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Recent progress in quantum information has led to the start of
several large national and industrial efforts to build a quantum
computer. Researchers are now working to overcome many
scientific and technological challenges. The program's biggest
obstacle, a potential showstopper for the entire effort, is the need
for high-fidelity qubit operations in a scalable architecture. This
challenge arises from the fundamental fragility of quantum
information, which can only be overcome with quantum error
correction.1 In a fault-tolerant quantum computer the qubits and
their logic interactions must have errors below a threshold: scaling
up with more and more qubits then brings the net error
probability down to appropriate levels needed for running
complex algorithms. Reducing error requires solving problems in
physics, control, materials and fabrication, which differ for every
implementation. I explain here the common key driver for
continued improvement - the metrology of qubit errors.
We must focus on errors because classical and quantum

computation are fundamentally different. The classical NOT
operation in CMOS electronics can have zero error, even with
moderate changes of voltages or transistor thresholds. This
enables digital circuits of enormous complexity to be built as
long as there are reasonable tolerances on fabrication. In contrast,
quantum information is inherently error prone because it has
continuous amplitude and phase variables, and logic is imple-
mented using analog signals. The corresponding quantum NOT, a
bit-flip operation, is produced by applying a control signal that
can vary in amplitude, duration and frequency. More fundamen-
tally, the Heisenberg uncertainty principle states that it is
impossible to directly stabilise a single qubit as any measurement
of a bit-flip error will produce a random flip in phase. The key to
quantum error correction is measuring qubit parities, which
detects bit flips and phase flips in pairs of qubits. As explained in
the text box, the parities are classical like so their outcomes can be
known simultaneously.
When parity changes, one of the two qubits had an error, but

which one is not known. To identify, encoding must use larger
numbers of qubits. This idea can be understood with a simple
classical example, the 3-bit repetition code as described in
Figure 1. Logical states 0 (1) are encoded as 000 (111), and
measurement of parities between adjacent bits A–B and B–C
allows the identification (decoding) of errors as long as there is a
change of no more than a single bit. To improve the encoding to
detect both order n= 1 and n= 2 errors, the repetition code is
simply increased in size to 5 bits, with four parity measurements
between them. Order n errors can be decoded from 2n+1 bits and
2n parity measurements.
Quantum codes allow for the decoding of both bit- and phase-

flip errors given a set of measurement outcomes. As for the above
example, they decode the error properly as long as the number of
errors is order n or less. The probability for a decoding error can be
computed numerically using a simple depolarisation model that
assumes a random bit- or phase-flip error of probability ϵ for each
physical operation used to measure the parities. By comparing the

known input errors with those determined using a decoding
algorithm, the decoding or logical error probability is found to be

PlCΛ - ðnþ1Þ ð1Þ

Λ ¼ ϵt=ϵ; ð2Þ
where ϵt is the threshold error, fit from the data. The error
suppression factor is Λ, the key metrological figure of merit that
quantifies how much the decoding error drops as the order n
increases by one. Note that Pl scales with ϵn+1, as expected for n+1
independent errors. The key idea is that once the physical errors ϵ
are lower than the threshold ϵt, then Λ41 and making the code
larger decreases the decoding error exponentially with n. When
Λo1 error detection fails, and even billions of bad qubits do
not help.
A key focus for fault tolerance is making qubit errors less than

the threshold. For Λ to be as large as possible, we wish to encode
with the highest threshold ϵt. The best practical choice is the
surface code,2,3 which can be thought of as a two-dimensional
version of the repetition code that corrects for both bit and phase
errors. A 4n+1 by 4n+1 array of qubits performs n-th order error
correction, where about half of the qubits are used for the parity
measurements. It is an ideal practical choice for a quantum
computer because of other attributes: (i) only nearest neighbour
interactions are needed, making it manufacturable with integrated
circuits; (ii) the code is upward compatible to logical gates, where
measurements are simply turned off; (iii) the code is tolerant up to
a significant density (~10%) of qubit dropouts from fabrication
defects; (iv) the high error threshold arises from the low
complexity of the parity measurement; a code with higher
threshold is unlikely; (v) the simplicity of the measurement brings
more complexity to the classical decoding algorithm, which
fortunately is efficiently scalable; (vi) detected errors can be
tracked in software, so physical feed-forward corrections using bit-
or phase-flip gates are not needed; (vii) the prediction equation (1)
for Pl is strictly valid only for the operative range Λ≳10, where the
threshold is ϵtC2%. At break-even Λ= 1, the threshold is
significantly smaller, 0.7%.
Typical quantum algorithms use ~ 1018 operations,3 so we

