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We show how capacitance can be calculated simply and efficiently for electrodes cut in a 2-
dimensional ground plane. These results are in good agreement with exact formulas and numerical
simulations.

The calculation of capacitance for complex electrode
shapes is generally performed with numerical programs
such as Sonnet or HFSS. Long run times are typical be-
cause of the need to segment the electrodes into many
elements, especially if ground planes are included. Al-
though capacitance is computed, there is usually little
intuition gained as to how changing geometry will affect
the result, except by running many iterations with dif-
ferent design parameters.

Here we show that for the geometry of a 2-dimensional
ground plane with thin cuts that define the electrodes,
the capacitance can be calculated with a simple formula.
For example, the coupling capacitance between two elec-
trodes of arbitrary shape is given by

C12 ≃ (ǫ/π)A1A2/r
3
12 , (1)

where ǫ is the average dielectric constant of the material
above and below the ground plane, A1 and A2 are the
areas of the electrodes 1 and 2, and r12 is the distance
between their centroids, assumed to be much greater than
the extend of the electrodes. Although this relation for
the capacitance is formally exact only as the separation
s of the cuts go to zero, we show here that the scaling
s → s/4 allows accurate calculation of self capacitance
using simple area integrals.

This work was motivated by the design of supercon-
ducting qubits, where it is necessary to set capacitance
coupling elements between qubits, resonators, and con-
trol circuitry. We believe this theory will also help with
other design problems with integrated circuits, since com-
puting capacitance in circuits with a ground plane is a
common need.

In planar circuits, it is tempting to think that capaci-
tance primarily arises at the electrode cuts. In this note,
it will be clear that this notion is incorrect, as a signifi-
cant amount of capacitance comes from charge coupling
to metal electrodes quite far from the cut. The funda-
mental issue with planar circuits is that although there
is a ground plane to shield the electric fields, the ground
plane does not enclose all the electric fields coming from
an electrode, so that the fields out of the plane give charge
coupling at long distances. This implies that stray cou-
pling must be carefully considered and engineered so that
these strays do not adversely affect device performance.

GREEN’S FUNCTION SOLUTION

We solve for capacitance using a Green function ap-
proach, which is based on the linearity of electromag-
netism. In general, the charge dQ for a small area dAq is
computed from a voltage source V with area dAv using

dQ/dAq = f(rq, rv,
−→rc )V dAv , (2)

where f(rq, rv,
−→rc ) is a function of the charge and volt-

age coordinates, as well as the positions −→rc of all other
(infinitesimal) elements of the conductors. The solution
for f is typically quite complex, as it can in general only
be found using numerical techniques of matrix inversion,
starting from a potential matrix having elements like
1/4πǫ|ri − rj |. However, for the simple geometry con-
sidered here of a ground plane sheet with infinitesimally
thin cuts, this function turns out to be easy to calculate
since the effects of the thin cuts can be neglected.

We thus need to find the Green’s function solution for
the charge distribution in an infinite ground plane coming
from a infinitesimal electrode with a voltage V . We first
consider a simpler situation with a point source of charge
q at distance d above the plane. The problem can be
solved using an image charge, which gives for radius r
and distance z above the plane the potential

U(r, z) =
q

4πǫ

[ 1
√

r2 + (z − d)2
− 1

√

r2 + (z + d)2

]

(3)

=
M

4πǫ

z

(r2 + z2)3/2
, (4)

where in the last equation we have made set d → 0 but
kept the total moment constant M = 2qd. The surface
charge density in the ground plane is given by

σ = ǫ
∂U(r, z)

∂z

∣

∣

∣

z=0
= − M

4πr3
. (5)

We are interested in the charge distribution not from
a charge dipole, but from an infinitesimal electrode of
area dAv at voltage V . The fields from this electrode
can be equivalently described as arising from a spatial
distribution of charge moments, which produce voltages
equivalent to that coming from the electrode. Although
this distribution of moments could be found in principle,
we need only solve a simpler problem of calculating the
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total moment, since we are only interested in the resulting
surface charge density at large radius.

