application is the convenient mapping of each molecular
channel to a single SES basis state, which is possible because
of the similar way initial states are prepared and final states
measured in both the processor and a collision experiment.
We also find that the atomic physics time and energy scales
turn out to map nicely to that of superconducting qubits after
optimal rescaling.

To illustrate this application we consider a three-channel
Na-He collision (an unpublished preliminary account of this
application is given in Ref. [82]). The three channels included
in our model and their correspondence with SES basis states
are

Na(3s) + He(1s?) [1 %] «— |1) (82)
and
Na(3p) + He(1s?) [1 *[1;2%24] «— (2),]3).  (83)

The square brackets indicate the molecular structure of the
channels. In this model, the helium atom remains in its
electronic ground state 152 during the collision (the excitation
energies of its excited states are too high to be relevant here),
whereas sodium can be excited from its ground state 3s to
either of two excited states, both denoted by 3p. In the
physical system, the channels (82) and (83) have additional
degeneracies, including spin degeneracies, but they do not
affect the collision probabilities calculated here. Precomputed
Born-Oppenheimer energies and nonadiabatic couplings of
the Na-He system [83] are stored for fixed values of the
internuclear distance R, and we make a standard semiclassical
(high energy) approximation and assume that the scatterers
follow a straight-line trajectory. Then, for an impact occurring
at a time f, the internuclear separation varies according to

R = /b + v}t — 1)?, (84)

where vy is the initial relative velocity and b the impact
parameter of the collision. The relative velocity is related to the
collision energy in the center-of-mass frame through E ., =
uv% /2, where u is the reduced mass. The procedure outlined
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FIG. 10. (Color online) Time dependence of the matrix elements
of the scattering Hamiltonian for a collision with vy = 2.0 and b =
0.5 in atomic units. The diagonal matrix elements (solid curves)
are similar in magnitude and cannot be resolved in this figure. The
off-diagonal elements (dashed curves) are much smaller than the
diagonal elements and also cannot be resolved here. In this example
the collision energy is E., = 341 keV and the impact occurs at t) =
6 x 107105,

in Appendix C then leads to the scattering Hamiltonian shown
in Fig. 10.

In Fig. 11 we plot the probabilities p;_,;(¢) for the Na-He
system to be found in channel i € {1,2,3} after being initially
prepared in channel 1, the ground state. The final values

1.0 T T T

09} —channel 1 J
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probability
o o
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FIG. 11. (Color) Scattering probabilities p;_,;(t) for a Na-He
collision with vy = 2.0 and b = 0.5 in atomic units. The system
is initially prepared in channel 1. The collision occurs at ) =
6 x 107105,
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P1—i(00) are the probabilities for an elastic (i = 1) or inelastic
(i = 2,3) collision with a given E., and b, which we find to
be

Pl—>1 = 0116,
P12 = 0.038, (85)
Pi1—3 = 0.846.

To simulate this process with a programmable SES chip we
must first rescale the physical or model Hamiltonian so that
it fits on the SES processor. Doing this optimally is critical
to the utility of any time-dependent simulation so we will
discuss it in some detail: Suppose for the moment that our
model Hamiltonian is given by a time-independent n x n real
symmetric matrix H. Dividing H by any positive constant A
while rescaling the evolution time by the same factor obviously
leaves the dynamics invariant. Because we want the quantum
simulation to be as fast as possible, we choose the smallest
value of A that makes H /) compatible with the SES processor
(every matrix element of H/A is between —gmax and gmax)-
As mentioned above, if A > 1 we are compressing the model’s
energy scales to fit on the SES chip, whereas if A < 1 we are
expanding them. This naive approach to rescaling, however,
does not take advantage of the fact that we can always shift
H by a constant (which changes the corresponding states by
a phase factor that we do not measure). Including this gauge
transformation results in the rescaling used above in (70). The
time 7 required to simulate an evolution of duration ¢ is simply
given by (72), but now we will go further and regard (72)
as giving the linear relationship between the simulated and
physical times during a process. To generalize this construction
to atime-dependent model Hamiltonian H (), we first compute
the mean of its diagonal elements,

