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Tunable coupler for superconducting Xmon qubits: Perturbative nonlinear model
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We study a recently demonstrated design for a high-performance tunable coupler suitable for superconducting
Xmon and planar transmon qubits [Y. Chen et al., Phys. Rev. Lett. 113, 220502 (2014)]. The coupler circuit uses a
single flux-biased Josephson junction and acts as a tunable current divider. We calculate the effective qubit-qubit
interaction Hamiltonian by treating the nonlinearity of the qubit and coupler junctions perturbatively. We find that
the qubit nonlinearity has two principal effects: The first is to suppress the magnitude of the transverse σx ⊗ σ x

coupling from that obtained in the harmonic approximation by about 15%, assuming typical qubit parameters.
The second is to induce a small diagonal σ z⊗ σ z coupling. The effects of the coupler junction nonlinearity are
negligible in the parameter regime considered. The approach used here can be applied to other complex nonlinear
circuits arising in the design of superconducting hardware for quantum information processing.
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I. INTRODUCTION

The development of a fully planar transmon-type [1]
superconducting qubit, which combines high coherence with
several other features desirable for logic gate implementation
and scalability, could make a quantum computer based on
quantum integrated circuits possible in the near future [2].
These Xmon qubits can be directly wired together (or to
a resonator bus) with fixed capacitors [3], but the resulting
couplings are always present and degrade gate performance.
A simple tunable coupler option is therefore desirable. Tunable
coupling is also often desirable for quantum simulation
applications [4–6] as well.

A wide variety of tunable coupler designs for supercon-
ducting circuits have been considered previously [4,7–25].
However, most of these designs are intended for flux qubits,
and high-performance applications have yet to be realized due
to the challenges of implementing tunable coupling while
maintaining qubit coherence. Furthermore, large crosstalk
errors arise when there is a dc path connecting the qubit and
coupler junctions.

The coupler we discuss in this work is suitable for Xmon [2]
and planar transmon [1] qubits, which have no trapped
flux, and the design is experimentally practical. In contrast
to previous couplers, the design discussed here inductively
couples transmon qubits at their low-voltage nodes. This is
desirable because it reduces the energy stored in the coupler
junction, diminishing its nonlinear behavior. In fact, we find
that the effects of coupler junction nonlinearity are negligible
in this design. Furthermore, crosstalk errors are minimized
by eliminating the dc coupling between the qubits. Most
importantly, the design introduces tunability without compro-
mising high coherence. Tunably coupled Xmon’s based on this
design, which are called gmon qubits, have been demonstrated
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recently [26]. The analysis of Ref. [26] is based on a harmonic
circuit model, and the important effects of nonlinearity have
yet to be considered. In this work we study this coupler design
theoretically, focusing on the effects of the circuit nonlinearity.

Nonlinearity can in principal affect both the form and
strength of the qubit-qubit interaction. Because the coupling
here is purely inductive, the interaction Hamiltonian is pro-
portional to σx ⊗ σx and σ z ⊗ σ z. In this work we show
that the qubit anharmonicity suppresses the magnitude of
the transverse σx ⊗ σx coupling from that obtained in the
harmonic approximation, as well as induces a small diagonal
σ z⊗ σ z coupling.

The organization of this paper is as follows. In Sec. II we
introduce the coupler circuit and derive a simple formula for
the tunable coupling in the weak coupling and harmonic limit.
In Sec. III we construct the Hamiltonian for the nonlinear
circuit and in Sec. IV calculate the transverse coupling
numerically by exact diagonalization. In Sec. V we calculate
the σx ⊗ σx coupling for the linearized model beyond weak
coupling and study the nonlinearity perturbatively. In Sec. VI
we calculate the diagonal σ z ⊗ σ z coupling, both analytically
and numerically. In Sec. VII we give our conclusions and also
comment on the choice of possible circuit parameter values
and the behavior of the coupler as these values are varied.
Two appendixes contain details of the calculations that are not
essential for the general reader.