target a logical error Pl= 10− 18. Assuming an improvement Λ= 10
for each order, we need n= 17 encoding. The number of qubits for
the surface code is (4·17+1)2 = 4,761. For Λ= 100, this number
lowers by a factor of 4. Although this seems like a large number of
qubits from the perspective of present technology, we should
remember that a cell phone with 1012 transistors, now routinely
owned by most people in the world, was inconceivable only
several decades ago.
Hardware requirements can be further understood by separat-

ing out the entire parity operation into one- and two-qubit logic
and measurement components. Assuming errors in only one of
these components, break-even thresholds are, respectively, 4.3%,
1.25% and 12%: the two-qubit error is clearly the most important,
whereas measurement error is the least important. For the
practical case when all components have non-zero errors,
I propose the threshold targets

ϵ1�0:1% ð3Þ
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ϵ2�0:1% ð4Þ

ϵm�0:5%; ð5Þ
which gives Λ≥ 17. It is critical that all three error thresholds be
met, as the worst performing error limits the logical error Pl.
Measurement errors ϵm can be larger because its single-
component threshold 12% is high. Two-qubit error ϵ2 is the most
challenging because its physical operation is much more complex
than for single qubits. This makes ϵ2 the primary metric around
which the hardware should be optimised. The single-qubit error
ϵ1, being easier to optimise, should readily be met if the two-qubit
threshold is reached. Note that although it is tempting to isolate
qubits from the environment to lower one-qubit errors, in practice
this often makes it harder to couple them together for two-qubit
logic; I call such strategy ‘neutrino-ised qubits’.
In the life cycle of a qubit technology, experiments start with a

single qubit and then move to increasingly more complex multi-
qubit demonstrations and metrology. The typical progression4 is
illustrated in Figure 2, where the technology levels and their
metrics are shown together.
In level I, one- and two-qubit experiments measure coherence

times T1 and T2, and show basic functionality of qubit gates. Along
with the one-qubit gate time tg1, an initial estimate of gate error
can be made. Determining the performance of a two-qubit gate is
much harder as other decoherence or control errors will typically
degrade performance. Swapping an excitation between two
qubits is a simple method to determine whether coherence has
changed. Quantum process tomography is often performed on
one- and two-qubit gates,5 which is important as it proves that
proper quantum logic has been achieved. In this initial stage, it is
not necessary to have low measurement errors, and data often
have arbitrary units on the measurement axis. This is fine for initial
experiments that are mostly concerned with the performance of
qubit gates.
In level II, more qubits are measured in a way that mimics the

scale-up process. This initiates more realistic metrology tests as to
how a qubit technology will perform in a full quantum computer.
Here the application of many gates in sequence through
randomized benchmarking (RB) enables the total error to grow
large enough for accurate measurement, even if each gate error is
tiny.6 Interleaved RB is useful for measuring the error probability of
specific one- and two-qubit logic gates, and gives important
information on error stability. Although RB represents an average
error and provides no information on error coherence between
gates, it is a practical metric to characterise overall performance.7

