Erratum: Measurement of energy decay in superconducting qubits from nonequilibrium quasiparticles

J. Wenner ${ }^{1}$ and John M. Martinis ${ }^{1}$
${ }^{1}$ Department of Physics, University of California, Santa Barbara, CA 93106, USA

In Eq. (C7) of Ref. [1], the coupled differential equations for the change in the number n_{i} of quasiparticles at energy bin i are given as

$$
\begin{equation*}
\frac{d}{d t} n_{i}=G_{j i}^{s} n_{j}-\sum_{j} G_{i j}^{s} n_{i}-\sum_{j}\left(1+\delta_{i j}\right) G_{i j}^{r} n_{j} n_{i} \tag{1}
\end{equation*}
$$

where $\Gamma_{i \rightarrow j}^{s}=\sum_{j} G_{i j}^{s}$ is the scattering rate from energy bin i to energy bin j and $\Gamma_{i, j}^{r}=\sum_{j} G_{i j}^{r} n_{j}$ is the recombination rate of quasiparticles in energy bins i and j. In this erratum, we show that these equations should instead be

$$
\begin{equation*}
\frac{d}{d t} n_{i}=\sum_{j} G_{j i}^{s} n_{j}-\sum_{j} G_{i j}^{s} n_{i}-\sum_{j} 2 G_{i j}^{r} n_{j} n_{i} \tag{2}
\end{equation*}
$$

The factor of 2 in the recombination term is due to treating a quasiparticle in energy bin i recombining with one in j separately from one in j recombining with one in i. This arises from the definition of the recombination rate. To see this more clearly, consider a population of quasiparticles with density $n=n_{q p} / n_{c p}$ and a recombination matrix element Γ. Then the recombination rate is Γn^{2}, so the loss rate of quasiparticles is $2 \Gamma n^{2}$ due to the loss of a pair of quasiparticles for each recombination event.

Now suppose that this population is split evenly into two energy bins, A and B, with nearly identical energies, so the recombination matrix element for all recombination events is Γ. Then, the loss rate for each bin should be Γn^{2}. According to Eq. (1), but including a symmetric loss for A and B, the loss rates for each possible recombination event are:

Recombination Pair	A-A	B-B	A-B	B-A	Total
Energy Bin A	$2 \Gamma(n / 2)^{2}$	0	$\Gamma(n / 2)^{2}$	$\Gamma(n / 2)^{2}$	Γn^{2}
Energy Bin B	0	$2 \Gamma(n / 2)^{2}$	$\Gamma(n / 2)^{2}$	$\Gamma(n / 2)^{2}$	Γn^{2}

Note that if recombination process B-A is not considered, the total loss rate in each channel would instead be $(3 / 4) \Gamma n^{2}$, not the expected Γn^{2}. Because of symmetry, it is easier to account for this by using a loss rate of $2 \Gamma(n / 2)^{2}$ in the first bin of the interaction and zero in the second bin, giving rise to Eq. (2) as indicated below:

Recombination Pair	A-A	B-B	A-B	B-A	Total
Energy Bin A	$2 \Gamma(n / 2)^{2}$	0	$2 \Gamma(n / 2)^{2}$	0	Γn^{2}
Energy Bin B	0	$2 \Gamma(n / 2)^{2}$	0	$2 \Gamma(n / 2)^{2}$	Γn^{2}

Note that similar behavior can be seen for subdividing the original energy bin into three or four equal bins.

[^0]
[^0]: ${ }^{1}$ M. Lenander et al., Phys. Rev. B 84, 024501 (2011).

