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Chapter 1

Introduction and Motivation

In recent years, analog and digital quantum simulation using superconducting qubits has

become a reality [1][2][3]. The field of experimental quantum computing is making steady

progress towards the realization of a machine that can solve a certain class of problems

exponentially faster than classical computers. However, quantum computation relies on

the manipulation of fragile quantum states which are sensitive to unwanted excitations

from the noisy environment. Isolating qubits from the surrounding environment will

preserve the fidelity of quantum states.

In an experimental setting, qubits are not perfect or well isolated and the fidelity of

quantum states degrades over time. Noise from the environment is leaked into a system

of qubits through unwanted coupling between electrons and parasitic phonon or photons.

Parasitic phonons will couple with electrons above 20 mK and deflect the electron’s free

path in the superconducting layer. These deflections lead to dissipative loss found in

normal conductors. Qubit experiments must remain below 20mK with isolation from

vibrational sources, e.g. phonons generated by a pulse tube cryostat in a cryogen-

free dilution refrigerator (DR). With tens of qubits, a thermal anchoring system must

effectively transfer unwanted heat from hundreds of coaxial cables. Vacuum grease will

be placed between the thermal anchor and cable to serve as a phononic bath for hot

electrons. The rate of hot electrons thermalizing to the phononic bath should be much

greater than the rate of hot electrons that remain thermalized to the cable.

1



Chapter 1. Introduction and Motivation 2

Parasitic photons can leak into a DR and cause unwanted excitations in our system.

From a photon’s point of view, a DR has many available openings such as vacuum

pump out ports, cryogenic cables, or telemetry wiring. Unlike phonons, photons will

couple with electrons regardless of temperature. Stray light is controlled in three ways

in a DR: black absorptive coating, microwave filters, and “light-tight” staging inside

the DR. Impedance matched microwave filters preserve signal integrity and attenuate

stray infrared photons. Filters based off of a epoxy mixture of bronze or copper powders

are bulky, difficult to make, and have to be mounted such that valuable experimental

space is taken up. Such filters limit the number of control lines we can use in our

experiments and restricts the number of controllable qubits. As more qubits are added

to our experiment, the need for a larger number of control lines in a compact form

factor bsecomes paramount. Efficient and high performing microwave filters need to be

developed to prevent a bottleneck in scaling up to a realizable quantum computer.

Although fault tolerant gate based quantum computation relies on millions of qubits,

analog simulations of quantum systems are possible with a compatible architecture or

Hamiltonian. With just three qubits, a spin 3/2 particle subjected to a non-linear

periodic Hamiltonian can be realized with three transmons fully coupled via tunable

couplers. The classical analog of this system exhibits chaotic motion whereas the time

evolution of the quantum mechanical state is deterministic. Thus, it is surprising that

measures of disorder for classical and quantum trajectories exhibit similar features in

phase space.

This thesis will focus on isolating quantum systems from phononic and photonic noise,

with a study on spin 3/2 quantum systems subjected to non-linear dynamics. The

content of this thesis will assume basic knowledge of the experimental aspects of quantum

computation using superconducting qubits.



Chapter 2

Development: Thermal Heat

Sinking of Cryogenic Cables

Heat sinking coaxial cables at each stage of a dilution fridge is a critical task for main-

taining the coherence of a qubit’s quantum state. Any remaining heat in our system will

allow thermal fluctuations to cause unwanted transitions in qubits. Transitions out of a

qubit’s original state mean lower coherence times, which prevent qubits from perform-

ing meaningful computations. A reliable and efficient heat sinking mount is needed. An

implementation of such a heat sick is a cable clamp. A thin layer of vacuum grease lies

between the cable and the clamp and relies on phonons to transfer thermal energy. A

calculation for heat flow is carried out to assess the effectiveness of such a clamp, shown

in Figure 2.2.

2.1 Thermal Physics

Fourier’s Law gives the rate of heat transfer in watts. The rate of heat transfer is

P = −κ
∮
S

−→
5T · d

−→
A

3



Chapter 2. Thermal Heat Sinking of Cryogenic Cables 4

where κ is the thermal conductivity and S is the surface of integration for heat flow.

We can approximate a homogeneous material with radial symmetry as

P = −κ A

∆x
∆T

with A the surface area enclosing the flux of heat flow and ∆x the thickness of the

temperature gradient across T1 and T2.

Figure 2.1: Diagram of a coaxial cable thermally anchored to a heat sink of length
L. The heat sink power flow, Phs is phononicly transfered out of the cable. The heat

load power flow Phl is electrically transfered down the cable.

2.2 External Conduction

First consider the interface between the outer conductor of the cable and the thermal

anchor. There are two mechanisms (phononic and electronic) for heat conduction as

shown in Fig. 2.1a). Phononic conduction serves as the heat sink and electronic con-

duction serves as the heat load. For an outer radius of the cable Router, thermal anchor

length L, outer conductor thickness tcable, and vacuum grease thickness tgrease, the power

transfered for heat sinking and heat loading are:

Phs = −κgrease
2πRouterL

tgrease
∆T

Phl = −κcable
2πRoutertcable

L
∆T
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The power ratio between the two mechanisms is

Phs

Phl
=
κgrease

κcable

L2

tcabletgrease
(2.1)

and approximates the device’s efficiency. By referring to Fig. A.1 we can extrapolate

conductivities for sub-Kelvin temperatures. For a cupronickel cable, κ ≈ 10−2 W/(m

K). We use Apiezon N, which by Fig. A.1 has κ ≈ 10−5 W/(m K). For a 2.19 mm

diameter cupronickel cable1, vacuum grease thickness of 0.05 mm, and anchor clamping

length of 10 mm, we find that Phs
Phl
≈ 7.5.

2.3 Internal Conduction

If we were to now consider the interface between the center conductor to the outer

conductor, we would have

Phs = −κteflon
2πRinnerL

tteflon
∆T

Phl = −κcable
πR2

inner

L
∆T

Phs

Phl
=
κteflon

κcable

2L2

Rinnertteflon
(2.2)

For PTFE, we use κ ≈ 10−5. For a 2.19 mm diameter cupronickel cable, we find that

Phs
Phl
≈ 1.5 is much less effective than external conduction where Phs

Phl
≈ 7.5. Thus, the

overall process of transferring heat from the inner conductor to the thermal anchor is

limited by the heat transfer from the inner conductor to the outer conductor. A more

effective way to thermalize cables must be found to eliminate this bottleneck.