To proceed, we need to relate this total moment to the
electrode voltage. We first consider the simpler problem
of a single dipole, where we sum the voltage coming from
a dipole over the plane a distance z above the ground

∫

U dA =

∫ ∞

0

U(r, z) 2πrdr (6)

= M/2ǫ (7)

where in the last equation we note the integral does not
depend on the height z. From linearity, we can relate
the total moment Mt to the integral of the voltage an in-
finitesimal distance above the ground plane, which gives

Mt/2ǫ =

∫

U dA = V dVv (8)

since the ground plane at zero voltage gives no contribu-
tion to the integral. Combining Eqs. (5) and (8) gives the
charge distribution from the electrode at large radius

σ = − ǫ

2π

V dAv

r3
. (9)

The capacitance can now simply be calculated by sum-
ming the charge over all infinitesimal elements of the ca-
pacitors. The general formula for capacitance between
electrodes 1 and 2 is

C12 =
ǫ

π

∫ ∫

dA1 dA2

|r1 − r2|3
, (10)

where r1 and r2 are the coordinates of differential areas
dA1 and dA2.

Here we have included capacitance from both above
and below the ground plane, which increases the result
by a factor of two. For the case of a substrate and air with
different dielectric constants ǫs and ǫa, the capacitance
is still given by the sum over the substrate and air ca-
pacitances, which is accounted for using the replacement
ǫ → (ǫs + ǫa)/2.

COMPARISON WITH COPLANAR LINES

This theory may be tested against analytic results
for the geometry of a coplanar waveguide with centered
width w and separation s, as illustrated in Fig. 1. For
this case the capacitance per unit length of the line is
given by analytic results [1]

C(cp,a)/L = 4ǫK(κ)/K(
√

1− κ2) (11)

≃ (4ǫ/π) ln[2(1 +
√
κ)/(1−

√
κ)] (12)

≃ (4ǫ/π) ln(4w/s) (13)

where κ = (w − s)/(w + s) and K(κ) is the complete
elliptic integral of the first kind. The second equation is
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FIG. 1: Plot of centerline capacitance versus s/w for a copla-
nar waveguide of separation s, centered width w, and grounds
extending to infinity. The analytical result Eq. (12) is the
black curve, whereas the blue line is the area integration for-
mula Eq. (16). Scaling of s to s/4, illustrated in upper inset
(red), shifts the integral prediction upward by (4/π) ln 4; when
doing so, we find the analytical results are well matched even
for small to moderate s. Arrow indicates s/w = 0.5. The
lower inset defines the coordinates aL, aR, bL and bR used in
Eqs. (14) and (15).

an excellent approximation for typical geometries, hav-
ing errors greater than 10−2 only for κ < 0.08, whereas
the last is valid for s/w → 0. This predicts a weak (loga-
rithmic) dependence of capacitance on parameters of the
line.

The capacitance from the area integral of Eq. (10) may
be calculated directly for two coplanar electrodes a (b), as
illustrated in the lower inset of Fig. 1. For left and right
edge coordinates aL and aR (bL and bR), the capacitance
is

Cab = (2ǫ/π) ln
[ (aL − bL)(aR − bR)

(aR − bL)(aL − bR)

]

(14)

= (2ǫ/π) ln
[ aL − bL
aR − bL

]

(for bR → ∞) . (15)

This expression can be readily be extended to the case
of three electrodes. For the coplanar line the self capaci-
tance is

C(cp)/L = (4ǫ/π) ln(w/s) . (16)

As shown in Fig. 1, the slope of this prediction matches
the analytic formula Eq. (13), so the curves asymptoti-
cally match as s → 0. This justifies the idea that Eq. (10)
is exact for separation s → 0. However, there is signifi-
cant error for practical values of s comparable in magni-
tude to w. Figure 1 also shows the analytic formula can
be matched for s . w/2 by keeping w constant but scal-
ing s → s/4: of course, this identification can be obtained
by simply comparing Eqs. (13) and (16). We conclude
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FIG. 2: Plot of ground capacitance Cg (red to black elec-
trodes) and coupling capacitance Cc (red to blue) versus s/w.
Exact numerical results are points, whereas lines are results
Eqs. (17) and (18) from area integration theory with scaling
s → s/4. Arrow indicates s/w = 0.5. The small shift between
points and line are believed to arise from numerical errors.

here that when computing self capacitance, Eq. (10) is
only accurate for exponentially small separations, but a
simple rescaling to s/4 corrects the formula quite well for
edge effects.

Although we can accurately calculate self capacitance
for small separations, calculation of coupling capacitance
should be even more reliable since the area elements are
typically spaced by larger distance, so edge effects will
be small. To test this case, we next compare coplanar
geometries with a second electrode. For Fig. 2 where the
two coplanar centerlines are separated by s, the ground
and coupling capacitance is computed to be

C(2cp)
g =

2ǫ

π
ln
( w

s/4

2w

w + s/4

)

(17)

C(2cp)
c =

2ǫ

π
ln
( w

s/4

w

2w − s/4

)

, (18)

where we have explicitly included the scaling s → s/4.