II. HARMONIC LIMIT

The coupler circuit is shown in Fig. 1. We begin by briefly
discussing the circuit in the harmonic approximation. Joseph-
son junctions (crosses) are characterized by their zero-bias
linear inductances Lj and LT. In particular, LT = �0/2πIc,
where �0 ≡h/2e and Ic is the critical current of the coupler
junction. A magnetic flux bias �ext is used to tune the coupler
junction’s effective linear inductance to Leff = LT/ cos δ,

where δ is the dc phase difference across the coupler. The
relation between δ and �ext follows from writing the total
magnetic flux � ≡ ∮

�
A · dl = (δ/2π )�0 in the coupler loop
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FIG. 1. Coupler circuit schematic. The ϕi and ξi are node flux
variables, and �ext is an external magnetic flux bias. There are four
active nodes (black dots) in this circuit. The Josephson junctions
labeled Lj are each double junctions threaded by additional fluxes
(not shown) that tune the qubit frequencies.

� as � = �ext − LloopIc sin δ, where Lloop = L01 + L02. Here
Ic sin δ is the induced supercurrent. This leads to

δ +
(

L01 + L02

LT

)
sin δ = φext, (1)

where φext ≡2π�ext/�0.

When Leff →∞, no ac current flows through the coupler
and the circuit describes two uncoupled qubits. This occurs
when

δ mod 2π =
(

π

2
,
3π

2

)
. (2)

Then (1) shows that the coupling vanishes when

φext mod 2π =
(

π

2
+ L01 + L02

LT
,
3π

2
− L01 + L02

LT

)
. (3)

In the weakly coupled limit the effective coupling strength—
half the splitting between the symmetric and antisymmetric
eigenstates—is approximately [26]

g = − L2
0 cos δ

2(Lj + L0)(LT + 2L0 cos δ)
ωq, (4)

where ωq is the qubit frequency. This is derived in Appendix A.
In (4) we have assumed identical qubits in resonance. The
expression (4) is valid in the weak coupling limit and, in
addition, does not account for qubit and coupler anharmonicity
(beyond the flux-dependence of the linear inductance Leff).

In Table I we provide an example of possible system
parameter values. The approximate coupling function (4) for
these parameters is shown in Fig. 2. Here δ(φext) is obtained
from (1). With these parameter values the coupling vanishes
at φext mod 2π = (0.598π,1.402π ).

In the remainder of this paper we calculate the transverse
σx ⊗ σx coupling g, going beyond the approximations leading
to (4), and we also compute the diagonal σ z ⊗ σ z coupling.

TABLE I. Example values of circuit parameters.

quantity value

C1,C2 91 fF
Lj1,Lj2 8.6 nH
L01,L02 200 pH
LT 1.3 nH
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FIG. 2. (Color online) Coupling strength in the weak coupling
limit (4), for system parameters given in Table I.

III. NONLINEAR CIRCUIT MODEL

The state of the circuit in Fig. 1 is described by four
coordinates. However the ξ1 and ξ2 nodes have negligible
capacitance to ground, and therefore are massless degrees of
freedom that remain in their instantaneous ground states. They
will be eliminated from the problem in the analysis below. The
complete Lagrangian for the circuit of Fig. 1 is

L =
∑
i=1,2

(
�0

2π

)2
Ci

2
ϕ̇2

i − U, (5)

where

U =
∑
i=1,2

{(
�0

2π

)2[
ξ 2
i

2L0i

− cos(ϕi − ξi)

Lji

]}

−
(

�0

2π

)2 cos(ξ1 − ξ2 − φext)

LT
. (6)

We begin our analysis by writing the four coordinates as
classical equilibrium or dc values that minimize the potential
energy (6), plus deviations. Two of the four equilibrium
conditions lead to

ϕ̄i = ξ̄i , (7)

where the bar denotes equilibrium values. The remaining two
conditions can be written as

ξ̄1

L01
= −x and

ξ̄2

L02
= x, (8)

where x ≡ sin(ξ̄1 − ξ̄2 − φext)/LT. This leads to

x = − sin[(L01 + L02) x + φext]

LT
. (9)
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We solve (9) approximately, in the weak coupling limit. To do
this we define y ≡ (L01 + L02) x, which leads to

y = −L01 + L02

LT
sin(y + φext). (10)

Solving (10) iteratively leads to a solution expressed as a power
series in (L01 + L02)/LT. The solution to second order is

y = −L01 + L02

LT
sin(φext) + 1

2

(
L01 + L02

LT

)2

sin(2φext).