1 n
c(t) = - ; H;;, (86)

and then find, at each time 7, the smallest positive A such that
every matrix element of
H(t)—c(t) x 1
H(t) = ——— 87

) 0 (87)
is between —gmax and gmax. The function A(¢) defines the re-
sulting nonlinear relation between the physical and simulated
times according to

t

fqe(t) = / Adt. (88)
0

Equation (87) gives the simulated Hamiltonian as a function of
the physical time 7, and (88) is then inverted to find the desired

H(t4c), which in turn is programmed into the SES chip.
Applying this procedure to the Na-He collision problem
results in the rescaling function A shown in Fig. 12 and
the nonlinear time relationship shown in Fig. 13. We note
that the nonlinear energy/time rescaling protocol is extremely
effective at mapping this atomic physics problem to the SES
processor, allowing a single run of the simulation (excluding
measurement) to be completed in about 24 ns. The A function
shown in Fig. 12 assumes gm.x/27m = 30 MHz; if this is
increased to 50 MHz the simulation is completed in 15 ns. Itis
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FIG. 12. (Color online) Rescaling function for the Na-He colli-
sion simulation with gn../2m = 30 MHz. Collision parameters are
vg = 2.0and b = 0.5 in atomic units. We find that A has an asymptotic
value around 107 and reaches 6 x 10® during the collision.

important to emphasize that any positive piecewise continuous
function A(¢) defines a mathematically valid energy/time
rescaling, and that the specific form used in practice should
be determined by hardware considerations, such as qubit
coherence times and control pulse bandwidth. In particular,
A(t) can be chosen to bound both the magnitude of the SES
matrix elements and their rates of change, but we will not
pursue this variation here.

Use of the rescaling function given in Fig. 12 leads to
the SES matrix elements shown in Fig. 14, which bear no

%1071

0 5 10 15 20
tqC (ns)

FIG. 13. (Color online) Nonlinear time scaling for the A(#) given
in Fig. 12. Most of the simulation time is spent near the moment of
collision, #y, and a single run of the simulation is completed in 24 ns.
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FIG. 14. (Color) SES Hamiltonian matrix elements for a Na-He
collision with vy = 2.0 and b = 0.5, in atomic units. Here we assume
that gmax /27 = 30 MHz. At each instant the magnitude of at least
one matrix element achieves its maximum value of 30 MHz, making
the simulation as fast as possible.

resemblance to those of Fig. 10. The corresponding scattering
probabilities during the simulation are shown in Fig. 15.
Compared with Fig. 11, we see that the dynamics near the
moment of collision are rescaled to occupy most of the
simulation. The final scattering probabilities are the same as
in Fig. 11 and are given in (85).
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FIG. 15. (Color) Scattering probabilities p;_,;(r) in the SES
processor for a Na-He collision with vy = 2.0 and b = 0.5 in atomic
units. The dynamics near the moment of collision occupy most of the
simulation.
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F. Strong quantum simulation

As we have emphasized, a single run of the SES chip
provides a single sample from the distribution of possible mea-
surement outcomes—a weak simulation—not the probability
distributions themselves as is normally computed classically.
If the objective is to perform a strong simulation and hence
estimate the n basis state occupation probabilities p;, it is
necessary to repeat the simulation and readout many times. In
this section we discuss the runtime overhead for strong SES
simulation. (The objective considered is that of measuring
occupation probabilities, not probability amplitudes).

Suppose that after some simulation we want to measure
the occupation probability p of one qubit in the SES chip.
We do this by performing the simulation N times, after each
repetition » measuring the qubit in the diagonal basis and
observing x € {0,1}. The estimate

1 N
Pes = r;xr (89)

for p will have a sampling error (standard error of the mean)
given by

P —p) _

E = /var(pey) = < .
vvarpe N S2UN

For example, to ensure that the sampling error is smaller than
1%, it is sufficient to repeat the simulation 2500 times.

The overhead N = 2500 is a worst-case estimate for a 1%
sampling error. If p is known to be small (or close to 1),
fewer repetitions are required. However in this work we restrict
ourselves to the case where measuring p is the objective of a
quantum simulation and is not known a priori.