1The geometric properties of a 2.19 mm diameter cable from CoaxCo are found here:
http://www.coax.co.jp/english/semi/219.html
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Figure 2.2

2.4 Improving Heat Sinking Efficiency

We explore other cable diameters and materials to improve the efficiency of thermal

anchoring. The power ratio Phs
Phl

has two contributions. The first fraction in Eq. 2.1 and

Eq. 2.2 governs the material properties of the cable for thermal conduction and is shown

in Table 2.1 for various cable materials. The second fraction in Eq. 2.1 and Eq. 2.2

governs the geometric effects of thermal interfaces and is shown in Table 2.2 for various

cable diameters.

Table 2.1: Material factors for various metals at 0.1 Kelvin. All thermal conductiv-
ities except NbTi approximated from Figure A.1. The value for NbTi is derived from

CoaxCo’s measurement [4].

Thermal Conductivities [W/(m K)] at 0.1 Kelvin

PTFE Apiezon N Niobium Cupronickel Niobium Titanium

10−5 10−5 5× 10−3 10−2 2× 10−3

Material Factor
(
κgrease

κcable
= κteflon

κcable

)
×103 at 0.1 Kelvin

Niobium Cupronickel Niobium Titanium

2 1 5
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Table 2.2: Geometric factors for various cable diameters and thermal transport mech-
anisms.

Cable Diameter Inner Radius Teflon Thickness Conductor Thickness

(Rinner) (tteflon) (tcable)

0.860 mm 0.100 mm 0.230 mm 0.100 mm

1.600 mm 0.160 mm 0.365 mm 0.275 mm

2.190 mm 0.255 mm 0.580 mm 0.260 mm

Geometric Factor ×10−3

Cable Diameter Internal Conduction
(

L2

tcabletgrease

)
External Conduction

(
2L2

Rinnertteflon

)
0.860 mm 20 8.7

1.600 mm 7.3 3.4

2.190 mm 7.7 1.4

Moving towards thinner cables will greatly increase the efficiency of heat sinking. The

current cables in use (CuNi at 2.19 mm) can be improved by a factor of 13 and 31

for external and internal mechanisms respectively. These improvements are made with

NbTi 0.86 mm cables and will give respective power ratios of 100 and 45 for external

and internal conduction.



Chapter 3

Development: Infrared Filtering

Adding more qubits to our experiment increases the need for a larger number of con-

trol lines in a compact form factor. “Light tight” infrared filters on these control lines

serve to block out infrared light which generate quasiparticles on our superconducting

samples[5]. These quasiparticles act like dissipative metal conductors which negatively

affect coherence times. New infrared filters were made to be compact while outperform-

ing the previous generation of infrared filters.

The use of ECCOSORB load absorbers in infrared filters was influenced by filters made

in Michel Devoret’s Lab at Yale[6]. The product line of ECCOSORB absorbers are able

to attenuate across a large frequency range (100 MHz - 100 GHz) depending on the

application. For qubit control and measurement, filters with a low cutoff frequency are

needed for Z control while filters with a high cutoff frequency are needed for XY control

and readout.

High frequency filters should have little attenuation and low reflection at our oper-

ating point of 4 - 8 GHz. A length for attenuation of 1 cm is chosen so that attenuation

is small at these frequencies. ECCOSORB CR-110, the least absorptive epoxy based

product, will be used for these filters.

Low frequency filters are used on DC lines and attenuate strongly in the microwave

8
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range. The attxenuation length is longer to achieve the same attenuation strength as

the last generation of low frequency filters. ECCOSORB CR-124, the strongest epoxy

based product, will be used for these filters. A low frequency filter can also be incorpo-

rated into the port of the mix plates, saving a considerable amount of space for more

qubit experiments per dilution fridge.

3.1 Designing for Low Reflection

We can design a low reflection filter using the dielectric data provided on ECCOSORB’s

website[7]. For a coaxial cable of inner radius a and outer radius b with dielectric in

between which has ε = ε0εr and µ = µ0µr [8]

L =
µ

2π
ln

(
b

a

)
; C =

2πε

ln
(
b
a

) ; Z =

√
L

C
⇒ Z =

376.7Ω

2π

√
µr
εr

ln

(
b

a

)
(3.1)

(Note:
√
µ0/ε0 = 376.7Ω)

As an example for MF-110 at 3 GHz1, we have εr = 3.2 and µr = 1.1. Assuming a = 30

mil for 50Ω gives us b = 124.4 mil. The effects of dielectric loss become apparent at

higher frequencies. Given loss tangents tan δε and tan δµ or imaginary components µim

and εim we have

Z =
376.7Ω

2π

√
µr (1− i tan δµ)

εr (1− i tan δε)
ln

(
b

a

)
or Z =

376.7Ω

2π

√
µr − iµim
εr − iεim

ln

(
b

a

)
(3.2)

1Note that ECCOSORB’s CR line has the same dielectric properties as MF
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Figure 3.1: Reflection from a coaxial line with ECCOSORB CR-110, a = 30 mils, b
= 125 mils. Two curves are shown: Considering dielectric loss in blue (Eq. 3.2) and
not considering dielectric loss in red (Eq. 3.1). The dielectric data can be found at: [7]

The difference between considering and not considering dielectric loss for the ECCOSORB

material is plotted in Figure 3.1, verifying that dielectric loss is an important parameter

at high frequencies with reflection

|S11| =
∣∣∣∣Z − 50

Z + 50

∣∣∣∣ . (3.3)

Thus, we can minimize reflection (Eq. 3.3) up to high frequencies using this straightfor-

ward model as shown Figure 3.2, where we find islands of least reflection.

Figure 3.2: Simulated reflection with ECCOSORB CR-110 using an inner diameter
a of 30 mils plotted over the outer diameter b and frequency. This contour plot was
used to design the high frequency filter for low reflection. The best choice of b for the

lowest reflection over a broad frequency is about 125 mils.
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3.2 Parts List

The parts needed to make ECCOSORB filters are shown in Figure 3.3 and in addi-

tion the following equipment is needed: scale, clamp, hot plate, soldering iron, caliper,

multimeter, and vacuum chamber for out-gassing.

Figure 3.3: The SMA Cap (C) is Amphenol Connex 202112. If making high frequency
filters, the SMA connector (D) is: Pasternack PE44241 (30 mil center pin). If making
low frequency filters, the SMA connector (D) is: Emerson Network Power Connectivity
Johnson 142-1721-051 (50 mil center pin). Make sure to strip off the extended Teflon

dielectric from the low frequency connector.

The different variations of enclosures for high and low frequency filters are shown in

Figure 3.4. It is strongly recommended to letter punch labels (before soldering) as

shown on the cover page to distinguish between lines and filters.