For Fig. 3 where there is an additional intermediate
ground electrode of length d, the capacitances are

C(dcp)
g =

2ǫ

π
ln

( w

s/4

2w + d

w + d+ s/4

w

s/4

d

w + d− s/4

)

(19)

C(dcp)
c = −2ǫ

π
ln
[

1−
(w − s/4

d+ w

)2]

(20)

≃ 2ǫ

π

(w

d

)2

(for s/4 ≪ w ≪ d) . (21)

Comparison of these formulas with an exact numerical
solution shows excellent agreement.
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FIG. 3: Plot of capacitance versus d/w, as for Fig. 2 but with
additional ground electrode of centered width d. Theoretical
predictions are from Eqs. (19) and (20), where black and blue
(green and red) lines are for s/w = 0.1 (0.5). The dashed line
is the asymptotic prediction from Eq. (21).

USEFUL FORMULAS

We next show results for a feedline coupled to a rect-
angular electrode, as illustrated in Fig. 4. We consider
a semi-infinite feedline of width wf coupled to a rectan-
gular box of width w = 18µm and length L = 98µm,
separation s, and where the end of the feedline is sep-
arated from the center of the rectangle by distance X.
Here, we plot as points the results of numerical calcula-
tions from Sonnet, for cases of parallel and perpendicular
orientations. We also show the predictions from the area
integral formula Eq. (10), which gives

C(r)
c = (ǫ/π)wf 2

[ 1

y

(
√

x2
+ + y2 −

√

x2
− + y2 − L

)

+ ln
(x+

x−

√

x2
− + y2 + y

√

x2
+ + y2 + y

) ]

, (22)

x± = X ± L/2 , (23)

y = w/2 . (24)

As shown in Fig. 4, we see excellent agreement between
this formula and the numerical data. For the case w ≪ L
the geometry is for two colinear lines, and we use a line
integral version of Eq. (10) to find

C‖
c = (ǫ/π)wfw

L/2

X2 − (L/2)2
(for ω ≪ X) (25)

≃ (ǫ/π)
(wfX/2)(wL)

X3
(for ω,L ≪ X) . (26)
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FIG. 4: Plot of coupling capacitance versus feedline distance
X for a rectangle with parallel or perpendicular orientations,
and a cross. Symbols are from Sonnet numerical simulations,
whereas lines are obtained from the numerical integration for-
mulas Eqs. (22) or (25). The rectangle has dimensions of
length L = 96µm and width w = 18µm, and has a sepa-
ration s = 2µm from electrode to ground. The feedline has
width wf = 18µm, and has its end a distance X from the
rectangle center. Rectangle capacitance is C = 4.06 fF.

For the perpendicular case, we find.

C⊥
c = (ǫ/π)

4wfw

L
[
√

1 + (L/2X)2 − 1] (for ω ≪ X) .

(27)

Note that Eq. (26) is written as the product of areas
divided by a distance cubed to match the form of the area
integral formula. Here, it is seen that the effective length
of the feedline is half the spacing X. We will express the
following formulas in this manner to emphasize this basic
form.

For a rectangle separated from a small area A with
center to center distance X, the coupling capacitance is

C(rA)
c =

ǫ

π

2A

y

[
√

1 + y2/x2
− −

√

1 + y2/x2
+

]

(28)

=
ǫ

π

A(wL)

X3

[

1− 1

8

(w

X

)2

+
1

2

( L

X

)2

+ ...
]

(29)

As the correction terms are second order in w and L,
there is less than 10% change in the simple area formula
even for relatively large size w ≤ 0.9X and L ≤ 0.45X.

For the condition L → ∞, Eq. (25) can be used to
calculate the coupling capacitance between two colinear
semi-infinite lines separated by a gap g, giving

C‖g
c = (ǫ/π)

(wfg)(wg)

2g3
. (30)

For the case of perpendicular geometry with coupling be-
tween a semi-infinite and infinite line separated by gap

g, we find

C⊥g
c = (ǫ/π)

2(wfg)(wg)

g3
. (31)

For the case of an infinite line coupled to a rectangle of
width w and length L, parallel to the infinite line but
offset by a gap g, the coupling capacitance is

Coffset

c = (ǫ/π)
2wf (wL)

g2
. (32)

COMPARISON OF SQUARE AND RECTANGLE

Isolation of capacitance is an important issue, so an
obvious question is whether the electrode geometry of a
square or rectangle gives better isolation from one qubit
to another. Since the coupling capacitance scales as the
area of each electrode A, but the self capacitance scales
as their perimeter p, the ratio of the coupling to self ca-
pacitance is A/p. Assuming equal self capacitance, this
result implies that the lowest stray coupling will come
from a rectangle of small aspect ratio w/L. Smaller cou-
pling arises because the ground plane around the nar-
row dimension of the rectangle better screens the electric
fields.

