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We present a method for optimizing quantum control in experimental systems, using a subset of
randomized benchmarking measurements to rapidly infer error. This is demonstrated to improve single-
and two-qubit gates, minimize gate bleedthrough, where a gate mechanism can cause errors on subsequent
gates, and identify control crosstalk in superconducting qubits. This method is able to correct parameters so
that control errors no longer dominate and is suitable for automated and closed-loop optimization of
experimental systems.
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Quantum information is stored in continuous amplitudes
and phases, so quantum control must be precise to achieve
the desired state [1]. Achieving control with high fidelity
lies at the heart of enabling fault-tolerant quantum comput-
ing [2,3]. With gate fidelities approaching the fault-tolerant
threshold [4–6], characterizing and reducing the remnant
error becomes increasingly challenging. Quantum process
tomography can completely characterize a gate, decom-
posing a process into Pauli or Kraus operators [7,8].
However, improving gates is complicated: gate parameters
map nonintuitively onto the process matrix, and state
preparation and measurement errors (SPAM) can be con-
fused with process errors.
Here, we present a different approach to achieve high

fidelity gates. We use Clifford-based randomized bench-
marking (RB) [9,10] to map gate errors onto control
parameters, and feed this back to optimize gates. The
method is fast and scales to arbitrary precision as the
sensitivity to fractional error is independent of gate fidelity
[11]; tuning up even higher fidelity gates should be
possible. We apply it to general quantum control problems,
such as gate optimization, gate bleedthrough [12] and
crosstalk. In particular, we demonstrate closed-loop opti-
mization with nonorthogonal parameters in a real, noisy
quantum system. As RB is platform independent, our
approach is in principle applicable to a variety of quantum
systems.
In standard RB, gates are characterized by measuring the

fidelities of sequences with varying lengths. We exper-
imentally show that optimizing the sequence fidelity at
fixed length improves the gate fidelity. We call this
approach—using the sequence fidelity from randomized
benchmarking as a fitness metric for gate performance—
optimized randomized benchmarking for immediate tune-
up (ORBIT).

As a testbed, we use a five qubit (Q0-Q4) superconducting
system [11] based on the Xmon transmon design [13]. Here,
XY control is achieved with microwave pulses andZ control
with dc current pulses which modulate the qubit frequency.
Qubits are coupled capacitively. Qubit frequencies are tuned
between f10 ¼ 4 and 6 GHz, and qubit nonlinearities Δ=2π
are around−220 MHz.We use a dispersive readout scheme
with a wide band parametric amplifier [14] for state dis-
crimination. This device is an ideal platform for optimizing
for small errors, aswe have obtained high fidelity single- and
two-qubit gates on this device (see Ref. [5,11] for details on
device and setup). We use the same device here.
We start with a simple test case where we optimize a

single-qubit 90-degree rotation about the X axis in the
Bloch sphere representation (X=2 gate). This gate is
implemented by a microwave pulse with a cosine envelope
(Fig. 1(a) inset) centered around frequency f with ampli-
tude A. As the Xmon transmon qubit is a multilevel system,
we apply a quadrature correction term with DRAG coef-
ficient α to minimize leakage to higher levels [15–17].
First, we determine the gate fidelity using RB, then measure
how control errors affect the fidelity of sequences.
In Clifford-based RB, random Clifford rotations are

insertedbetween thegate under test to ensure that it is applied
to a representative set of states. The single-qubit Clifford
gatesare thegroupofrotations thatmapbetweenthetwopolar
and four equally spaced equator states on the Bloch sphere,
andareable togenerateasufficient setof states to removebias
fromgate error. Toquantify theX=2 fidelity,we firstmeasure
a reference curve by applying many sequences of random
Cliffords, appended by recovery Cliffords Cr that make
theidealoperation theidentity.Asweinitialize thequbit in the
ground state, the ground state population becomes the
sequence fidelity. Randomization makes the sequence
fidelity follow an exponential decay from the accumulation
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of gate-aspecific errors as Apm
ref þ B, with gate errors

captured in the characteristic scale pref [see Fig. 1(a)]. The
SPAM errors affect A and B, but not the rate of the decay.
Individual gate fidelities are evaluated by interleaving a
specific gate between Cliffords, generating a decay curve
with scalepgate. By subtracting away the reference curve, we
get thegateerrorrgate ¼ ð1 − pgate=prefÞðd − 1Þ=d [18],with
d ¼ 2n a functionof thenumberofqubitsn; heren ¼ 1. Each
point inm is an average of the fidelity of k different random
sequences. We find the fidelity of this X=2 gate to be
0.9995 (k ¼ 40).
For the data in Fig. 1(b), we set m ¼ 1; 50; 100; 300 and