Figure 3.4: Left: High frequency filter enclosures including the single layer and double
layer enclosures. Right: Low frequency filter enclosures including the single layer and

two piece port incorporated enclosure
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3.3 Assembly

There are three main steps of the assembly: 1. Inserting the knurl connectors into the

enclosure and soldering two pins together and 2. Preparing the ECCOSORB absorber

and 3. Injecting into the enclosure and curing. These filters can be assembled most

efficiently with two people (one person each for step 1 and 2, together for 3). Note that

step 1 may take shorter or longer than step 2 depending on how many connectors there

are in the filter.

3.3.1 Step 1: Press Fit and Solder

Figure 3.5: Prepared SMA connectors (high frequency filters) for insertion

Mark enclosures with a metal stamp to indicate assembly date and creator. Before be-

ginning, solvent clean (Acetone, IPA) the enclosure (A). Screw on an SMA cap (C) for

each knurl connector (D), insert them into the insertion aligner (B), and put a dab of

solder paste (I) on the pin as shown in Figure 3.5. SMA caps (C) are much cheaper than

properly terminated end caps. These caps will get dirty in step 3 so avoid using 50 Ω

terminated caps. Check with a caliper that the opening of the cavity (A) for inserting

connectors (D) is close to 200 mils in diameter. Any smaller will make inserting con-

nectors difficult and could break the connectors. Any larger will compromise durability

and cause a leak.

Insert connectors (D) into the enclosure (A) one side at a time. For enclosures that

have two layers (A*), insert connectors into one side of both layers before inserting con-

nectors into the other side. This will ensure that there is always an even surface to push

against to prevent angular insertion error.
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(a) Press fitting first side (b) Press fitting second side

(c) Before soldering (d) After soldering

Figure 3.6: Step 1

Align the insertion assembly (B+C+D) with the enclosure (A), making sure that the

knurl part of the connector is snug against the opening of the cavity. Use a clamp to

push the connectors (D) into the enclosure (A) as shown in Figure 3.6a. A bit of force

is required and the connectors (D) will not go all the way in. When the connectors (D)

are about halfway in, we can push two connectors (D) in at a time. Pull off the insertion

aligner (B) and screw off the middle four caps (C). Use the clamp to push the outer

two connectors (D) in until the connector catches onto the counterbore (when knurl of

the connector is completely inside). Move the two caps (C) inward and repeat until

all connectors (D) are properly inserted. Screw back on the caps (C). If the enclosure

is dual layered, repeat the insertion process on the same side. Repeat the insertion

process for the other side as shown in Figure 3.6b.

The pins of both connectors from the opposite side should look like Figure 3.6c through

the injection hole. The pins should be coaxial for best reflection performance. Use a
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soldering iron with a slightly dull tip so that the tip touches at the two pin ends and the

solder paste. Insert the soldering iron into the injection hole and lever the tip against

the soldering joint, holding for around 5 seconds. In most cases, the solder job will be

good as shown in Figure 3.6d without having to look into the cavity while soldering.

Solder paste can always be added through the injection hole if needed. After soldering,

use a multimeter to check for connectivity and shorts to ground. The enclosure is now

ready for ECCOSORB injection.

3.3.2 Step 2: ECCOSORB Preparation

(a) http://www.eccosorb.com/Collateral/Documents/English-
US/CR.pdf

(b) Left: CR-110 Unmixed, Right: CR-110
Mixed, before out gassing

(c) CR-110 Out gassing in vacuum

Figure 3.7: Step 2

Weigh out the appropriate proportions of part X (EX) and part Y (EY) in a tray (F)

according to the first table above (Figure 3.7a). CR-124 is much more viscous than CR-

110, so preheating will help with workability. The recommended preheating temperature

is 65◦ C. Although higher temperatures (150◦ C) will make the mixture much easier to

work with, there will be a shorter window of usability before it starts curing. After

preheating and preparing a homogeneous mixture of parts X (EX) and Y (EY) (Figure

3.7b) (using e.g. a stick (G)), place the mixture in a vacuum chamber for 5 minutes to

prevent out gassing during the curing process (Figure 6c). If needed, reheat the mixture

to recover fluidity.
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3.3.3 Step 3: Injection and Curing

Preheat the prepared enclosure (A) from step 1. Use a glass pipette (H) to inject the

mixture into the enclosure cavity. Air bubbles may become trapped when injecting into

the cavity. Surface tension of the less viscous CR-110 may block the opening to the

cavity. Thus, slow and careful injection at a flat angle is needed to prevent this (Figure

3.8a). Use a small wire or sharp object to poke out any air bubbles (Figure 3.8b). For

longer cavities, make sure to tilt the enclosure (A) from side to side to ensure that the

mixture is filled uniformly inside. Cure according to the second table from step 2. After

curing for the appropriate time and letting the filter cool, thermal cycle the filters and

check for typical reflection and transmission as shown in the following section. Sand off

the oxidized copper to ensure good thermal conductivity in the fridge (Figure 3.8c).
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(a) ECCOSORB injection. Inject slowly and at a flat angle such that the liquid creeps onto the
edge of the fill opening and into the cavity. Injecting too fast or steep will cause a planar bubble

to form which blocks the opening (see Figure 3.8b).

(b) Close up view showing formation of a
planar bubble formed from improper injec-

tion

(c) Sand off the accumulated oxide for bet-
ter thermal conductivity. Left: sanded.

Right: not sanded.

Figure 3.8: Step 3



Chapter 3. Infrared Filtering 17

3.4 Typical Microwave Characteristics

Before measuring S parameters, filters are thermally cycled. This process is to ensure

that the device will not fail from thermal shock. Filters are cooled by being dipped into

a bath of LN2 followed by a heating process using a hairdryer. This process is repeated

for a total of at least three times so that the device will survive multiple cooldowns. The

Agilent PNA-X is used to measure and save S parameters. The PNA-X is always first

calibrated to the Electronic Calibration Module N4691B before measuring.

3.4.1 High Frequency Filters

High frequency filters are typically measured to have low reflection (below -25 dB) up

to 7.5 GHz and about 0.1 dB/GHz attenuation at 300K as shown in Figure 3.9. Due to

the simple press fit assembly and simple transmission line design, these filters will easily

exhibit consistently low reflection across a wide operating band. The attenuation given

by Emerson and Cumming, about 0.2 dB/GHz attenuation, is stronger perhaps because

it assumes a thickness of the dielectric absorber that can be approximated in the infinite

thickness limit. In these filters, the dielectric absorber is only 1.2 mm thick.
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Figure 3.9: Typical reflection (300K in green) and transmission (300K in purple, 3K
in yellow) for a typical high frequency filter. The previous generation infrared filter
has its transmission and reflection at 300K shown in blue and red respectively. The
simulation for reflection (dashed black) done in Section 3.1 shows general agreement

and predicts a broadband of minimal reflection.