We turn now to the runtime overhead for estimating every
SES basis state occupation probability p; in an n-qubit
processor. The qubits are measured simultaneously and the
sampling error formula (90) apples to each p;. The only
modification resulting from the SES constraint—that the
device is in the single-excitation subspace—is that the n
probabilities are not independent, because

dopi=1 O1)

i=1

(90)

However the condition (91) does not affect the sampling
statistics. Therefore we conclude that the sampling error for

the ith qubit is
[pi(1 — p;
E;, = M (92)
N

The result (92) shows that the strong simulation overhead,
given by the required number of repetitions N, is independent
of n and is no worse than that for a single qubit. In particular, the
upper bound E; < (24/N)~" applies, and hence the required
number of repetitions satisfies

. 1
4B
In conclusion, the complexity for strong quantum simulation

is also constant, and the overhead factor N is no larger than
the single-qubit value.

93)
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Although the sampling error can be made arbitrarily small,
it is usually not helpful to require it to be smaller than the
deviations in the occupation probabilities resulting from other
error sources, such as decoherence. Consider, for example,
the evolution of a single qubit for 100 ns in the presence
of T relaxation. If T} = 40 us, decoherence would lead to
a 0.25% error in the excited-state probability p. It is not
possible, in general, to measure the original qubit excitation
probability with better than 99.75% accuracy because of this
error. Thus, decoherence limits the accuracy of a strong
simulation independently of the sampling error. We will
discuss decoherence and other error sources in detail in the
next section.

IV. ACCURACY OF SES COMPUTATION

In this section we discuss the errors incurred during a
quantum computation or simulation with an n-qubit SES chip.
We are especially interested in the n-dependence of these
errors, for large n, and whether they pose any serious limitation
to the practical utility of the SES approach (we conclude that
they do not). Below we separately analyze decoherence errors,
matrix element “control” errors, and leakage out of the SES.
In each case the ideal, error-free state after some process is an
SES pure state |igeal), and we estimate the error

E =1 — (Videall 0| Videal), 94

where p is the realized final state.

A. Energy relaxation error

The first decoherence error we discuss is energy relaxation
(zero-temperature amplitude damping). We estimate this error
by setting H;; = 0 and calculating the decay of an initially
prepared SES state

Wini) = Y _aili)=) a0---1;---0) (95
i=1 i=1

in the absence of unitary evolution.
The single-qubit Kraus matrices for this process are

1 0 0 JV1-r
E1_<0 \/17) and Ez—(o 0 ), 96)

with
r=e /T, (97)
Here ¢y is the runtime for some SES quantum computation
and all qubits are assumed to have the same 7} value. The T;
time for capacitively coupled Xmon qubits is currently about
40 ps [60].
In the presence of energy relaxation,
Pinie = [Winie) (Winid) = EF" pinic E{™" 4+, (98)

where the dots denote terms involving one or more applications
of the E, operator (96) that are outside of the SES and do not
contribute to (94). Then

Pinit = T Pinit + + (99)
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and

— e /T x tq—°, (100)
T

which is independent of n. An SES state (in the absence of

unitary evolution) therefore relaxes at the same rate as a single

excited qubit. The approximation in (100) applies when 7, <

Ty, which is the regime of interest here.

E=1

B. Pure dephasing error

Next we discuss pure dephasing, which in Xmon qubits is
believed to be caused primarily by flux noise (however this has
been recently questioned [84]). We again estimate this error by
setting H;;» = 0 and calculating the degradation of an initially
prepared SES state (95) in the absence of unitary evolution.
We assume a standard single-qubit dephasing model with no
correlations between the noise at different qubits.

The Kraus matrices in this case are

=)
. ao1)
1—r

1 0 . 0
Er <0 ﬁ) and E2=1,
(102)

with

r=e HaelTs,
We can estimate the 7, time for Xmon qubits (with fixed
capacitive coupling) by using the relation

11 1
T, T, 2Ty

with values T} = 40 us and T, = 20 us from Ref. [60], which
leads to Ty, ~ 27 us. (Note, however, that the flux noise in
Xmon qubits is not Markovian, as we have assumed. We
believe that our simple dephasing calculation overestimates
the actual dephasing error.) All qubits are assumed to have the
same T value.