(11)
Putting everything together we obtain

ϕ̄1 = ξ̄1 = L01

LT

(
sin φext − L01 + L02

2LT
sin 2φext

)
(12)

and

ϕ̄2 = ξ̄2 = −L02

LT

(
sin φext − L01 + L02

2LT
sin 2φext

)
. (13)

Finally, we rewrite the circuit Lagrangian (5) and (6)
in terms of the equilibrium coordinates. After a change of
variables

ϕi → ϕ̄i + ϕi, ξi → ξ̄i + ξi, (14)

the potential (6) becomes

U =
∑
i=1,2

{(
�0

2π

)2[ (ξ̄i + ξi)2

2L0i

− cos(ϕi − ξi)

Lji

]}

−
(

�0

2π

)2 cos(ξ1 − ξ2 − δ)

LT
, (15)

where the ϕi and ξi variables now denote deviations from
equilibrium, and

δ ≡ φext + ξ̄2 − ξ̄1. (16)

The function (16) relates the dc phase difference δ across the
coupler junction to the external flux.

Now we are ready to construct the Hamiltonian: The
momentum conjugate to ϕi is

pi =
(

�0

2π

)2

Ci ϕ̇i . (17)

The momenta conjugate to the ξi vanish. The complete
Hamiltonian for the circuit of Fig. 1 is therefore

H =
(

2π

�0

)2 ∑
i

p2
i

2Ci

+ U, (18)

where U is given in (15).

IV. EXACT DIAGONALIZATION CALCULATION
OF THE COUPLING

To validate our perturbative nonlinear analysis it is useful
to study the nonlinear model numerically. In Fig. 3 we
plot the splitting between the symmetric and antisymmetric
eigenstates—equal to twice the magnitude of the transverse
component of the effective coupling strength—for the full
nonlinear model (15), assuming the circuit parameters given
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FIG. 3. (Color online) Splitting (equal to twice the magnitude of
the coupling) in the fully nonlinear model (18) calculated by exact
diagonalization (solid curve). Also shown are the corresponding
harmonic approximation (dashed-dotted curve) and perturbative
nonlinear (dashed) results.

in Table I. To obtain these results we use a two-dimensional
grid in the coordinates ϕ1 and ϕ2, and the basis

|ϕ1,ϕ2〉 with ϕi ∈ {−π, − π + dϕ, . . . ,0, . . . ,π}, (19)

where dϕ is the mesh spacing. The kinetic energy operator for
coordinate ϕ1 is approximated as

KE1 |ϕ1,ϕ2〉 = − �
2

2C1(�0/2π )2 dφ2

× (|ϕ1 + dφ,ϕ2〉 + |ϕ1 − dφ,ϕ2〉), (20)

and similarly for that of ϕ2. This tight-binding approximation
replaces the quadratic kinetic energy in (18) by a cosine
with the same curvature. We note that the factor of �

2 in
the numerator of (20) is required because the pi in (18)
are dimensionless. The potential energy is diagonal in the
basis (19), and for each |ϕ1,ϕ2〉 is found by numerically
minimizing the potential (15) with respect to the two massless
variables ξ1 and ξ2. The exact diagonalization result is shown
in the solid curve in Fig. 3 along with that of the harmonic
approximation 2|g| and the perturbative result of Sec. V.

