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Equations in the main paper are denoted by Eq. [*].

A. Effective three-photon hopping.

In this section, we review the Schrieffer-Wolff (SW) transformation [1] and use it to derive an effective three-photon
hopping process. As discussed in the main text, we restrict ourselves to a three-photon manifold of the l-th trimer,
i.e. |300〉l, |030〉l, |210〉l and |120〉l. In this subspace, the Hamiltonian is decomposed as

Hl = H0
l + λVl, (1)

where H0
l =

∑3l−2
m=3l [∆ cos(2πm/3 + φ(t∗)) + nm(nm − 1)] and λVl = −J

∑3l−2
m=3l

(
a†mam+1 + H.c.

)
, with φ(t∗) =

2π/3.
When J = 0, the states |300〉l and |030〉l have the same on-site energy ε3 and so do the states |210〉l and |120〉l

with the energy ε2. Hence, the spectrum of H0
l can be grouped into two manifolds, labelled as D3 = {|300〉l, |030〉l}

and D2 = {|210〉l, |120〉l} respectively (see Fig.1). The two manifolds are separated by a gap ∆E = ε2 − ε3 = −2U .
We consider the hopping term λVl as a perturbation that couples these manifolds.

Our aim is to find an effective Hamiltonian H ′l which has no matrix elements between the two manifolds. We require

that the effective Hamiltonian is related to the original Hamiltonian by a unitary transformation H ′l = eiS
l

He−iS
l

,
where S is a Hermitian matrix. By expanding Sl = λSl1 +λ2Sl2 +λ3Sl3 + ..., the effective Hamiltonian can be expressed

FIG. 1: Diagram showing a third-order three-photon hopping process. For the l-th trimer, the states |300〉l and |030〉l have
the same on-site energy as well as |210〉l and |120〉l. Hence, they can be grouped into two manifolds, labeled as D3 and D2

respectively. The two manifolds are separated by ∆E = 2U . Since the hopping element between |210〉l and |300〉l is
√

3J , we
have

√
3J/∆E < 1 for U = J . This allows a relatively strong third-order hopping process where the three photons hop from

|300〉l to |030〉l via the intermediate states |210〉l and |120〉l and vice versa.
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up to the third order in λ as H ′l = H0
l +H

′(1)
l +H

′(2)
l +H

′(3)
l , where

H
′(1)
l =[iλSl1, H

0
l ] + λVl,

H
′(2)
l =[iλ2Sl2, H

0
l ] + [iλSl1, λVl] +

1

2
[iλSl1, [iλS

l
1, H

0
l ]],

H
′(3)
l =[iλ3Sl3, H

0
l ] + [iλ2Sl2, λVl] +

1

2
[iλ2Sl2, [iλS

l
1, H

0
l ]] +

1

2
[iλSl1, [iλ

2(Sl)22, H
0
l ]]

+
1

2
[iλSl1, [iλS

l
1, λVl]] +

1

6
[iλSl1, [iλS

l
1, [iλS

l
1, H

0
l ]]]. (2)

Let us consider the first order term H
′(1)
l . Since the matrix element of H ′l between two manifolds is zero, we have

〈α|H ′(1)l |β〉 = 0, where |α〉 and |β〉 are states from manifolds Dα and Dβ with α 6= β, respectively. For example,

one has that 〈300|lH ′(1)l |210〉l = 0. However, the Sl matrix that satisfies this condition is not unique. To avoid

this, we choose the Sl matrix such that it does not have matrix elements inside each manifold, i.e. PαS
lPα = 0, for

α ∈ {2, 3} where Pα is a projector over the manifold Dα. Therefore, one has P2 = |210〉l〈210|l + |120〉l〈120|l and
P3 = |300〉l〈300|l + |030〉l〈030|l.

With this, the first-order matrix Sl1 can be written as

iλSl1 =
∑
α,β

〈α|λVl|β〉
εβ − εα

|α〉〈β| =
√

3J

2U
(|300〉l〈210|l + |030〉〈120|l − h.c.) . (3)

Similarity, since 〈α|H ′(2)l |β〉 = 0, the second-order matrix Sl2 is

iλ2Sl2 =
∑
α,β

〈α|[iλSl1, λVl]|β〉
2(εβ − εα)

|α〉〈β| =
√

3J2

4
√

2U2
(|300〉l〈120|l + |030〉l〈210|l − h.c.) . (4)

The third order commutator [iλ3Sl3, H
0
l ] is off-diagonal and, by definition, does not contribute to the term H

′(3)
l . By

restricting to the D3 manifold, i.e. P3H
′
lP3, the three-photon hopping can be derived from the third-order term as

H
′(3)
l,J = − J3

√
2U2

(|300〉l〈030|l + |030〉l〈300|l). (5)

Other terms in P3H
′
lP3 result in a normalization factor of the on-site energies.

We note that the above scheme is somewhat reminiscent of stimulated Raman adiabatic passage (STIRAP) [2],
which employs partially overlapping pulses in time to achieve adiabatic transfer between discrete atomic or molecular
quantum states. In contrast, our scheme can be used to transport particles that move adiabatically in a continuous
energy band between discrete neighboring lattice sites without dispersion. This is only made possible by the topological
properties of the Hamiltonian and results in reliable and robust quantum transport of Fock states in the bulk.