In the presence of pure dephasing,

(103)

n
pinie = E" pinit E]™" + Z (E1®-- Ex ---® Ei) pini

i=1 qubiti

X (Ey®+ Ey---® Ep)',

where the E|; now refer to (101), and we have used the fact
that terms with two or more applications of the E, operator
vanish when applied to pjy;;. Note that £, annihilates an SES
basis state [i) = |0---1;---0) unless it acts on qubit i, in
which case it produces a factor of 4/1 — r. Then dephasing
transforms an SES state to

n
Pinic = 7 Pinit + (1= 1) Y las|* |i) il

(104)
i=1
and the associated fidelity loss is
E=0- 62"“/T¢)<1 - Z |ai|4>
i=1
g .
~ T (1 = lail*). (105)

i=1
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The dephasing error (105) is maximized when the SES basis
states are equally populated, |a;| = 1//n. Then

1 2tgc 1
max E = (1 — e%c/Tr»)(1 — —> ~ <1 - —). (106)
ai n Ty n

This expression is valid forn > 1 (the n = 1 SES state |1) has
no pure dephasing error). The n-dependence of the worst-case
dephasing error (106) is very favorable, approaching a constant
as n — oo. Therefore the pure dephasing error is bounded by

2ye

E<l—e /T
T,

, 107)

which is only a few times larger than (100).

The total error due to decoherence is the sum of (100)
and (105) [or (107)]. Assuming a 4 = 100 ns computation
and the coherence times given above, this error is around 1%
and is independent of n.

C. Hamiltonian control errors

Next we calculate the error (94) caused by imperfect
experimental programming of the SES matrix elements,
which we call a control error. We assume that the intended
Hamiltonian is a real, symmetric, time-independent n x n
matrix H, but that the applied Hamiltonian is instead H + V,
where V is a real, symmetric, time-independent matrix that
does not commute with H.

We consider a typical situation where the processor is
initially prepared in a single SES basis state |i). The nonideal

PHYSICAL REVIEW A 91, 062309 (2015)

final state (neglecting decoherence) is then

@7i(H+V)t|l.), (108)
where ¢ is the evolution time for either a complete algorithm
or a single step in an algorithm. The error (94) in this case is
therefore

E; =1 — || e V2. (109)

Averaging (109) over the initial SES basis state leads to

_ 1 - o PHt —i(H+V)t):\2
E=1 n§|(l|e e 12
The SES Hamiltonian H in (110) is assumed to have the
“typical” form described above in Sec. II C.
In this section we evaluate the control error (110) using two
complementary approaches. First we consider the small-V¢
perturbative limit. Evaluating quantities of the form

(110)

U = eiHle—i(H+V)t (111)

by a series expansionin V is a standard problem in perturbation
theory: Differentiating (111) with respect to time yields

AU 5 - . .
i~ =VOU. with Vity=e've ™ (112)

showing that (111) satisfies a Schrodinger equation with time-
dependent Hamiltonian V. We can therefore write (111) as

U=Te SVt (113)

where T is the time-ordering operator. Expanding (113) to
second order yields

J
U=1 —i/ dh ‘7(1‘1)— lf dt1/ dt, T(V(l‘l)‘?(l‘z))
0 2 Jo 0

t _ 1 t h ~ » t » »
=1 —i/ dn V() — 5/ dt (/ dt, V([])V([2)+f dt, V(lz)V(f])). (114)
0 0 0 n
This leads to
t ) ) 1 t
(@|Uli) =1 —i/ dt (il ye ™My — -/ dn
0 2 Jo
X [/ dt2 (i|elHl] Ve—lH(fl—tz)Ve—lHt2|i)+/ dt2 (l'|elHl2VelH(I]—l2)Ve—lHt||i)}
0 n
t 1 t
=1 —ZZ/.S dy S,'j(—l‘l)Sk,'(Z‘l)ij— EZ'/(; dt
Jjk Jjkim
h t
X |:/ dty S;j(—t1) Su(ty — 12) Spi(t2) +/ dty S;j(—12) Stz — tl)Smi(tl)] VitVim, (115)
0 n
where
Sii(t) = (ile” " |i"). (116)