V. PERTURBATIVE TREATMENT OF NONLINEARITY

In this section we show that the form and strength of the
qubit-qubit coupling can be derived analytically by treating
the nonlinearity in (15) perturbatively. First we expand (15) in
powers of the deviations ϕi and ξi , keeping all terms to quartic
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order. This leads to

U =
∑
i=1,2

{(
�0

2π

)2[
ξ 2
i

2L0i

+ (ϕi − ξi)2

2Lji
− λ

(ϕi − ξi)4

24Lji

]}

+
(

�0

2π

)2[
cos(δ)

(ξ1 − ξ2)2

2LT
+ λ′ sin(δ)

(ξ1 − ξ2)3

6LT

− λ′ cos(δ)
(ξ1 − ξ2)4

24LT

]
+ const., (21)

where parameters λ = 1 and λ′ = 1 have been introduced to
track powers of the qubit and coupler junction nonlinearities,
respectively. Note that the first-order terms vanish on account
of conditions (7) and (8), and that the coupler junction induces
both cubic and quartic nonlinearity. In this section we develop
a theory of the coupling to first order in λ and λ′, neglecting
all second-order corrections, including those of order λλ′.

Because there is no kinetic energy associated with the mass-
less ξi coordinates, we can eliminate them from the Hamil-
tonian by replacing U (ϕ1,ϕ2,ξ1,ξ2) with U (ϕ1,ϕ2,ξ

∗
1 ,ξ ∗

2 ),
where the ξ ∗

i minimize (21) for fixed ϕi . This procedure is
different that what we did above in (7) and (8), because
there we minimized U with respect to all four coordinates.
Differentiation of (21) with respect to the ξi leads to a pair of
equations that can be written as

ξ ∗
1

L�1
−cos(δ)

ξ ∗
2

LT
= ϕ1

Lj1
− λ

(ϕ1−ξ ∗
1 )3

6Lj1
−λ′ sin(δ)

(ξ ∗
1 − ξ ∗

2 )2

2LT

+ λ′ cos(δ)
(ξ ∗

1 − ξ ∗
2 )3

6LT
(22)

and

ξ ∗
2

L�2
−cos(δ)

ξ ∗
1

LT
= ϕ2

Lj2
−λ

(ϕ2−ξ ∗
2 )3

6Lj2
+λ′ sin(δ)

(ξ ∗
1 − ξ ∗

2 )2

2LT

− λ′ cos(δ)
(ξ ∗

1 − ξ ∗
2 )3

6LT
, (23)

where
1

L�i

≡ 1

Lji
+ 1

L0i

+ cos(δ)

LT
. (24)

We solve the coupled nonlinear equations (22) and (23)
perturbatively, to first order in λ and λ′, by expanding

ξ ∗
i = ξ

(0)
i + ξ

(1)
i , (i = 1,2) (25)

where the ξ
(0)
i are zeroth order in the nonlinearity and the ξ

(1)
i

are first order. The zeroth order solutions are

ξ
(0)
i = αiϕi + βīϕī , (26)

where

αi ≡ 1

LjiL�īD
, βi ≡ cos(δ)

LjiLTD
, (27)

and where ī is the index complement to i:

1̄ = 2 and 2̄ = 1. (28)

Here

D ≡ 1

L�1L�2
− cos2(δ)

L2
T

. (29)

The first-order corrections are

ξ
(1)
1 = −λ

6

[
α1

(
ϕ1 − ξ

(0)
1

)3 + β2
(
ϕ2 − ξ

(0)
2

)3
]

+ λ′ A

D

[
1

L�2
− cos(δ)

LT

]
,

ξ
(1)
2 = −λ

6

[
α2

(
ϕ2 − ξ

(0)
2

)3 + β1
(
ϕ1 − ξ

(0)
1

)3
]

− λ′ A

D

[
1

L�1
− cos(δ)

LT

]
, (30)

where

A ≡ − sin(δ)

2LT
[(α1 − β1) ϕ1 − (α2 − β2) ϕ2]2

+ cos(δ)

6LT
[(α1 − β1) ϕ1 − (α2 − β2) ϕ2]3. (31)

Using (26) and (30) we obtain

H =
∑
i=1,2

(
2π

�0

)2
p2

i

2Ci

+ U (0) + U (1), (32)

where

U (0) =
∑
i=1,2

(
�0

2π

)2
ϕ2

i

2Lqi

+
(

�0

2π

)2

�11 ϕ1ϕ2, (33)

1

Lqi

≡ (1 − αi)2

Lji
+ α2

i

L0i

+ β2
i

Ljī
+ β2

i

L0ī

+ cos(δ)
(αi − βi)2

LT
,

(34)