B. Mean field description

To discuss the critical properties of the model Eq. [1], we resort on the mean field analysis [3, 4]. With this aim,
we consider a lattice with L sites and periodic boundary conditions a0 = aL−1. We introduce a new set of displaced
bosonic operators

am = bm + αm , (6)

where am are the original bosonic operators, and bm describes the quantum fluctuation about the mean field αm.
Let us focus now on the particular case of a time independent phase φ(t) = φ0 in Eq. [1] and b = 1/3. In this

particular case, the one dimensional lattice is composed by L/3 trimers with on-site energies

ωA = ω3l = ω0 + ∆ cosφ0

ωB = ω3l+1 = ω0 + ∆ cos(φ0 + 2π/3)

ωC = ω3l+2 = ω0 + ∆ cos(φ0 + 4π/3) . (7)
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This motivates us to introduce the label l ∈ {0, . . . , L/3− 1} for each unit cell or trimer. Within each trimer one has
three species of bosons bA,l = b3l, bB,l = b3l+1 and bC,l = b3l+2 with a similar convention for the mean fields αA,l, αB,l
and αC,l. In the semi-classical limit |αm| � 1, one can consider the effect of the quantum fluctuations at a Gaussian
level, which enables us to make the decomposition

Ĥα =
L

3
HClass(α) + ĤLin(b,α) + ĤQuad(b,α) , (8)

where b = (b0, . . . , bL−1), and α = (α0, α2, . . . , αL−1). The terms ĤLin(b,α) and ĤQuad(b,α) are linear and quadratic
in the bosonic operators, respectively. In addition, if we assume that the mean field do not depend on the position l
of the unit cell, we obtain the Hamilton function

HClass(α) =ωA|αA|2 + ωB |αB |2 + ωC |αC |2

− J (α∗AαB + α∗BαC + α∗CαA +H.c.)

+
U

2

[
|αA|2(|αA|2 − 1) + |αB |2(|αB |2 − 1) + |αC |2(|αC |2 − 1)

]
. (9)

The quantum fluctuations are governed by the quadratic Hamiltonian

ĤQuad(a,α) =

L∑
m=0

(
ωm −

U

2

)
b†mbm − J

L−1∑
m=1

(
b†mbm+1 + h.c.

)
+
U

2

L∑
m=0

(
|αm|2b†mbm + α2

m(b†m)2 + (α∗m)2b2m
)
, (10)

where α3l = αA, α3l+1 = αB and α3l+2 = αC . One can interpret the Hamiltonian Ĥα as the Hamiltonian in
neighborhood of a stationary points of the energy landscape Eq. (9). To obtain the stationary points, we require

vanishing linear bosonic terms in Eq. (8), i.e., ĤLin(a,α) = 0. This conditions is satisfied as long as the mean fields
αA, αB and αC are a solution of the semi-classical equations of motion. The simplest solution to these equations is
αA = αB = αC = 0. In this case, the Hamiltonian in Eq. (10) takes a simple form

ĤQuad(a,α) =

L/3−1∑
l=0

(Ψ†l )
TMΨl +

L/3−2∑
l=0

J
[
(Ψ†l )

TNΨl+1 +H.c
]
, (11)

where (Ψ†l )
T = (b†A,l, b

†
B,l, b

†
C,l). Correspondingly, the matrices are

M =

 ωA − U/2 −J 0
−J ωB − U/2 −J
0 −J ωC − U/2

 , N =

 0 0 −J
0 0 0
−J 0 0

 . (12)

We introduce here a discrete Fourier transformation Ψl =
√

3
L

∑
kΦke

ikl, where (Φ†k)T = (b†A,k, b
†
B,k, b

†
C,k), and

bµ,l =
√

3
L

∑
k bµ,ke

ikl with µ ∈ {A,B,C}. Now we can write Hamiltonian Eq. (11) as ĤQuad(a,α) =
∑
k(Φ†k)THkΦk

with the Bogoliubov de Gennes Hamiltonian

Hk =

 ωA − U/2 −J −J cos k
−J ωB − U/2 −J

−J cos k −J ωC − U/2

 . (13)

Finally, by considering U = −J , and by diagonalizing the Hamiltonian of Eq. (13), one obtains the excitation
energies EA,k, EB,k, and EC,k. From this, one can see that when ωA = ωB = ωC , we obtain gapless excitations and
therefore, a quantum phase transition.

C. Circuit QED implementation

In this section, we review how an array of capacitively-coupled transmon qubits [5] can be mapped to a nonlinear
coupled resonator array, as described by the Hamiltonian in Eq. [1]. The derivation provided here can be generalized
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FIG. 2: Circuit diagram implementing the nonlinear coupled resonator array discussed in the main text.

to a more complex coupler such as a transmission line [6–8] and an inductive tunable coupler [9]. Similar approaches
have been followed recently in the field of quantum metamaterials where superconducting meta atoms are coupled to
photons [10–13].