For example, RB can be used to tune up the control signals for
lower errors.8 Process tomography can be performed for multiple
qubits, but is typically abandoned because (i) the number of
necessary measurements scales rapidly with increasing numbers

of qubits, (ii) information on error coherence is hard to use and
(iii) it is difficult to separate out initialisation and measurement
errors. Measurement error is also obtained in this level;
differentiation should be made between measurement that
destroys a qubit state or not, as the latter is eventually needed
in level IV for logical qubits. A big concern is crosstalk between
various logic gates and measurement outcomes, and whether
residual couplings between qubits create errors when no
interactions are desired. A variety of crosstalk measurements
based on RB are useful metrology tools.
In level III an error detection or correction algorithm is

performed,9 representing a complex systems test of all compo-
nents. Qubit errors have to be low enough to perform many
complex qubit operations. Experiments work to extend the
lifetime of an encoded logical state, typically by adding errors to
the various components to show improvement from the detection
protocol relative to the added errors.
At level IV, the focus is measuring Λ41, demonstrating how a

logical qubit can have less and less error by scaling up the order n
of error correction. The logical qubit must be measured in first and
second orders, which requires parity measurements that are
repetitive in time so as to include the effect of measurement
errors. Note that extending the lifetime of a qubit state in first
order is not enough to determine Λ. Measuring Λ41 indicates
that all first-order decoding errors have been properly corrected,
and that further scaling up should give lower logical errors.
Because 81 qubits are needed for the surface code with n= 2,
a useful initial test is for bit-flip errors, requiring a linear array of
nine qubits. These experiments are important as they connect the
error metrics of the qubits, obtained in level II, to actual fault-
tolerant performance Λ. As there are theoretical and experimental
approximations in this connection, including the depolarisation
assumption for theory and RB measurement for experiment, this
checks the whole framework of computing fault tolerance.
A fundamentally important test for n≥ 2 is whether Λ remains
constant, as correlated errors would cause Λ to decrease. Level IV
tests continue until the order n is high enough to convincingly
demonstrate an exponential suppression of error. A significant
challenge here is to achieve all error thresholds in one device and
in a scalable design.
An experiment measuring the bit-flip suppression factor ΛX has

been done with a linear chain of nine superconducting qubits.10

The measurement ΛX= 3.2 shows logical errors have been
reduced, with a magnitude that is consistent with the bit-flip
threshold of 3% and measured errors. This is the first demonstra-
tion that individual error measurements can be used to predict
fault tolerance. For bit and phase fault tolerance, we need to
improve only two-qubit errors and then scale.

input bits parity
A B C A-B B-C
0 0 0 0 0
1 0 0 1 0
0 1 0 1 1
0 0 1 0 1
1 1 0 0 1
1 0 1 1 1
0 1 1 1 0
1 1 1 0 0

A B C

A-B B-C

Figure 1. 3-bit classical repetition code for bits A, B and C with parity
measurements between A–B and B–C. Table shows all combination
of inputs and the resulting parity measurements. For an initial state
of all zeros, a unique decoding from the measurement to the actual
error is obtained for only the top four entries, where there is no
more than a single bit error (order n= 1).

Technology
Level

I: demonstration (1-2) T1, T2, tg1

II: metrology (4-10)

1, 2, m

III: error correction (3-9)
IV: logical qubit (9, 81, 103)

V: logical Clifford (104)
VI: logical T & feed-forward (104)

VII: quantum computer (105)

Pl Pl Pl

Metrics

Figure 2. Life cycle of a qubit. Illustration showing the increasing
complexity of qubit experiments, built up on each other, described
by technology levels I through VII. Numbers in parenthesis shows
approximate qubit numbers. Key metrics are shown at bottom.
Errors for one qubit, two qubit and measurement are described by
ϵ1, ϵ2 and ϵm, respectively, which leads to an error suppression
factor Λ. Fault-tolerant error correction is achieved when Λ41.
Scaling to large n leads to Pl→ 0.
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In level V, as the lifetime of a logical state has been extended,
the goal is to perform logical operations with minuscule error.
Similar to classical logic that can be generated from the NOT and
AND gates, arbitrary quantum logic can be generated from a small
set of quantum gates. Here all the Clifford gates are implemented,
such as the S, Hadamard or controlled NOT. The logical error
probabilities should be measured and tested for degradation
during logical gates.
In level VI, the test is for the last and most difficult logic