�11 ≡ (α1 − 1)β2

Lj1
+ (α2 − 1)β1

Lj2
+ α1β2

L01
+ α2β1

L02

− cos(δ)
(α1 − β1)(α2 − β2)

LT
, (35)

and where

U (1) =
(

�0

2π

)2{ ∑
i=1,2

[
ξ

(0)
i ξ

(1)
i

L0i

+
(
ξ

(0)
i − ϕi

)
ξ

(1)
i

Lji

− λ

(
ξ

(0)
i − ϕi

)4

24 Lji

]
+ cos(δ)

(
ξ

(0)
1 − ξ

(0)
2

)(
ξ

(1)
1 − ξ

(1)
2

)
LT

+ λ′ sin(δ)

(
ξ

(0)
1 − ξ

(0)
2

)3

6LT
− λ′ cos(δ)

(
ξ

(0)
1 − ξ

(0)
2

)4

24LT

}
(36)

is the anharmonic correction.

A. Coupling in the linearized model

The Hamiltonian in the harmonic approximation is

H =
∑

i

Hi + δH, (37)

where [see (32)]

Hi ≡
(

2π

�0

)2
p2

i

2Ci

+
(

�0

2π

)2
ϕ2

i

2Lqi

, (i = 1,2) (38)
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FIG. 4. (Color online) Qubit frequency (40) as a function of
external flux, assuming circuit parameters of Table I. We see that
ωq/2π varies by about 22 MHz in this example.

and

δH ≡
(

�0

2π

)2

�11 ϕ1ϕ2. (39)

The Hamiltonian (38) describes a harmonic oscillator with
flux-dependent frequency

ωqi ≡
√

1

LqiCi

, (40)

which is plotted in Fig. 4 for the parameters of Table I.
In Appendix A we calculate the transverse coupling g

resulting from a ϕ1ϕ2 interaction between a pair of identical
classical harmonic oscillators. Here we derive the same result
quantum mechanically (and for nonidentical qubits). Let |0〉i
and |1〉i be the ground and first excited state of Hi (these are
different than the eigenstates of the uncoupled qubits and they
depend on φext). Now we project the interaction term (39) into
this basis. Each Josephson phase operator projects according
to

ϕ →
(

ϕ00 ϕ01

ϕ10 ϕ11

)

= ϕ01 σx −
(

ϕ11 − ϕ00

2

)
σ z +

(
ϕ00 + ϕ11

2

)
I, (41)

where ϕmm′ ≡ 〈m|ϕ|m′〉. By symmetry ϕ00 = ϕ11 = 0, and
because the potential in (38) is parabolic,

ϕ01 =
(

2π

�0

)√
�Lq ωq

2
. (42)

Then we obtain, from (39),

δH = g σx
1 σx

2 , (43)
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FIG. 5. (Color online) Coupling strength in the perturbative non-
linear approximation for system parameters given in Table I. The
dashed line is coupling (44) in the linearized model.

where

g = ��11
√

Lq1Lq2

2
√

ωq1ωq2. (44)

The coupling strength (44) is generally different than the
simpler weak-coupling expression (4). However for the system
parameters of Table I they differ by no more than about
0.1 MHz.

B. Nonlinear correction to transverse coupling

To evaluate (36) we will express (30) in terms of the
coordinates ϕ1 and ϕ2. We note from (30) and (36) that
qubit nonlinearity λ generates quartic terms in the corrections
to the potential energy, whereas the coupler nonlinearity λ′
generates both cubic and quartic terms. Although the complete
expressions for ξ

(1)
1 and ξ

(1)
2 in terms of the ϕi are quite

complicated, they simplify when the circuit elements have
identical parameters that satisfy

L0 � Lj � LT. (45)

The nonlinear correction to the transverse coupling in the
limit (45) is calculated in Appendix B.