Our circuit diagram is shown in Fig.2. The flux variable is defined as φm = −
∫
Vmdt, where Vm is a voltage at

the corresponding position. As will be shown below, this quantity can be quantized to the form φm = α(am + a†m),
where am, a

†
m are bosonic operators of an ”artificial” photon at site m and α is some constant that depends on the

circuit’s elements. As shown in [5], two parallel-connected Josephson junction with a flux bias Φg can be thought of
as an effective single Josephson junctions EJ where

EJ = (EJ1 + EJ2) cos

(
Φg
2Φ0

)√
1 + d2 tan

(
Φg
2Φ0

)
, (14)

with Φ0 = ~/2e and d = (EJ2 − EJ1)/(EJ2 + EJ1). The resonator’s frequency ωm is related to EJ , hence it can be
tuned on the fly, by changing the flux bias Φg.

Following the standard circuit quantization procedure [14], we first write down the circuit’s Lagrangian as

L =

L−1∑
m=0

(
1

2
CJ φ̇

2
m + EJ cos

(
φm
φ0

))
+

L−2∑
m=0

1

2
C(φ̇m − φ̇m+1)2, (15)

Assuming C/(CJ + 2C)� 1, the Hamiltonian can be obtained using the Legendre transformation [15],

H =

L−1∑
m=0

(
φ̇2m
2C̃

+
φ2m
2L̃

+

∞∑
n=2

(−1)nEJ
(2n)!Φ2n

0

φ2nm

)
+

L−2∑
m=0

C

C̃2
qmqm+1, (16)

where qm =
√

2C + CJ∂L/∂ ˙φm is a conjugate momentum of φm, C̃ = CJ + 2C is an effective capacitance and

L̃ = Φ2
0/EJ is an effective inductance . We then quantized φm and qm by defining ladder operators am, a†m according

to φm = (L̃/4C̃)1/4(am + a†m) and qm = i(C̃/4L̃)1/4(−am + a†m). The first two terms in Eq.16 become
∑
m ωa

†
mam,

where ω = 1/
√
L̃C̃ is a resonator frequency. In addition, the capacitor C leads to the hopping term with J = −ωC

2C̃
.

A rotating-wave approximation is assumed, so we ignore the term (a†ma
†
m+1 + h.c.).

The Josephson junction EJ introduces an anharmonicity to the resonator’s frequency. Due to this anharmonicity,
a vacuum state |0〉 and a one-photon Fock state |1〉 of the resonator can be used as a qubit. A transmon qubit

corresponds to the regime with a large EL̃/EC̃ > 1 where EC̃ = e2/2C̃ and EL̃ = Φ2
0/L̃ , such that the terms

higher than the forth order can be neglected [5]. Hence, a transmon qubit can be thought of as a resonator with an

attractive Kerr nonlinearity U < 0. Taking into account the normal ordering [6], we get U = −EJe−λ
2

λ4/4, where
λ = (2EC̃/EL̃)1/4. This normal ordering also introduces a small normalisation factor δωto the resonator frequency,

with δω = λ2EJe
−λ2

.
Note that all Hamiltonian parameters (ωm, J and U) depend on EJ . Hence, in general, tuning ω also effects other

parameters as well. In the main text, we tune the resonator frequency within the range [ω0 −∆, ω0 + ∆], where
ω0 ∼ 5 GHz, ∆ = 400 MHz and J = −U = 40 MHz. Hence ωm only changes by ∼ 8%. Therefore, subsequent changes
in J and U are small compared to ∆ and do not alter our discussion in the main text. We also note that using a
magnetic flux to drive the Hamiltonian in the MHz timescale has been experimentally realized [16, 17].
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D. Numerical Methods

Simulating quantum many-body systems exactly requires resources that grow exponentially with system size, and
therefore we use approximate numerical methods. We use the matrix product state (MPS) representation and algo-
rithms [18–20] which have been shown to be very successful for 1D gapped systems. The MPS representation encodes
the many-body wave function as a network of order-3 tensors, each possessing two internal indices of maximum di-
mension χ, and a physical index of dimension (Nmax + 1) which represents the local Hilbert space. Here, Nmax is the
maximum number of particles per site. The more entanglement there is in the system the larger χ must be to ensure
accurate results.

Based on the MPS representation, we perform time evolution of a pure quantum state using Time-Evolving Block
Decimation (TEBD) [21]. For dissipative dynamics, we solve the Lindblad Master equation using quantum trajectories
[22]. Since each trajectory is the time evolution of a pure state, the latter can also be performed efficiently within the
TEBD framework.

Our implementation of the above methods is based on the open-source Tensor Network Theory (TNT) library [23].
We found that the results shown in the manuscipt can be sufficiently simulated with χ = 100 and Nmax = 4. Time
evolution is discretized in the timestep of δt = 0.02/J and for the dissipative dynamics, time evolution of the density
matrix is calculated by averaging over M = 1000 trajectories. We observed that increasing χ,Nmax,M and reducing
δt further do not lead to any significant changes in our results.
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