Because H is symmetric, S;;/(¢) is also a symmetric matrix. Then to second order in V we have

t
|(i|U|i)|2 =14+ ZIme dt Sij(—tl)Ski(ll) ij +
T

t t
S [ [ a0 o) S5 5140 Vi Vi
0 0

Jj'kk'

' fH '
re Y [ dn[ [ sy sutt - St + [ drzs,,-(—rz)skz(rz—msm,-(m}vjk Vi (117)
0 0 il

Jjklm
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The control error to second order for a fixed H and V follows
from (110) and (117).

Next we regard the perturbation as random and average
over the random matrix V. The elements V;¢; are assumed to
be independent identically distributed random variables (the
elements V;.; fixed by symmetry). The moments of V are

V=0 (118)
and

Vb Vea = 0*(8acSba + 8aadbe — SacSbadab)s (119)

where o is a parameter with dimensions of energy characteriz-
ing the size of the control errors. The condition (119) enforces
the symmetry requirement of V. The perturbation-averaged
control error (110) is then found to be

2 t
E=0%%+ %/ dt dt2|:|TrS(t1 —n))?
0

n

=2 ISt — )P = Y 1St + )
i1

i=1

+23&mﬁwﬂmﬂ, (120)

ij=1

where the propagator S;;- is defined in (116). The control error
is proportional to o2, as expected, and for fixed evolution time
t and large n is dominated by the second term (the first term in
the square brackets). By retaining this dominant second term,
together with the first o2¢> term, and evaluating the trace in
the eigenfunction basis, we can perform the time integrations
analytically to obtain a useful spectral form for the perturbative
control error,

202 Z 1 —cos[(Ey — Eg)t]

E~20%2+— , 121
et (Ea — En)? (1=

a,a

a#ao

where the E,, are the eigenvalues of H.

The expression (121) is useful for studying the n-
dependence of the control error for short times, corresponding
to a single step in an SES computation. An example is shown in
Fig. 16 for r = 10 ns and matrix elements of the perturbation
V uniformly distributed in the interval

8V &V
272 )

with 6V /2w = 0.5 MHz. The value of o for this distribution
is

(122)

1%
o Nivk (123)
We conclude from Fig. 16 that the expression (121) provides
an accurate approximation for the short-time control errors,
and that they are less than 0.1% in all the cases considered.
The perturbative result (120) can also be used to understand
the long-time asymptotic limit of the control error. For fixed
dimension # and large evolution time ¢, we find that

E ~ 202, (124)
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FIG. 16. (Color online) Plot of the control error E versus matrix
dimension for gpn.x/27m = 50 MHz, t = 10 ns, and errors in the
individual matrix elements uniformly distributed between —0.25 and
0.25 MHz. Data (open circles) follow from an exact numerical calcu-
lation of (110), averaged over ideal Hamiltonian H and perturbation
V. The solid curve is the function E = 8.1 x 107 x n%%°. The dashed
curve follows from the expression (121).

independent of n. Both the first o2¢? term in (120) and the
second term contribute to (124). From (124) we obtain an
upper bound

1

Tmax NP (125)
on the evolution time ¢ for which perturbation theory is valid.

It is also useful to directly calculate the control error (110)
numerically, which is useful for exploring the nonpertur-
bative regime. The results are shown in Figs. 17 and 18.
The most important conclusions of these simulations is that
the dimension dependence of the control error grows much
more slowly than linearly, and for errors in the SES matrix
elements <0.25 MHz is about 2% when n = 100 and 3%
when n = 1000. If the size of the errors in the matrix elements
are doubled—to <0.50 MHz—the n = 100 control error
increases to 7.4%, less than that predicted by the quadratic
o2 scaling resulting from perturbation theory.