measure the sequence fidelity as we vary each of the gate
parameters from their optimum. As expected, we find that
longer length sequences drop more rapidly in fidelity away
from the maximum, indicating an increased sensitivity to
gate error with sequence length. It is this feature that opens
a viable route to optimizing arbitrarily high fidelity gates:
sensitivity can be maintained by doublingm when the error
is halved [11].
In the rest of this Letter, we demonstrate that ORBIT is

applicable to a variety of nontrivial parametrized tune-up
problems, such as entangling gate optimization with non-
orthogonal parameters, improving waveform control for
reducing gate bleedthrough, and minimizing crosstalk in a
multiqubit system. We emphasize that these applications
are issues of prime importance to high fidelity and scaling
up to larger qubit systems [19].
We start by applying ORBIT to a controlled-phase

(CZ) entangling gate with qubits Q2 and Q3 that have

g=2π ¼ 30 MHz coupling, as described in Ref. [5,20].
With the addition of many nonorthogonal gate parameters
and a larger Hilbert space, this is a significant increase in
complexity compared to the X=2 gate. The CZ gate is
performed by moving a qubit along an adiabatic trajectory
in frequency [20] [see inset Fig. 2(a)] which brings the j11i
and j02i avoided level crossing near resonance, generating
a conditional phase. The fidelity of this gate is sensitive to
the frequency trajectory, as deviations from the ideal can
cause a conditional phase other than π as well as non-
adiabatic leakage errors to j02i. The gate depends on eight
parameters that follow straightforwardly from theory
(see Ref. [20]).
The direct mapping that ORBIT provides between the

control parameters and gate fidelity allows for automated
optimization. Here, we used the Nelder-Mead algorithm for
closed-loop control [21]. As a metric, we use sequences
(m ¼ 30) composed of gates from the two-qubit Clifford
group C2, generated with an average of 8.25 single-qubit
gates and 1.5 CZ gates per Clifford [5]. As single-qubit
gates have a substantially higher fidelity, the CZ error is a
significant contribution to the Clifford error, making the
reference fidelity a metric for CZ gate fidelity. Figure 2(a)
shows the reference curves before (blue squares) and after
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FIG. 2 (color online). Optimizing the fidelity of a two-qubit CZ
gate. (inset a) One qubit undergoes an effective adiabatic
trajectory in frequency that brings the j11i and j02i near
resonance, producing a conditional phase. Q2 idles at
f10 ¼ 5.5223 GHz, and Q3 idles at f10 ¼ 4.6639 GHz.
(a) The sequence fidelity of the reference curve versus number
of two-qubit Cliffords before (blue squares) and after (red circles)
optimization (k ¼ 50). This optimization has shifted the shoulder
of the trajectory by up to 5 MHz (inset). (b) The change in
sequence fidelity at m ¼ 30 versus Nelder-Mead function eval-
uations (k ¼ 20), starting at a fidelity of 0.3 (blue square), and
converging on a sequence fidelity of 0.5 (red circle). The fidelity
of the CZ improved from FCZ ¼ 0.984 to FCZ ¼ 0.993, mea-
sured using interleaved RB [11].

×

FIG. 1 (color online). (a) Single qubit randomized benchmark-
ing (k ¼ 40) for Q2 at f10 ¼ 5.5223 GHz. The reference experi-
ment uses sequences of random Cliffords only (black plus); an
X=2 gate is tested by interleaving it with random Cliffords (red x).
The X=2 gate has a cosine envelope pulse shape and quadrature
correction (inset). (b) Sequence fidelities versus parameters: the
pulse amplitude A, frequency f, and coefficient α (k ¼ 20). The
sequences are measured at m ¼ 1 (square), 50 (circle), 100
(triangle), and 300 (diamond).
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(red circles) optimization. The average error per Clifford
was reduced from r ¼ 0.0361 to r ¼ 0.0188. Taking into
account the average number of single and CZ gates in a
two-qubit Clifford, these values are consistent with a CZ
gate fidelity improvement from 0.984 to 0.993 (see
Ref. [11] for interleaved data). Figure 2(b) shows the
evolution of the sequence fidelity versus number of
evaluations, starting with the blue square; it initially varies
strongly with small parameter changes, underlining the
sensitivity of this method, and eventually converges on
optimal parameters (red circle). The inset of Fig. 2(a) shows
the small change in waveform shape (up to 5 MHz in
magnitude) that improves fidelity.
Figure 2 illustrates the advantages of this approach.