The total transverse coupling

gtot ≡ g + δg (46)

obtained from (44) and (B18) is plotted in Fig. 5. Note
that nonlinear contribution zeros precisely where the linear
coupling does, and that the correction always suppresses
the magnitude of the coupling. The amount of coupling
suppression can be simply quantified by writing (46) as

gtot = ζ g, where ζ ≡ 1 + δg

g
. (47)

We emphasize that g in (47) refers to the coupling (4) or (44)
for the linearized circuit. To estimate ζ we again assume (45),
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which leads to

ζ ≈ 1 − π2

(
�ωq

�2
0/2Lj

)
= 0.852, (48)

using a qubit frequency of 5.62 GHz and the value of Lj from
Table I. Therefore we find that qubit nonlinearity suppresses
the transverse coupling by about 15%, and that the effects
of coupler nonlinearity (corrections proportional to λ′) are
negligible in the parameter regime considered.

To validate the perturbative corrections we compare, in
Fig. 3, the splitting 2|gtot| between the symmetric and anti-
symmetric eigenstates to the fully nonlinear result obtained by
exact diagonalization. We find that the analytic approximation
developed here is in very good agreement with the numerical
results. It can be shown that the small differences arise not from
the replacement of the cosine potentials by their quadratic plus
quartic expansions, but from (i) keeping only the terms first
order in λ and λ′ in the subsequent analysis, and (ii) assuming
the limit (45).

VI. DIAGONAL COUPLING

The coupler circuit of Fig. 1 also produces a small diagonal
qubit-qubit interaction of the form

δH = Jσ z
1 σ z

2 . (49)

In this section we calculate J , analytically and numerically,
by relating it to the exact eigenstates of the coupled qubit
system [20],

J = E11 − (E+ + E−) + E00

4
, (50)

and throughout this section we assume resonantly tuned qubits.
Here E11 is the energy of the |11〉 state,

E± = ωq ± |g| + E00 (51)

are the energies of the single-excitation eigenstates, with ωq the
frequency of the uncoupled qubits, and E00 is the ground-state
energy. Note that J is to be computed in the presence of the
total transverse interaction

δH = g σx
1 σx

2 , (52)

where in this section we write gtot [defined in (46)] simply
as g.

Two types of effects contribute to the total diagonal
coupling J . The dominant mechanism comes from states
outside of the qubit subspace and is caused by the repulsion
of |11〉 by the |02〉 and |20〉 eigenstates. These states differ in
energy by the qubit anharmonicity

η ≡ (E1 − E0) − (E2 − E1). (53)

Referring to the nonlinear Hamiltonian (B9), this contribution
to J results from the terms proportional to �04 and �03, which
generate qubit anharmonicity, in the presence of a transverse
interaction.

We can estimate this effect by considering the second-order
correction to the energy of the |11〉 state resulting from the
transverse interaction, which is

δE11 ≈ 2 × (
√

2g)2

η
, (54)
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FIG. 6. Diagonal coupling strength (50) computed by exact
diagonalization, and the approximation (55).

assuming harmonic oscillator eigenfunctions. The factor of 2
in (54) comes from the contributions by both |02〉 and |20〉.
Then the σ z ⊗ σ z coupling strength is simply

J ≈ g2

η
. (55)

A few remarks about (55) are in order: The diagonal
coupling resulting from the |2〉 state repulsion effect is always
positive, and it zeros when the transverse coupling does.
However, other contributions to J (see below) can have either
sign. Also, the use of harmonic oscillator eigenfunctions will
slightly overestimate the E11 repulsion and hence J . Finally,
the anharmonicity and size of η generated by the terms
proportional to �04 (which are dominant and flux independent)
and �03 (which depends on �ext) is an approximation, so in (55)
we instead prefer to use an exactly calculated (or measured)
value, which is approximately 213 MHz for uncoupled qubits
with parameters of Table I.

The σ z ⊗ σ z coupling strength (50) for a system with
parameters of Table I is shown in Fig. 6, along with the approx-
imation (55). Here (50) is computed by exact diagonalization
and is shown in the solid curve. The approximation (55) is
evaluated by using the exact diagonalization result for the total
transverse coupling g, with η/2π =213 MHz, and is shown in
the dashed curve. Although the approximation (55) necessarily
zeros when g does, the exact value calculated from (50) does
not have to. We find that the σ z ⊗ σ z coupling strength (50)
calculated by exact diagonalization does reach a negative value
of −110 Hz, but this tiny value may not be reliable given our
numerical accuracy.