To mitigate the passage of hot electrons into our filter, short Niobium cables are added

in series before the filters at the mK stage in the fridge. Since copper and brass are

not superconductors, the hot electrons will thermalize much faster through the Niobium

cable than through the filter.

3.4.2 Low Frequency Filters

Low frequency filters should have about -20 dB/GHz transmission at 300K as shown

in Figure 3.10. Very low reflection is not crucial for low frequencies and is difficult to

design for. For an ideally matched coaxial geometry, the outer coaxial diameter would

need to be larger than the knurl of the connector. Allowing outer conductor diameter

to be smaller fixes this issue as a trade off between reliability and reflectivity. Despite

the impedance mismatch, these ECCOSORB filters provide lower reflection than filters

with wound wires in a copper powder and epoxy mixture filling. In some cases, as seen
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in copper powder filters, too much reflection can cause unwanted standing waves in the

fridge wiring.

Figure 3.10: Typical attenuation (green) and reflection (red) of low frequency filters.
The simulation from Section 3.1 shows a very prediction for both attenuation (dashed
black) and reflection (dashed blue). The jump in noise floor at 13.5 GHz is caused from

a mode switch in the network analyzer.

A variation of the low frequency filter is the port incorporated filter, which allows DC

lines to be filtered at the port of mix plate instead of wiring to a filter mounted on the

mix plate. This considerably reduces experimental real estate, leaving more room for

qubit boxes and wiring. These filters come in two pieces and have a total of 22 lines

when put together. The assembly of this filter is the same as covered above with a

couple of exceptions.
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Figure 3.11: Left: A special aligner is used with this filter to fill the top layer of
connectors, which is done first. The step up block (placed in the back), is not used
at this time. Right: After filling the top row, the step up block is attached to fill the

bottom row.

The first exception is how the connector is inserted into the enclosure. A special aligner

was made to such that connectors can be inserted at both levels of the filter. The bottom

level is defined to be on the flat side of the filter where the two parts mate. Figure 3.11

shows the filter with the aligner in two operating modes. First, use the aligner without

a step up block. This allows connectors to be inserted on the top level of the filter.

Following the connector filling principle from before, do not start filling up the other

side until the current side is filled. To fill the bottom level, attach the step up block

which will move the insertion level from the top level to the bottom level.

The second exception is how to cure the enclosure. A block is needed to help ther-

malize the filter when filling into the cavities on the bottom level. Since this filter has

a flange, the surface area for thermalization with the hot place during curing it greatly

reduced. Use a copper block to level off the top side of the filter, increasing the surface

area. Make sure to sand all interfaces for best thermal conduction.



Chapter 4

Experiment: Classical

Correspondence of a Spin 3/2

Kicked Top

In this experiment, three qubits are subjected to a kicked top Hamiltonian. All qubits

are evolved identically, thereby constituting a spin 3/2 system. The kicked top model

is built up from a linear term, governing qubit rotations on the Bloch sphere, and a

non-linear term governing coupling between adjacent qubits. We expect the dynamics

of our system, by the principles of quantum mechanics, to not be chaotic i.e. two

closely separated initial points on the surface of the Bloch sphere will remain close

throughout all time. The classical limit of the kicked top is also analyzed to determine if

reasonable correspondence exists between a classical system and one deep in the quantum

regime. Such a correspondence is interesting because the classical system exhibits chaotic

nondeterministic motion in contrast to a quantum mechanically deterministic evolution.

The Lyapunov characteristic exponent (LCE) and the entanglement entropy (S) are used

as the basis for correspondence. LCEs characterize the exponential rate of divergence

between two initial points and thus gives us a measure of chaoticity, while entanglement

entropy measures the entanglement between a subsystem and its complete system.

21
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4.1 Qubit Architecture

The qubit architecture for this experiment comprises of three transmon qubits [9] and

three flux bais tunable couplers [10] between every qubit as shown in Fig. 4.1. The

Dielectric free

50 mm

50 mm

X & Y rotations

Tunable frequency

Tunable coupling

300 mm

Figure 4.1: Three transmon qubits (long red rectangle for capacitor and small blue
circle for SQUID loop) fully connected via tunable couples. The tunable coupler is
an RF SQUID that is biased with a flux line (yellow). The circuit diagram shown is
the coupling scheme between two adjacent qubits, which can be extended to a ring of
qubits. The coupler bias loop is galvanically isolated from the qubit circuit to prevent
ground loops which will occur from the triangular geometry of the circuit. Mutually
coupled waveguides with high inductance on the flux bias loop (cyan) and the qubit
path (green) to ground mediate the coupling between two qubits. Figure credit: C.

Neill

qubit Hamiltonian in the rotating frame (as shown in Appendix C) with ∆i = ωi − ωr,

coupling energy g, and the shorthand notation σx1 ⊗ I2⊗ I3 = σx1 or I1⊗σy2 ⊗σ
y
3 = σy2σ

y
3
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is

H3q =
~
2

 ∑
i=1,2,3

Xiσ
x
i +

∑
i=1,2,3

Yiσ
y
i −

∑
i=1,2,3

∆i

2
σzi (4.1)

+g12 (σx1σ
x
2 + σy1σ

y
2) + g23 (σx2σ

x
3 + σy2σ

y
3) + g13 (σx1σ

x
3 + σy1σ

y
3)


where gij is the coupling strength between qubits i and j in rad/s.

Identical y rotations on all qubits allow Yi to become a single θ(t). Similarly, gij becomes

a single g(t) coupling term that is also identical for every pair of qubits. By keeping

only the relevant terms for the kicked top, σy and coupling σxσx + σyσy, we can write

a simplified Hamiltonian in terms of the total angular momentum

H = θ(t)Ĵy + g(t)
(
Ĵ2
x + Ĵ2

y

)
(4.2)

where θ(t) is a controllable time dependent term for rotations to all qubits about the

y-axis on the Bloch sphere and g(t) is a controllable time dependent coupling term

between every qubit pair.

4.2 Quantum Kicked Top

The Hamiltonian for the quantum kicked top is

H(t) =
~p
τ
Ĵy +

~κ
2J
Ĵ2
z

+∞∑
n=−∞

δ(t− τn) (4.3)

where Ĵy corresponds to a rotation around the y-axis on the Bloch sphere (Figure 4.2)

by an angle p and Ĵ2
z corresponds to a non-linear, z dependent twist around the z-axis

with strength κ. The evolution with this Hamiltonian for one period τ can be written

as an unitary operator

Û = e−ipĴye−i
κ
2J
Ĵ2
z (4.4)
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Figure 4.2: Bloch sphere representation of a single qubit state. |0〉 represents the
ground state and |1〉 represents the first excited state. Rotations around the z axis
are rotations in phase. Rotations around x and y can have two effects: 1. modulate

probabilities between |0〉 and |1〉 2. modulate the phase of the qubit state.

as shown in Appendix B. The system is initialized by setting all three qubits into the

same initial state, where a single qubit state is

|ψ0〉 = |θ0, φ0〉 = cos(θ0) |0〉+ e−iφ0 sin(θ0) |1〉 (4.5)

which can be represented on the surface of a unit sphere as shown in Figure 4.2. The

full qubit state |θ0, φ0〉 ⊗ |θ0, φ0〉 ⊗ |θ0, φ0〉 is stroboscopically evolved using Eq. 4.4.