D. Leakage out of the SES

We briefly comment on two additional error mechanisms
that result in excitation out of the SES, namely leakage
into the triple-excitation subspace and |2)-state errors. To
understand the origin of leakage into the triple-excitation
subspace, we use the identity [see (3)] o* = ¢ + cFand expand
the qubit-qubit interaction in (2). Terms proportional to cj cir
and ¢; cj, connect SES states to other SES states, whereas the
terms proportional to cjcz', connect SES states to triply excited
states. However these excitations are protected by large energy
gaps and the corresponding errors are negligible.
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FIG. 17. (Color online) Fidelity loss caused by control errors in

the SES Hamiltonian versus number of qubits or matrix dimension

n. Here we assume gm./27 = 50 MHz, ¢ = 100 ns, and errors

in the individual matrix elements uniformly distributed between

—0.25 and 0.25 MHz. Errors (open circles) are averaged over ideal

Hamiltonian H and perturbation V. The solid line is the function
E=28.2x 1073 x n®18,

To understand the origin of |2)-state errors, recall that
with conventional gate-based superconducting quantum com-
putation, the dominant sources of |2)-state excitation are
microwave pulses and two-qubit gates. However neither of
these are used in the SES approach. Initialization of SES basis
states can produce |2)-state errors, but it is known how to limit
these errors to less than 10~ [85].
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FIG. 18. (Color online) Same as Fig. 17 for larger SES matrix
dimension. Here gn../2m = 50 MHz, r = 100 ns, and errors in the
individual matrix elements uniformly distributed between —0.25 and
0.25 MHz. The solid line is the function E = 5.7 x 1073 x n%%.
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V. CONCLUDING REMARKS

The SES method described here appears to be distinct from
previously investigated approaches to quantum computation.
Like analog quantum simulation, it is tied to a specific hard-
ware model and cannot be implemented on any architecture.
However, the approach enables universal quantum compu-
tation and simulation, and might make quantum speedup
possible with prethreshold hardware.

To understand the origin of the speedup, we introduce a
fictional quantum computer model consisting of ¢ qubits and
a Hamiltonian containing (i times) every element of the Lie
algebra su(27), with independent experimental control over
each of its 229 — 1 elements. Let us call this a supercharged
quantum computer. A supercharged quantum computer is
capable of implementing any operation in SU(2?) by a
single application of the Hamiltonian, bypassing the need to
decompose such operations into elementary one- and two-
qubit gates. It is clear that a supercharged quantum computer is
more powerful than a traditional universal quantum computer:
It can efficiently perform any computation that is in BQP
(defined with respect to a traditional quantum computer), but
it can also efficiently perform some quantum computations that
are outside of BQP. In particular, a unitary chosen randomly
from SU(27) has no polynomial-depth gate decomposition,
but can be implemented by a supercharged quantum computer
in constant time. An SES processor with n =27 qubits
and capable of implementing arbitrary complex Hamiltonians
would be able to simulate a supercharged quantum computer.
The programmable SES processor introduced here, which
can only implement real Hamiltonians, is somewhat less
powerful than a supercharged quantum computer, but for many
applications complex Hamiltonians are not required and the
supercharged quantum computer model correctly explains why
quantum speedup is possible with the SES method.

It is interesting to notice how decoherence only barely
limits the problem sizes that can be implemented with a
programmable SES processor, at least for the applications
explored here. The main factor limiting the utility of the SES
method is the difficulty of building fully connected arrays
of qubits. In this sense we can say that the SES approach
trades the familiar limitations resulting from decoherence
for a new limitation—that of building qubit graphs with
high connectivity. Relative to the large, community-wide
effort devoted to studying and improving quantum coherence,
the problem of increasing connectivity is certainly in its
infancy.