The second type of effects contributing to J result from
the interaction terms proportional to �13, �12, and �22 in (B9).
The �22 terms make the largest contribution to J , because
they are the only ones that survive when the small anharmonic
corrections to the qubit eigenfunctions are neglected. To
estimate the �22 contributions we project the ϕ2

i operators
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FIG. 7. (Color online) Subdominant contribution (57) to the di-
agonal coupling J , versus flux. This contribution zeros when g does.

as

ϕ2 →
(〈0|ϕ2|0〉 〈0|ϕ2|1〉

〈1|ϕ2|0〉 〈1|ϕ2|1〉
)

≈
(

2π

�0

)
�ωqLq ×

(
I − 1

2
σ z

)
,

(56)

where I is the identity matrix and in the second step we have
assumed harmonic eigenfunctions. This leads to an additional
contribution

J = �22

(
2π

�0

)2(
�ωqLq

2

)2

, (57)

which is always much smaller than (55) and also zeros when
g does. The subdominant contribution (57) is plotted in Fig. 7
using the parameters of Table I.

VII. CONCLUSIONS

In this paper we have provided a detailed theoretical
analysis of a tunable coupler design recently demonstrated
for superconducting Xmon qubits [26]. Treating the leading-
order nonlinear effects perturbatively, we find that the qubit
nonlinearity significantly suppresses the magnitude of the
transverse σx ⊗ σx coupling. Although an accurate evaluation
of the size of this suppression requires the analysis provided
in Secs. III and VI, a simple estimate follows if we assume the
circuit parameters to satisfy the conditions (45). In this case,
the suppression fraction is simply given by 2π2

�ωqLj/�2
0.

In contrast to the qubit nonlinearity, the effects of coupler
junction nonlinearity are found to be entirely negligible. This
is because the coupler wires are connected to the qubits at low
voltage nodes and the energy stored in the coupler junction is
always small.

Finally, we comment on our choice of parameters given
in Table I, and the behavior of the coupler as these values
are varied. First, the qubit capacitances and inductances,

Ci and Lji , are largely determined by the target qubit
frequency and the transmon condition that the charge noise
be suppressed, so these parameters cannot be strongly varied
in practice. However the L0i and LT parameters can be varied
considerably. Although the results in this paper will apply
in those cases as well, the coupler function g(φext) changes
significantly. For example, suppose we wish to maximize the
magnitude of the “on” coupling strength, which occurs when
φext = π . In the harmonic approximation,

max g = L2
0

2(Lj + L0)(LT − 2L0)
ωq. (58)

We can increase (58) by increasing L0 and/or decreasing LT,
but only to a point, because of the pole at LT = 2L0. This pole
results from the approximations used to obtain (4) and is of
course unphysical: As LT → 2L0, the nonlinear corrections
to (4) become stronger, resulting in a finite maximum coupling
of about 700 MHz, assuming LT = 2L0 and the other qubit
parameters as in Table I.

However, in the present design, varying either L0 or LT

increases the maximum coupling at the expense of shifting the
entire coupling curve upward, thereby eliminating the regions
of negative g. (For applications where negative values of
coupling are not required, this is not an important restriction.)
In addition, the coupling curve somewhat sharpens upon
increasing L0 and/or decreasing LT, making experimental con-
trol more challenging. The values given in Table I are chosen
to provide a reasonable maximum coupling strength combined
with large negative coupling values and an experimentally
convenient g(φext) profile.
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APPENDIX A: COUPLING IN THE HARMONIC LIMIT

The expression (4) can be derived, essentially classically,
from the input impedances to the network of Fig. 8, defined
through the relation

(
V1

V2

)
=

(
Lq M

M Lq

)(
İ1

İ2

)
. (A1)

We find

M = L2
0

Leff + 2L0
and Lq = Lj + L0 − M. (A2)
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FIG. 8. Network of linear inductors.