4.2.1 Experimental Implementation

In order to evolve our three qubit system with the kicked top Hamiltonian, we must

map the kicked top Hamiltonian to our qubit Hamiltonian. We can then discretize our

Hamiltonian (Appendix B) for our microwave pulses on our DAC microwave control

boards.

The Ĵy term in the Hamiltonian is simply a y rotation of the state on the Bloch sphere.

The Ĵ2
z term can be mapped to the coupling term of the qubit Hamiltonian, Ĵ2

x + Ĵ2
y

since Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . The fact that an identity term only contributes a phase to
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your state vector (Appendix E) allows us to transform our qubit Hamiltonian into

Ĥ = θ(t)Ĵy + g(t)
(
J2Î − Ĵ2

z

)
= θ(t)Ĵy − g(t)Ĵ2

z . (4.6)

Comparing this to 4.3, we can see that there is only a sign difference on the non-linear

term. This sign difference produces identical phase space dynamics that is equivalent to

reflecting about the φ axis. The time dependent θ term is implemented experimentally

by using pulses which apply rotations to the state of the qubit on the Bloch sphere by

an angle p = π
2 . The pulse is a sine wave shaped with a Gaussian envelope such that

the integration from the beginning to the end of the pulse gives an accumulated phase

of π
2 in the y quadrature. The computer generated pulse is sent from a DAC board,

through cryogenic cabling and filters, to the XY line to manipulate the qubit (shown in

red in Figure 4.1) with rotations around the x and y axis on the Bloch sphere. The time

dependent coupling term g corresponding to κ is controlled with the tunable coupler

via a flux bias. The coupler is characterized by measuring flux bias vs the qubit SWAP

rate. Once the coupling strength and flux bias relation is known, any time dependent

interaction can be implemented through flux control. In the case of the kicked top, all

qubits initially begin in the ground state. Rotations are applied to each qubit to set the

initial state |θ0, φ0〉. For each “kick,” all qubits receive a π
2 pulse for p, are set to their

resonant frequency, and are subjected to a fixed κ dependent coupling.

4.2.2 Entanglement Entropy

Entanglement entropy gives a measure of the accessibility of phase space due to entan-

glement and is defined as

S = −Trρq1 log2(ρq1) (4.7)

where ρ is the traced out density matrix for a single qubit, q1. We use log2 so that the

dimension of the Hilbert Space, d = 8 gives an maximum S of 3, or for a single qubit S of

1. The time average of entanglement entropy 〈S〉 is interesting because it characterizes

the long term behavior of S which is periodic in time. Figure 4.3 with κ = 0.5 and 2.5
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0
0 2𝜋𝜋
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𝑺𝑺
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0.7

0
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Figure 4.3: Entanglement entropy time averaged over 100 kicks of initial points in
the Bloch sphere phase space. p = π

2 and (Top) κ = 0.5 (Bottom) κ = 2.5.

shows that the non-linear κ term influences the phase space diagram and the minimum

entanglement entropy.

4.3 Classical Kicked Top

When taking J →∞, the Hamiltonian for the classical kicked top becomes

H(t) = pJy + κJ2
z

+∞∑
n=−∞

δ(t− n) (4.8)
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𝜙

𝜃

𝜋

0
0 2𝜋

𝜙

𝜃

𝜋

0
0 2𝜋

Figure 4.4: Classical trajectory of random initial points in the Bloch sphere phase
space for p = π

2 and (Above) κ = 0.5 (Below) κ = 2.5.

and can be written as discrete map on the unit sphere. The mapping is a rotation around

the y axis by an angle p followed by a nonlinear rotation around the z axis [11]

~Ln+1 = Rz(κLz)Ry(p)~Ln (4.9)

where Lz = cos(θn) is the projection of the current position on the unit sphere projected

onto the z axis. The classical stroboscopic phase space trajectories are plotted for a set

of random initial points in Figure 4.4. Trajectories for κ = 0.5 show clear and stable

orbits. There is no clear indication of chaotic movement at low values of κ. At κ = 2.5,

chaos appears as a noisy sea. Regions of stability still exist and are characterized by

clean quasi-elliptic orbits.
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4.3.1 Lyapunov Exponent

𝜙𝜙

𝜃𝜃

𝜋𝜋

0
0 2𝜋𝜋

0.01

0

λ𝒙𝒙

𝜙𝜙

𝜃𝜃

𝜋𝜋

0
0 2𝜋𝜋

0.15

0

λ𝒙𝒙

Figure 4.5: LCE along the x axis, λx, for p = π
2 and (Above) κ = 0.5 (Below) κ = 2.5.

The Lyapunov characteristic exponent (LCE) is a tool used for study the exponential

divergence of two closely separated initial points in chaotic dynamical systems. The

LCE is defined [12] as

λ(n) = lim
d(0)→0

1

n
log

(
d(n)

d(0)

)
(4.10)

for the nth kick of the kicked top in Eq. 4.9 as the separation between two initial points

goes to zero. LCEs are found numerically as shown in Appendix D. Since our map is of

dimension three, we obtain three LCEs for the x, y, and z axes. Our model gives two

special properties for the spectrum of LCEs:
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• Liouville’s theorem for Hamiltonian dynamics restricts the sum of LCEs to be zero

• Conservation of angular momentum restricts one of the LCEs to be zero

We expect λy = 0 to satisfy the second property because the Hamiltonian describes a

continuous rotation around the y axis and averages out to zero. The first property leaves

us with λz = −λx. Since λx and λz have opposite sign and contain redundant informa-

tion, we use the positive LCE λx to describe the chaotic dynamics of our Hamiltonian.

λx is plotted in phase space in Figure 4.5 for κ = 0.5 and 2.5. For κ = 0.5, λx stays

below 0.01. Classical phase space (Figure 4.4) shows that all trajectories are in stable

orbits. For κ = 2.5, λx rises much above 0.01 for unstable regions and about half of the

phase space is characterized by a noisy LCE. When comparing the phase space portrait

of LCEs to the time averaged entanglement entropy found in Figure 4.3, we see that

all values of 〈S〉 are stable for κ = 0.5, where as only the maximum and minimum of

〈S〉 seem to lie in classically stable regions. This hints at a correspondence between the

entanglement entropy and the Lyapunov exponent for each κ where a certain band of

〈S〉 exhibits classical chaos.