If we accept that the SES method outperforms the tradi-
tional gate-based approach for prethreshold universal quantum
computation, but that it is ultimately unscalable, the question
becomes whether an SES chip could be built that is large
enough to be of practical use (and before an error-corrected
universal quantum computer arrives). We speculate that for
selected applications, break-even with a classical million-core
supercomputer is possible, a significant feat, but that a stronger
form of speedup—such as performing computations that are
essentially impossible classically—is probably not. Perhaps
a break-even-sized SES processor would be useful for its
low-power consumption or as a special-purpose subunit in
a conventional error-corrected quantum computer.
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APPENDIX A: GENERAL QUBIT-QUBIT
COUPLING TYPES

In this section we discuss the generalization of the SES
method to fully connected quantum computer models of the
form

Hye = Ze;cjci + % Zgn-' Z Jwoi ®@ay, (A
i i’ 34

where the o# (with u = x,y,z) are Pauli matrices and J,,, is
a fixed, real, dimensionless tensor. In this case the SES matrix
elements are

(i|Hqc|i/) = |:6i - 2(Zgij>~]zz + (Zgjj/>*]zzi|5ii’
J

i<y’
+ |:Jxx + Jyy - i(]xy - Jyx):|gii" (AZ)

Note that the term proportional to (}_;_; &;;)d; is an energy
shift and can be dropped. The SES method can be applied
(possibly with some protocol modifications) whenever

Jox +Jyy #0 (A3)
and
Joy = Jyx . (A4)

The condition (A3) means that the interaction has an exchange
or transverse component, and (A4) ensures that the SES
Hamiltonian is purely real.

APPENDIX B: TUNABLE COUPLER CIRCUIT

In this section we calculate the qubit-qubit interaction
strength g for the coupler circuit shown in Fig. 19, which is the
building block for a programmable SES chip. We first give a
simplified treatment by making weak-coupling and harmonic
approximations, and then discuss the general case afterward.

The circuit of Fig. 19 has six active nodes (black dots) and
is described by six node-flux coordinates [86]. However, all
nodes except those labeled V), have negligible capacitance
to ground and are therefore “massless” degrees of freedom
that remain in their instantaneous ground states. They will
be eliminated from the problem in the analysis below. The
Lagrangian for the circuit of Fig. 19 is

D ZC.z
L= =) Z¢? — U, Bl
Z(2ﬂ> S 9 (B1)

i=1,2
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FIG. 19. (Color online) Basic coupler circuit for SES processor.
The three crosses represent Josephson junctions, each with a flux-
tunable Josephson coupling energy. Each Xmon qubit has capacitance
C and tunable junction inductance L;. The coupler wire has a
Josephson junction with tunable inductance L. and mutual inductance
m as indicated. Self-inductances of the coils are denoted by L, and
Ly.

where ®¢ = h/2e is the flux quantum, C is the qubit capac-
itance, ¢ » is the dimensionless node flux at V), and U is
the total potential energy. Following the approach of Ref. [61],
we replace the inductive network of Fig. 19 (excluding the
capacitors) by the equivalent circuit of Fig. 20, where M and
L are effective inductances to be determined in terms of the
physical circuit parameters.

The potential energy in the circuit of Fig. 20 is Lq(I{ +
13)/2 + M1, I. Rewriting this in terms of magnetic flux

(o) =G 1))
= (B2)
D, M Ly \L

we have
@7 @3
U=—""— ' &9, B3
2KLq+2KLq+ 11 P1 P2 (B3)
where
K=1 LAY d T M (B4)
=1—-(— an = ——.
L, "KL

The cross term in (B3) proportional to I';; is responsible for
the qubit-qubit coupling. In the weak-coupling limit, M < Lq
and K ~ 1, which we assume below.

FIG. 20. (Color online) Replacing the inductive network of
Fig. 19 by an effective circuit with mutual inductance M and
self-inductances L.
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Next we calculate the qubit-qubit interaction strength g
induced by this cross term. Perhaps the simplest way to do this
is to use the expression

1
o = (a+aT)

(B5)
V2eC
for the flux of an LC oscillator with frequency
1
€= (B6)

N/

in terms of creation and annihilation operators. This leads to
the desired result [61]

_ FnLq6

> (B7)

Finally, we find M and L, in terms of the physical circuit

parameters. Assuming an e'® time dependence we have
from (B2) that

1 (Vv 1(V
M = ,—<—‘> and L, = ,—<—‘> . (BY)
io\ L/ io\ 11 /)

Using these expressions we find

2
M=——— d Lo=L;+Ly— M, B9
Loyor, ¢ te=thitho (B9)
from which we obtain
2
g = - (B10)

- €.
2(Lj+ Lo)(L. +2Ly)

Here € is the qubit frequency (B6). This expression for the
strength of the transverse o* ® o* coupling in the weak-
coupling and harmonic approximations is the main result of
this section. The advantage of the circuit of Fig. 19 over that
of Ref. [61] when extended to many qubits is the absence
of coupler loops through which the flux must be individually
controlled.