The potential energy of the circuit in Fig. 1 in the harmonic
approximation is therefore

U =
(

�0

2π

)2[
ϕ2

1

2KLq
+ ϕ2

2

2KLq
+ �11ϕ1ϕ2

]
, (A3)

where

K = 1 −
(

M

Lq

)2

and �11 = − M

KL2
q

. (A4)

In the weakly coupled limit, M � Lq. To obtain (4) we assume

K ≈ 1, (A5)

Lq ≈ Lj + L0, (A6)

and

�11 ≈ − L2
0

(Lj + L0)2(Leff + 2L0)
. (A7)

These approximations are removed in Sec. V.
Next we calculate the splitting induced by (A7). We can

again compute this classically by treating the qubits as LC
oscillators with frequency ωq = (LqC)−

1
2 , where Lq is given

by (A6). The potential energy of the coupled oscillators is given
in (A3) with K = 1. Diagonalizing the quadratic form (A3)
leads to eigenmodes with shifted inductances 1/(L−1

q ± �11)
and hence frequencies

√
1 ± Lq�11 ωq. Therefore in the

weakly coupled limit we obtain

g = �11Lq

2
ωq, (A8)

a result that also applies to coupled qubits and leads to the
expression (4).

APPENDIX B: NONLINEAR CORRECTIONS

In limit (45) we have

Lq → Lj, (B1)

L� → L0, (B2)

D → 1

L2
0

, (B3)

α → L0

Lj
, (B4)

β → cos(δ) L2
0

LjLT
, (B5)

and therefore

β � α � 1. (B6)

In this section we derive analytic expressions for the nonlinear
corrections assuming (45), which is a special case of the weak
coupling assumption of Sec. I. Using (B6) we find that

ξ
(1)
1 ≈ λ

(
− α

6
ϕ3

1 + αβ

2
ϕ2

1ϕ2 + β2

2
ϕ1ϕ

2
2 − β

6
ϕ3

2

)

− λ′ α
2L0 sin δ

2LT

(
ϕ2

1 − ϕ1ϕ2 + ϕ2
2

)
(B7)

and

ξ
(1)
2 ≈ λ

(
− α

6
ϕ3

2 + αβ

2
ϕ1ϕ

2
2 + β2

2
ϕ2

1ϕ2 − β

6
ϕ3

1

)

+ λ′ α2L0 sin δ

2LT

(
ϕ2

1 − ϕ1ϕ2 + ϕ2
2

)
. (B8)

These expressions are obtained by considering every term
allowed by symmetry and approximating its coefficient by
that of the dominant contribution (using λ = λ′ = 1). The
correction (36) is similarly obtained by assuming identical
qubits and finding the largest contribution to every possible
term in the energy. The result is

U (1) =
(

�0

2π

)2[
λ �04

(
ϕ4

1 + ϕ4
2

) + λ′�03
(
ϕ3

1 − ϕ3
2

)
+ λ �13

(
ϕ1ϕ

3
2 + ϕ3

1ϕ2
) + λ′�12

(
ϕ1ϕ

2
2 − ϕ2

1ϕ2
)

+ λ�22ϕ
2
1ϕ

2
2

]
, (B9)

where

�04 = − 1

24Lj
, (B10)

�03 = α3 sin δ

6LT
, (B11)

�13 = α2 cos δ

6LT
, (B12)

�12 = α3 sin δ

2LT
, (B13)

�22 = αβ

(
β

L0
− α cos δ

LT

)
. (B14)

The dominant nonlinear correction to the transverse cou-
pling is

δg =
(

�0

2π

)2

�13 〈01|ϕ1ϕ
3
2 + ϕ3

1ϕ2|10〉. (B15)
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To evaluate (B15) note that 〈01|ϕ1ϕ
3
2 + ϕ3

1ϕ2|10〉 =
2ϕ01 〈0|ϕ3|1〉, where ϕ01 is defined in (42) and

〈0|ϕ3|1〉 = 3

(
2π

�0

)3(
�Lq ωq

2

)3
2

. (B16)

Then (B15) can be written as

δg = 3

2
�13

(
�ωqLq

�0/2π

)2

(B17)

= cos(δ)
π2α2Lj

2LT

(
�ωq

�2
0/2Lj

)
�ωq. (B18)
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