4.4 Correspondence

In the quest to relate quantum and classical measures of disorder, assume that classically

chaotic trajectories only occur if 〈S〉 exists in a certain range e.g. (〈S〉classical min , 〈S〉classical max)

at a point (θ, φ) in phase space. We define 〈S〉classical min to be the minimum value of

〈S〉 for the set of points that satisfy λx > 0.05. 〈S〉classical max is the maximum 〈S〉 for

such a set of points. For 0.125 ≥ κ ≥ 3.5, we plot 〈S〉classical min and 〈S〉classical max along

with max(〈S〉) and min(〈S〉) in Figure 4.6. For the threshold λx > 0.05, all values of

〈S〉 correspond to classically stable trajectories until κ = 1.5. It makes sense to label

this region “Classically Stable”. Beyond κ = 1.5 a band of minimum and maximum

values (〈S〉classical min , 〈S〉classical max) emerges for classically chaotic points. All values of

〈S〉 outside this band will correspond to classical stable orbits and labeled “Classically

Stable” and all values of 〈S〉 inside this band will be labeled “Classically Chaotic.”



Chapter 4. Quantum Chaos 30

Figure 4.6: Allowed values of entanglement entropy corresponding to classically
chaotic and stable trajectories. Blue: min(〈S〉), Orange: 〈S〉classical min, Yellow:

〈S〉classical max, Purple: max(〈S〉)

There is no guarantee that values of 〈S〉 within the band will always be classically

chaotic. Rather, the band should serve as a rough approximation for the classical dy-

namics. We can check that values of 〈S〉 that lie within (〈S〉classical min , 〈S〉classical max)

roughly correspond to classically chaotic regions by plotting and comparing to the phase

space plot λx as shown in Figure 4.7. We see much stronger correspondence, where the

classically stable regions are largely outside the band, and classically chaotic regions are

largely inside the band. At κ = 1.625, we have a bound where 〈S〉classical min = 0.6138

and 〈S〉classical max = 0.6511. The emergence of chaos has just begun and the band is

small. Discerning what is chaotic or stable is difficult at this point. At κ = 2.5, we have a

bound where 〈S〉classical min = 0.4551 and 〈S〉classical max = 0.6727. Chaos is more promi-

nent and areas can be classified as chaotic or stable. However, there are hyperfine regions

of stability around the coupled diagonal lobes which characterized with lower values of

〈S〉. These regions cannot be easily classified as completely chaotic or complete stable.

At κ = 3.5, we have a bound where 〈S〉classical min = 0.6019 and 〈S〉classical max = 0.7137.
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The difference between stability and chaoticity is clear. The band also gives room for

small stable regions found at a high κ value.
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Chapter 5

Conclusions and Future Prospects

Quantum simulation using superconducting qubits is still in its infancy, but current

technology still allows for many interesting applications and flexibility. With proper

shielding and control, robust and scalable qubits can be made possible. The develop-

ment of an efficient mechanism to cool down cryogenic cables will enable large scale

quantum computation experiments at lower temperatures. New infrared filters will

protect superconducting elements from sources of dissipation, while allowing for more

control wiring to manipulate qubits.

Interesting quantum systems can already be studied. However, the number of qubits

involved is small. One can find a solution just as fast, if not faster, using a classical

computer. At a threshold of 20 - 25 qubits, the advantage of simulating a quantum

system of such a size using a classical supercomputer will be eliminated. However,

scaling up from a few qubits to tens of qubits is not trivial. There are many engineering

challenges and physics obstacles to overcome. Adding control wires to a 2D architecture

requires multilayer fabrication or a flip chip design. Increasing coherence times will

require better materials and fabrication processes. Fortunately, ongoing work is aiming

to solve these problems through academic research and industrial development. Over

the next few years, there will be increased effort for a scalable architecture, allowing for

simulation of complex quantum systems.

33
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Appendix A

Thermal Conductivities

Figure A.1: Thermal conductivities for various materials below 1K. This figure is
accredited to Lounasmaa.



Appendix B

Floquet Operator and

Discretization of the Kicked Top

Hamiltonian

To check discretization, we consider Hamiltonian for the quantum kicked top with spin

J for kicks of period τ

H(t) =
~p
τ
Ĵy +

~κ
2J
Ĵ2
z

+∞∑
n=−∞

f(t− τn) (B.1)

where f(x) = δ(x), a delta function [1]. We will later approximate the delta function

with a normal probability distribution function. We can describe the time evolution by

using an operator for each period

U(t, t+ τ) = e−
i
~
∫ t+τ
t H(t′)dt′ , |Ψ(t+ τ)〉 = U(t, t+ τ) |Ψ(t)〉 (B.2)

since H commutes with itself for all time during each period

[H(t1), H(t2)] = 0, with t1, t2 ∈ [t, t+ τ) . (B.3)

36
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Since our Hamiltonian is periodic with period τ , the integral term in the exponential

can be evenly divided over the total time tN = Nτ , so

∫ t+τ

t
H(t′)dt′ = ~

(∫ t+τ

t

p

τ
Ĵy +

κ

2J
Ĵ2
z

+∞∑
n=−∞

δ(t′ − τn)dt′

)
= ~

(
pĴy +

κ

2J
Ĵ2
z

)
(B.4)

and thus we have the Floquet operator

U(t, t+ τ) = e−ipĴye−i
κ
2J
Ĵ2
z (B.5)

where taking m = 0, 1, 2...N for Um |Ψ(0)〉 would give us a sequence of states from zero

to N kicks. Note that the sum for the delta function disappears from the Hamiltonian

since we integrated over one period of a cycle. Using this method to time evolve our

state is straight forward and allows us to see the stroboscopic evolution of our system.

However, this method prevents us from looking at the dynamics within each period.

Instead of integrating the Hamiltonian directly, we can approximate the integral for

one cycle from (B.4) by a Riemann Sum (dt ≈ τ/M) and replacing the delta function

with a periodic normal probability distribution function g(t), with g(t) = g(t + τ) and∫ t+τ
t g(t)dt = 1⇒ τ

M

∑M
i=1 g(ti) ≈ 1with t1 = t, tM = t+ τ for sufficiently big M:

∫ t+τ

t
Ĥ(t′)dt′ ≈ τ

M

M∑
i=1

H(t′′i ) with t′′1 = t, t′′M = t+ τ (B.6)

= ~

[
τ

M

M∑
i=1

(p
τ
Ĵy +

κ

2J
Ĵ2
z g(t′′i )

)]
(B.7)

≈ ~
[
τ

M

(
M

τ
pĴy +

M

τ

κ

2J
Ĵ2
z

)]
(B.8)

= ~
[
pĴy +

κ

2J
Ĵ2
z

]
(B.9)

which gives us the same Floquet operator for each kick.