Based on our recent work [87] on a closely related coupler
circuit, we expect the result (B10) to be a good approximation
to the actual coupling. The main difference is that the qubit
anharmonicity suppresses the magnitude of the coupling
(in Ref. [87] the coupling was found to be suppressed by
about 15%). Anharmonicity also generates a small (<1 MHz)
diagonal 0% ® o¢ interaction, but such an interaction has no
effect on a single excitation.

APPENDIX C: SCATTERING HAMILTONIAN

In this section we outline the construction of the scattering
Hamiltonian for the Na-He collision discussed in Sec. IIl E. We
begin by constructing a 3 x 3 matrix U as a function of inter-
nuclear distance R, which we refer to as the potential-coupling
matrix, and which is written in atomic units (a.u.). The atomic
unit of energy is the hartree Ey, (*4.36 x 1078 J), the atomic
unit of length is the Bohr radius ag (25.29 x 10~!! m), and the
atomic unit of time is 7/ E}, (R2.42 x 1077 s). The diagonal
elements of U are the three diabatic potential energies shown
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FIG. 21. (Color online) Diagonal elements H;; of the Na-He
scattering Hamiltonian with collision parameters vy = 2.0 a.u. and
b = 0.5 a.u. The three curves cannot be resolved in this figure.

in Fig. 1 of Lin et al. [83], using the molecular state basis given
in (82) and (83), converted to atomic units. The element U3
is the diabatic radial coupling given in Fig. 3(a) of Ref. [83].
The element U, is the diabatic rotational coupling shown as a
dashed line in Fig. 3(b) of [83] (and incorrectly labeled there as
2'2%+ — 1’ 2T1), and U3 is the rotational coupling shown as a
solid line in Fig. 3(b) (and incorrectly labeled 1’ 2X+ — 1’ 2IT).
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FIG. 22. (Color online) Off-diagaonal elments H;;» of the Na-He
scattering Hamiltonian with collision parameters vy = 2.0 a.u. and
b=0.5au.
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The potential-coupling matrix is used to define the scatter-
ing Hamiltonian H , also expressed in atomic units, as follows:
The diagonal elements are given by

bv()

2
Hi(R) = Uyi(R) + %(—) . i=123. (D

R

where U;;(R) are the diabatic electronic potentials discussed
above, u = 6214.35 a.u. is the Na-He reduced mass, b is the
impact parameter, and vy is the initial relative velocity of the
collision (all in atomic units). The additional centrifugal terms
in (C1) are obtained by making the classical approximation that
the orbital angular momentum A2 is equal to buvg, with € > 1
and £(¢ 4 1) ~ £2. Due to the high kinetic energy considered
here, the collision dynamics and scattering probabilities are
not affected by the centrifugal terms, which only produce an
energy shift. The diagonal elements of H in SI units are plotted
in Fig. 21.
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The off-diagonal rotational coupling elements are given by

bv()

H»(R) = (F) x Up2(R), (C2)
bv()

Hx(R) = (F) x Ux(R), (C3)

where the classical approximation to the orbital angular
momentum is again applied, and the off-diagonal radial
coupling element is given by

Hi3(R) = Uy3(R).

These are plotted in SI units in Fig. 22. Our definitions of U
and H follow from Eqgs. (4-35) and (4-47b) of Ref. [88].

The R-dependent scattering Hamiltonian (C1) through (C4)
becomes time-dependent after assuming the semiclassical
trajectory (84). Scatterers are assumed to have initial and
final internuclear separations of R = 50 a.u., resulting in the
time-dependent Hamiltonian shown in Fig. 10.
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