First, we can identify and remedy small errors in an
environment with noise; we optimize parameters to where
gate errors are no longer dominated by control imperfec-
tions (see Ref. [5] for a representative error budget for a
similar experiment). Second, our approach is fast: the
total number of measurements is 18000 (k ¼ 20 sequences,
900 repetitions each), which can be performed in 2 seconds
with our system. Third, the optimization is model
free, which is a powerful tool as the system Hamiltonian
is not always known to high precision. We believe
this will be critical to improving gates beyond current
fidelities.
We have used the Nelder-Mead algorithm with ORBIT

for automated tune-up as it is a gradient-free method, and
therefore less sensitive to noise. While here we used
Nelder-Mead for “last-mile” optimization—where gate
parameters are initially near the global optimum—any
algorithm which uses a fitness metric could be used with
ORBIT. Possible applications lie in implementing model-
free gates, such as with numerical optimal control [22,23],
where pulses are discretized into pixels. This technique can
be used on the full Hamiltonian without approximation, can
optimize for robustness against noise or experimental
parameters, and can generate gates as fast as the “quantum
speed limit” [24]. Experimentally implementing such gates
is hindered by differences between the modeled and actual
system Hamiltonians. ORBIT could be a bridge by provid-
ing a fitness metric for the closed-loop approaches such as
ad hoc (see Ref. [25]).
We now use ORBIT to minimize gate bleedthrough; this

is a particularly harmful problem because it causes gate-
specific errors on potentially many subsequent gates. Gate
bleedthrough occurs when the mechanism for implement-
ing a gate is not adequately turned off at the end. Physical
mechanisms include reflections of control pulses, stray
inductance in control lines, and amplifier slew rates for
microwave systems. Gate bleedthrough is challenging to
characterize and correct, because the entire time domain
response must be optimized. Here, we demonstrate that
ORBIT is sensitive to a gate bleedthrough mechanism,
allowing for optimization.

We reduce gate bleedthrough from a detune operation
which is implemented using a square step pulse on the qubit
frequency control line ofQ2. The qubit is detuned for 35 ns
by −0.37 GHz, acquiring a single-qubit phase ϕ ¼ 13.2π.
These current pulses can detune the qubit during sub-
sequent gates if not properly leveled, as illustrated in the top
inset of Fig. 3(a). In the bottom inset, we measure
deviations δϕðtÞ from the ideal acquired qubit phase before
and after correction. We compensate the waveform for stray
inductances and reflections in the line by applying an
inverse transfer function with two poles, expressed in terms
of the step response: Θ0ðtÞ ¼ ΘðtÞ½1þP

iai expð−γitÞ�,
with ΘðtÞ the Heaviside step function, and amplitudes ai
and rates γi. In Fig. 3(a), the error of a Clifford plus step
pulse is reduced from r ¼ 0.011 to r ¼ 0.003 by Nelder-
Mead optimization. The sequence fidelity and evolution of
the parameters ai, γi, and accumulated qubit phase are
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FIG. 3 (color online). Reducing gate bleedthrough. (top inset a)
For rotating the state around the Z axis (Bloch sphere repre-
sentation), the qubit frequency is detuned by a step pulse, with
tgate ¼ 35 ns and large frequency change Δf ¼ −0.37 GHz
which is ideally flat (solid red). Nonidealities in control and
wiring bring about a nontrivial deformation of the waveform
(dashed blue), causing gate bleedthrough. (a) Sequence fidelity vs
number of Cliffords for the reference (black squares), and
interleaved with the step pulse for Q2 at f10 ¼ 5.5223 GHz.
The error per Clifford plus step pulse is reduced using ORBIT
from r ¼ 0.011 (blue squares) to r ¼ 0.003 (red circles). With
this improvement, the remnant qubit phase δϕðtÞ after the step
pulse is notably more flat (bottom inset), determined via quantum
state tomography (k ¼ 40). (b) Sequence fidelity during the
Nelder-Mead algorithm (k ¼ 30). (c) Evolution of transfer
function parameters, written in terms of the step response Θ0.
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shown to converge in Fig. 3(b) and Fig. 3(c). Gate
bleedthrough is reduced as evidenced in the improved
sequence fidelity. Additionally, the remnant qubit phase
δϕðtÞ is markedly flatter after the detuning pulse as
the variance in phase is reduced from 22 × 10−4 to
8 × 10−4 rad2 [see the bottom inset of Fig. 3(a)]. This
demonstrates that gate bleedthrough—here arising from
imperfect zeroing of Z control—can be minimized without
the need for a full time-domain characterization.
We also apply ORBIT to optimization problems relevant