operation, the T gate, which phase shifts the logical state by 45°.
Here state distillation must be demonstrated, and feed-forward
from qubit errors conditionally controls a logical S gate.3 Because
logical errors can be readily accounted for in software for all the
logical Clifford gates in level V, feed-forward is only needed for
this non-Clifford logical T gate.
Level VII is for the full quantum computer.
The strategy for building a fault-tolerant quantum computer is

as follows. At level I, the coherence time should be at least 1,000
times greater than the gate time. At level II, all errors need to be
less than threshold, with particular attention given to hardware
architecture and gate design for lowest two-qubit error. Design
should allow scaling without increasing errors. Scaling begins at
level IV: nine qubits give the first measurement of fault tolerance
with ΛX, 81 qubits give the proper quantum measure of Λ and
then about 103 qubits allow for exponentially reduced errors. At
level V through VII, 104 qubits are needed for logical gates and
finally, about 105 qubits will be used to build a demonstration
quantum computer.
The discussion here focuses on optimising Λ, but having fast

qubit logic is desirable to obtain a short run time. Run times can
also be shortened by using a more parallel algorithm, as
has been proposed for factoring. A 1,000 times-slower

quantum logic can be compensated for with about 1,000 times
more qubits.
Scaling up the number of qubits while maintaining low error is a

crucial requirement for level IV and beyond. Scaling is significantly
more difficult than for classical bits as system performance will be
affected by small crosstalk between the many qubits and control
lines. This criteria makes large qubits desirable, as more room is
then available for separating signals and incorporating integrated
control logic and memory. Note this differs from standard classical
scaling of CMOS and Moore’s law, where the main aim is to
decrease transistor size.
Superconducting qubits have macroscopic wavefunctions

and are therefore well suited for the challenges of scaling with
control. I expect qubit cells to be in the 30–300 μm size scale, but
clearly any design with millions of qubits will have to properly
tradeoff density with control area based on experimental
capabilities.
In conclusion, progress in making a fault-tolerant quantum

computer must be closely tied to error metrology, as improve-
ments with scaling will only occur when errors are below
threshold. Research should particularly focus on two-qubit gates,
as they are the most difficult to operate well with low errors.
As experiments are now within the fault-tolerant range, many
exciting developments are possible in the next few years.
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Quantum parity. An arbitrary qubit state is written as
Ψ ¼ cos ðy=2Þ90〉þ eiϕ sin ðy=2Þ91〉, where the continuous
variables θ and ϕ are the bit amplitude and phase. A bit
measurement collapses the state into |0〉 (|1〉) with probability
cos2(θ/2) (sin2(θ/2)), thus digitising error. In general, measure-
ment allows qubit errors to be described as either bit flip X̂
(|0〉↔ |1〉) or phase flip Ẑ (|1〉↔− |1〉). According to the
Heisenberg uncertainty principle, it is not possible to
simultaneously measure the amplitude and phase of a qubit,
so obtaining information on a bit flip induces information loss
on phase equivalent to a random phase flip and vice versa. This
property comes fundamentally from bit and phase flips not
commuting ½X̂; Ẑ� ¼ X̂Ẑ - ẐX̂≠0; the sequence of the two
operations matter. Quantum error correction takes advantage
of an interesting property of qubits X̂Ẑ ¼ - ẐX̂ , so that a
change in sequence just produces a minus sign. With X̂1X̂2 and
Ẑ1Ẑ2 corresponding to two-qubit bit and phase parities, they
now commute because a minus sign is picked up from each
qubit

½X̂1X̂2; Ẑ1Ẑ2� ¼ X̂1X̂2Ẑ1Ẑ2 - Ẑ1Ẑ2X̂1X̂2 ð6Þ

¼ X̂1X̂2Ẑ1Ẑ2 - ð - Þ2X̂1X̂2Ẑ1Ẑ2 ð7Þ
¼ 0: ð8Þ

The two parities can now be known simultaneously, implying
they are classical like: a change in one parity can be measured
without affecting the other.
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