Appendix C

Rotating Wave Approximation

The unitary matrix governing the rotating wave approximation for two qubits is given by:

URWA =



e−itωr 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eitωr


. (C.1)

The two qubit Hamiltonian in the spin basis (|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉) describing the energies

(ω1, ω2), applied microwave pulses at frequency ωr with strength (Ω1, Ω2) and phase

(φ1, φ2) , and tunable coupling g is given by:

HQ = ~



−ω1
2 −

ω2
2 cos (φ2 + tωr) Ω2 cos (φ1 + tωr) Ω1 g

cos (φ2 + tωr) Ω2
ω2
2 −

ω1
2 g cos (φ1 + tωr) Ω1

cos (φ1 + tωr) Ω1 g ω1
2 −

ω2
2 cos (φ2 + tωr) Ω2

g cos (φ1 + tωr) Ω1 cos (φ2 + tωr) Ω2
ω1
2 + ω2

2


(C.2)

We apply RWA to our qubit by doing the following [14]:

HQRWA = UHQU
† − i~UU̇ † (C.3)
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Let ∆1 = ω1 − ωr, ∆2 = ω2 − ωr, ignoring the phase and the high frequency e−2itωr

terms, we obtain:

HQRWA = ~



−∆1−∆2
2 Ω2 Ω1 0

Ω2
−∆1+∆2

2 g Ω1

Ω1 g ∆1−∆2
2 Ω2

0 Ω1 Ω2
∆1+∆2

2


(C.4)



Appendix D

Numerical Calculation of the

Lyapunov Exponent

Calculating the Lyapunov Characteristic Exponent (LCE) is a numerically demanding

task. The following is numerical work originally developed in Mathematica [15].

For a discrete map given by a vector function ~F with ~xk+1 = ~F ( ~xk), we know that

~xk = ~F k (~x0). The total derivative at ~xk given by the chain rule is

D~x
~F k (~x0) = J

(
~F k−1 (~x0)

)
. . . J

(
~F (~x0)

)
J (~x0) (D.1)

where J is the Jacobian of the vector function J (~x0) = D~x
~F (~x)

∣∣∣
x=x0

. The first step

for finding the LCE is decomposing the Jacobian matrix using QR decomposition, a

deconstruction of a matrix into a product of two types matrices: orthogonal (Q) and

upper triangular (R). Explicitly, QR decomposition gives us J (~x) = Q1R1. If we define

for n = 2, 3, ...k that

J∗n = J
(
~F k−1 (~x)

)
Qk−1 (D.2)

and decompose J∗n = QnRn for each n, we see from D.1 that D~x
~F k (~x) = QkRk . . . R1. It

is also a consequence that the diagonal elements P
(k)
ii of the product of upper triangular

40
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matrices P (k) = Rk . . . R1 has the following property:

lim
k→∞

1

k
lnP

(k)
ii = λi (D.3)

where λi is the i-th LCE of the system. So for sufficiently large k, say k = 1000, we

should obtain the approximate LCE spectrum. We begin this QR decomposition process

deep into the evolution of the system, say for a transient t = 100, to avoid quasi-stable

motion. Thus, the pseudocode for computing the LCE spectrum is as follows:

Data: inital point ~x0, discrete map ~F (~x), Jacobian of discrete map J (~x)

Result: LCE spectrum

Initialization: t = 100, k = 1000, LCEs = Zeros(Size(~x0));

for i = 1, ..., t do

~xi = ~F (~xi−1);

end

temp = ~xt;

[Q,R] = QRdecomposition(J (temp));

for i = 1, ..., k do

temp = F (temp);

[Q,R] = QRdecomposition(J (temp)Q);

diags = Diagonal(R);

LCEs = Real(Log(diags)) + LCEs;

end

LCEs = LCEs/k;

Algorithm 1: Computing the LCE spectrum for a discrete map ~F .
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a) b)

Figure D.1: Convergence plot of the LCE spectrum for the classical kicked top using
the QR decomposition algorithm outlined above with a transient t = 100, iterations
k = 1000, p = π

2 , and κ = 2.5. a) chaotic initial point ~x0 = (φ0, θ0) = (3, 2) b) stable
initial point ~x0 = (φ0, θ0) = (2, 2).



Appendix E

Identity Term in Hamiltonian

Given a Hamiltonian

Ĥ = Ĥ0 + γÎ (E.1)

where H0 is some other Hamiltonian and I is the identity with some constant γ. We

assume that H commutes with itself for all time. The unitary propagator in differential

time is then

Û = e−
i
~ Ĥdt

= e−
i
~ (H0+γIdt)

= e−
i
~ Ĥ0dte−

i
~γÎdt

= e−
i
~ Ĥ0dt

∞∑
n=0

(
− i

~γÎ
)n

n!
dt

= e−
i
~ Ĥ0dtÎ

∞∑
n=0

(
− i

~γdt
)n

n!

= e−
i
~ Ĥ0dt

[
Îe−

i
~γdt

]

where the first term is an operator and the second term is an identity operator times a

constant. Assume after one kick with H0, we obtain the state |Ψ〉 =

 a

b

. Then with
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the full Hamiltonian H we obtain |Ψ′〉 =

 a

b

 · e− i
~γ , which has an extra global phase

factor. We see that the density matrix for the evolution under H is ρ = |Ψ′〉 〈Ψ′| = a

b

( a∗ b∗
)
e−

i
~γ · e

i
~γ = |Ψ〉 〈Ψ|, which is the density matrix for the state that

was evolved under H0. Since the expectation for an operator A is given by 〈A〉 = tr (ρA),

the measured outcome is the same.



Appendix F

Classical Effects: Pulse Width

and Separation

We study the effects of pulse shape and overlap on the canonical kick top Hamiltonian.

In an experimental setting, we might obtain a Hamiltonian which cannot be mapped to

a Floquet operator. In this case, we see perturbed trajectories of our classical kicked top

and the suppression of chaos. The chaoticity from changing pulse width and separation

is characterized and a simple model is proposed to explain how chaoticity changes with

pulse shape and separation.

The Hamiltonian of the kicked top includes a periodic δ-function kick or twist of

period τ . The Hamiltonian of a kicked top gives chaos through the non-linear term, not

the δ-function term. The chaoticity of an initial point in the phase space of a rotator

can be characterized by the Lyapunov exponent. Here, the maximal Lyapunov exponent

(mLCE) used due to its fast numerical calculation [13]. We can bin chaotic (mLCE > 1)

and non-chaotic (mLCE <1) points to measure the population of chaotic initial points.