to large systems. One of the greatest challenges in scaling
up to larger quantum systems is to maintain addressability
over single qubits as control pulses for one qubit can affect
others. In our architecture, we minimize control crosstalk
by alternating the qubit frequency [13]; next-nearest
neighbors however are prone to crosstalk due to the smaller
frequency difference [see Fig. 4(a)]. A difficulty in min-
imizing crosstalk lies in characterizing its effect on gates.
Here, ORBIT provides an elegant solution by mapping
errors onto the relevant parameters, through the isolated
and simultaneous application of single-qubit Cliffords [26].
We start by measuring the reference fidelity curve for

qubit labeled Q2, shown in Fig. 4(b). From the decay, we
find an average error per Clifford of rc ¼ 0.001, consistent
with the average single-qubit gate fidelity of F ¼ 0.9995.

The colored regions indicate different ranges in reference
fidelity; we use this as a map to infer the gate fidelity from
the sequence fidelity. Next, we monitor the sequence
fidelity (with m ¼ 35) of Q2 while sending pulses for
single-qubit Cliffords down the control line of Q0. We can
ignore the state ofQ0. We vary both the detuning δ and gate
length tgate for pulses on the Q0 line, while keeping the
product of gate length and amplitude fixed to mimic control
crosstalk. The inferred gate fidelity of qubit Q2 is shown in
Fig. 4(c). The red regions indicate minimal added error
from crosstalk (< 0.05%), while the blue regions show
significant increase in error (> 1%). Clear signatures of
infidelity appear when crosstalk signals are resonant with
the qubit transition frequencies f10 or f21, as illustrated in
blue in Fig. 4(a), and fall off with detuning and gate length
as expected.
The data in Fig. 4 demonstrate that ORBIT can provide a

map to visualize and optimize control crosstalk in a
straightforward manner, without the need to characterize
or recalibrate the pulses on qubit Q0. This technique could
in principle also be used for crosstalk reduction methods
that reduce spectral power at overlapping frequencies (see
Ref. [27,28]).
In using ORBIT, we explicitly assume that the cause of

sequence decay remains unchanged: the single exponential
decay, and SPAM errors captured in parameters A and B,
must be consistent. We experimentally find that behavior
remains consistent, by comparing standard RB before and
after optimization (Fig. 2 and Fig. 3). This consistency and
stable fidelities over many hours suggest that drifts in qubit
and control parameters are small. In addition, leakage out of
the computational subspace is assumed to penalize sequence
fidelity [29]. The results show that small leakage errors
penalize fidelity for single- and two-qubit gates (Fig. 1(b),
Fig. 2). Interestingly, while RB assumes that gate errors are
independent of previous gates and Cliffords fully randomize
over the computational subspace, we are able to mimimize
gate bleedthrough and leakage. Clearly, more work needs to
be done to fully understand the limitations and capabilities of
Clifford-based RB. Because of these subtleties, we empha-
size that the reference and interleavedRBdata always should
be verified for self-consistency [5,11].
We have experimentally tested a new approach for

optimizing quantum control using randomized benchmark-
ing. This has been shown to be effective for improving
single- and two-qubit gates, minimizing gate bleedthrough,
and identifying control crosstalk. These experiments are a
representative set of control problems for realizing high
fidelity gates on large quantum systems. We believe
ORBIT can be a generic tool for implementing closed-
loop optimization in experimental systems, due to its speed,
accuracy and platform independence.

We thank F. Wilhelm and D. Egger for helpful dis-
cussions on gate optimization and the Nelder-Mead algo-
rithm. We also thank A. N. Korotkov and A. Veitia for help

FIG. 4 (Color online) (color online). Mapping control crosstalk.
(a) Energy level diagram of the qubits Q2 and Q0. Control pulses
are applied to the XY lines of Q2 and Q0; the latter is swept in
detuning δ and gate length tgate. Control crosstalk can be
exacerbated by small detunings or fast gates. (b) Single-qubit
benchmarking of Q2 at f10 ¼ 5.5223 GHz. The colored regions
indicate different ranges of reference fidelity. The vertical cut
indicates the m value used to discriminate between regions.
(c) The inferred gate fidelity (m ¼ 35, k ¼ 20) versus detuning
and gate length [11].
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