FINITE SUBSTRATE THICKNESS

The integral solution developed in this paper can be
also applied to other important cases, such as for a metal
plane on top of a substrate of finite thickness t and di-
electric constant ǫs. Since the symmetry in the x and y
directions is preserved, we expect a Green’s function with
only a radial dependence f(r)/r3, which has f(r) = 1 for
r ≪ t, but then changes for r ≫ t due to screening effects.

We consider the geometry shown in the inset of Fig. 5,
where a dielectric with ǫa is below the substrate. For
the case of an air dielectric, we expect ǫa = 1, whereas
the case of the substrate on a metal ground plane can be
solved using ǫa → ∞.

The radial scaling of the Green function can be solved
by considering a charge source q just below the origin.
The metal plane gives an image charge of −q just above
the origin, whereas the ǫs-ǫa boundary produces an image
charge at the z-coordinate −2t with charge q′ ≡ −α q and
α = (ǫa−ǫs)/(ǫa+ǫs). The effect of the two boundaries is
to produce a series of image dipoles in the z direction each
spaced by 2t, with moments that are repeatedly reduced
by the factor α away from the origin. Since the charge
on the metal plane is proportional to the electric field in
the z-direction from these dipoles, the screening factor is
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FIG. 5: Plot of screening factor f versus normalized radius
r/t for a metal plane on top of a substrate of thickness t and
dielectric constant ǫs. Underneath the substrate is another
dielectric with ǫa. We consider the substrate-air case with
ǫs/ǫa = 10 (black), as well as for a metal ground plane un-
derneath the substrate ǫa → ∞ (blue).

given by a sum n over the images

f(r) = 1 + 2

∞
∑

n=1,2

αn r3

[r2 + (2tn)2]3/2

[

1− 3

1 + (r/2tn)2

]

(33)

This screening factor f(r) is plotted in Fig. 5 for the
case of a substrate-air interface with ǫs/ǫa = 10 (α =
−9/11), and for a metal ground plane below the sub-
strate ǫs/ǫa = 0 (α = 1). For the air case, the screening
factor reduces to 1/10 for r ≫ t, as expected since the
effective dielectric constant should be that of air. For the
metal case, the screening factor drops rapidly to zero, as
expected for charge screening.

The summation generally converges taking a maximum
n of about 104. However, the sum is slowly convergent
for the case α = 1 and r/t > 5, so one should then use
the fit function f(r/t) = f(5) exp[−2.718(r/t − 5)]. For
practical implementation, it is suggested to compute f(r)
once and then use an interpolation function for the area
integration.

The total charge on the metal plane comes from electric

fields above and below the substrate. This can be directly
summed, which changes the integral of Eq. (10) by the
following replacement

ǫ

r3
→ ǫa

2r3
+

ǫs
2r3

f(r) . (34)

An interesting calculation considers the coupling ca-
pacitance to the substrate ground plane, which we take
as the charge [1−f(r)]/r3 that is no longer accumulating
at the top plane. For a source disk of radius R ≪ t and
area A, we find

Cgz =
ǫsA

2π

∫ ∞

R

2πr

r3
[1− f(r)] dr (35)

=
ǫsA

t
(36)

where we have ignored the rise in charge density at r ≃ R
since 1 − f(r) ≃ 0 for r ≪ t. It is possible to simply
estimate this result by computing an integral with a step-
function cutoff to the coupling for r > t, which also gives
the same result. This equation shows a relatively slow
dependence 1/t on the thickness, so capacitance to this
ground can not obviously be ignored.

Equation (36) was derived for a disk of small area A,
so it represents the Green function for this ground-plane
geometry. For an electrode of any area and shape, the
ground capacitance Cgz can be obtained by integrating
over all the area, also giving the result of Eq. (36) where
now A is the area of an arbitrary electrode. As expected,
the ground capacitance is the parallel plate result ǫsA/t
for large area, where the extent of the electrode is much
larger than t. Perhaps surprisingly, the parallel plate
formula is also good for the case of small area.

This parallel plate result can be used to estimate ca-
pacitance from more complicated geometries. For exam-
ple, if the dielectric stackup was substrate, air and then
a ground plane, the formula for the ground capacitance
would simply be the parallel plate formula corresponding
to the substrate and air.
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