For p = π/4 and κ = 2.5, we map chaotic and non-chaotic initial points in phase space.

After 500 kicks, most of the chaotic points have saturated to a mLCE > 1 (red) with

stable islands with mLCE < 1 (blue) in Figure F.1. Intermediary colors represent the

boundary between chaoticity and stability and approximately 44.26% of initial points

have chaotic trajectories.
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Figure F.1: mLCE map for p = π
4 and κ = 2.5. Approximately 44.26 % of initial

points are chaotic.

The experimental implementation of the quantum kicked top requires two pulses: one

for the rotation terms of strength p and one for the twisting term of strength κ. These

slides show will that we have great flexibility in choosing pulses to drive our kicked top.

The rotating and twisting term over a single kick can be of any shape, given that they

do not overlap. The integral of each pulse shape should be equal to the respective kick-

ing or twisting strength. Overlap between the rotating and twisting pulse is avoided to

preserve the Hamiltonian. To see the effect of overlapping pulses, Gaussian profiles with

uncertainty σ and mean µ are used for linear rotation p and twisting of strength κ

fp(t) =
∑
n

p

σ
√

2
e−

(t−µp−nτ)2

2σ2 (F.1)

fκ(t) =
∑
n

κ

σ
√

2
e−

(t−µκ−nτ)2

2σ2 (F.2)

with a separation between the pulses µp − µκ a maximum at τ/2. The “measurement”

occurs at the end of every period τ . The two pulses are initially kept maximally separated

at τ/4 and 3τ/4 for maximum separation to characterize wider Gaussian profiles.
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F.1 Pulse Width

At maximum separation, τ/2, the pulse width is widened from σ = 1/8 to σ = 2/5 in

Figure F.2. The mLCE phase space plot shows that the percentage of chaoticity fades.

However, it is still unclear whether this is due the width of the pulses themselves or the

overlap between the two pulses.
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Figure F.2: The width of the two pulses are made larger, thereby creating more
overlap and perturbations in the Hamiltonian. Such a perturbation partially removes

the chaotic dynamics of the system. The parameters used are p = π
4 and κ = 2.5.

F.2 Separation

To test another cause for the disappearance of chaos, the pulse width is now held at

σ = 1/8 while the two pulses are brought closer together from maximum separation

τ/2 to zero separation in Figure F.3. Again, we see the disappearance of chaos. Chaos

disappears nearly completely with zero separation. This hints that the disappearance of

chaos is caused by how the two pulses overlap.



Appendix F. Classical Effects: Pulse Width and Separation 48

𝑇𝑖𝑚𝑒0

𝟒𝟑. 𝟑𝟒%
chaotic

Separation: 0

39.75%
chaotic

32.52%
chaotic

18.79%
chaotic

1.98 %
chaotic

𝒑
𝜿

0.016

𝑇𝑖𝑚𝑒0

Separation: 
𝟏

𝟏𝟎
𝛕

𝒑
𝜿

0.016

𝑇𝑖𝑚𝑒0

𝒑
𝜿

0.016

𝑇𝑖𝑚𝑒0

𝒑
𝜿

0.016

𝑇𝑖𝑚𝑒0

𝒑
𝜿

0.016

Separation: 
𝟏

𝟓
𝛕

Separation: 
𝟑

𝟏𝟎
𝛕

Separation: 
𝟏

𝟐
𝛕

Separation

𝜇𝑝 − 𝜇𝜅

𝜽

𝜽

𝜽

𝜽

𝜽

𝝓𝝓

A
m
p
li
tu
d
e

201612840

𝒎𝒂𝒙𝒊𝒎𝒂𝒍
𝑳𝑪𝑬

𝒎𝒂𝒙𝒊𝒎𝒂𝒍
𝑳𝑪𝑬

20

16

12

8

4

0

Pulse Width: 

𝝈 =
𝟏

𝟖
𝝉

𝟒𝟒. 𝟐𝟔%
chaotic

Chaoticity vs.
Separation

τ

τ τ

τ

τ

𝜽

Figure F.3: The separation of the two pulses are made smaller, thereby creating more
overlap and perturbations in the Hamiltonian. Such a perturbation partially removes

the chaotic dynamics of the system. The parameters used are p = π
4 and κ = 2.5.
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larger and (below) separation is made smaller. Both perturbations alter and smooth

out stable and chaotic trajectories. The parameters used are p = π
4 and κ = 2.5.
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F.3 Trajectories

The implementation of wide Gassuian pulses also allows us to follow the trajectories over

a continuous time, shown in Figure F.4. Note that the filled circular markers indicate

a “measurement” which happens at every kicking period τ . For properly narrow pulses

with enough separation to prevent overlap, chaotic initial points stay in the chaotic sea

white stable initial points remain in stable orbits. The trajectories themselves can leave

their chaotic or stable territories since the actual measured location in phase space is

what should remain chaotic or stable. When the pulses are made wider or brought

closer together, the measured locations wander into forbidden territory. We also see

that changing the pulse width has a different effect on the perturbation in the trajectory

than changing the separation.

F.4 Modeling the Disappearance of Chaos

An attempt at modeling the disappearance of chaoticity is defining a measure called

the Normalized Integral Difference (NID). NID is defined independently of the kicking

strengths, p and κ:

NID = max

(∫
κ(t)− p(t)dt

)
−min

(∫
κ(t)− p(t)dt

)
(F.3)

where p(t) and κ(t) correspond to Gaussian pulses without a scaling factor

fp(t) =
∑
n

1

σ
√

2
e−

(t−µp−nτ)2

2σ2 (F.4)

fκ(t) =
∑
n

1

σ
√

2
e−

(t−µκ−nτ)2

2σ2 (F.5)

The NID definition is shown graphically in Figure F.5.

The NID is scaled with the chaotic percentage without perturbations and plotted in

Figure F.6 against mLCE chaoticity percentages as shown in Figure F.2 and F.3. We

see a consistency in behavior between the mLCE data and the scaled NID with slight

deviations which seem like constant addition factors. Despite the deviations from the
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Figure F.5: (Left) Normalized pulses corresponding to p in green and κ in blue.
(Right) Integrated pulses of p in green and κ in blue. The normalized integral difference

(NID) is the maximum difference between the two integrals.

mLCE data, we are able to obtain a conservative prediction of how much chaoticity is

preserved without needing to run mLCE phase space maps, which take hours to generate.
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Figure F.6: Scaled NID plotted against the percentage of chaoticity found in mLCE
maps. We see that the scaled NID is a good model for approximating how perturbations

in pulse width and separation can affect the chaoticity of the kicked top system.
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