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Chapter 1

Introduction

This document considers the effects of non-ideal IQ mixer performance on single-qubit

rotations. Some of the basic physics which supports this primary endeavor is described

in the appendices. I have attempted to make this document accessible for those outside

the field of quantum information, however a working knowledge of electrodynamics and

quantum mechanics is assumed throughout.

The context of our discussion is the ongoing effort to build a superconducting quantum

computer.

1.1 What is a Quantum Computer?

For a brief account of the history of quantum information, I could attempt no better

than offered in part 1.1.1 of the book by Nielsen and Chuang. [8] For a more physical

comparison between classical and quantum computation, I recommend chapter 1 of Dr.

Sank’s PhD thesis. [9]

Very succinctly, quantum computation is interesting because it lets us perform differ-

ent types of algorithms than can be performed on a conventional computer, and some

1



Chapter 1. Introduction

of these algorithms solve certain problems more efficiently than any known classical

method. In general, we do not know the extent of what is possible with quantum com-

puting, as discovering useful algorithms is very difficult. We do know however that

for certain cases, quantum information offers a more powerful computational paradigm

than digital logic.

As of writing, no device which utilizes quantum effects has yet out-performed a classical

computer, although this epoch appears imminent.

Just as a computer may be mechanical, hydraulic, or electronic, there appear to be many

ways to build a quantum computer. The Martinis group works on superconducting

systems. The appendices to this thesis provide an overview of the basic physics of

superconducting quantum bits.

1.1.1 What is a Qubit?

The qubit (quantum bit) is the quantum analogue of the classical bit. It is the basic

element that encodes information for computation. While a classical bit is strictly either

a 1 or a 0 however, a qubit exists as a superposition of orthogonal states with complex

amplitudes. In Dirac (bra-ket) notation, we write the qubit state

|ψ〉 = c0 |0〉+ c1 |1〉 (1.1)

We interpret |c0|2 and |c1|2 as the classical probabilities of finding the qubit in the 0 or

1 state respectively and impose the normalization condition 〈ψ|ψ〉 = 1.

A qubit behaves differently than a classical bit:

• Qubits can become entangled with each other. When this happens, we can no

longer treat them as superpositions of two states each. Instead, a system of n

2



Chapter 1. Introduction

entangled qubits is described as a superposition of the 2n basis states formed by

the tensor product of each qubit’s basis states.

• It is impossible to clone a qubit’s state.

• Converting a qubit to a classical bit involves a thermodynamically irreversible loss

of information.

It is hard to build qubits that are useful for computation: For a qubit to have high

integrity, we must isolate it from the rest of the world. To manipulate a qubit for

computation, it must be coupled to a control system. The opposing nature of these

criteria forms the central challenge of building a quantum computer. Useful qubit

manipulations must be achieved before the quantum state is lost to decoherence caused

by the interaction of the qubit with its environment.

1.2 Experimental Realization

At present, superconducting systems offer a promising, scalable architecture for the

creation of a universal quantum computer.

Qubits are fabricated in a planar architecture in aluminum on a sapphire or silicon sub-

strate using lithography techniques developed for modern CPUs and integrated circuits.

The first two energy levels have a separation that corresponds to a frequency of several

GHz ((B.13)).

When cooled to 20 milikelvin within a dilution refrigerator, these superconducting qubits

may be manipulated with microwave frequency electronic pulses, as explained in Ap-

pendix B, which are generated by room temperature electronics and sent into the fridge

through a series of filters.

3



Chapter 1. Introduction

Z X ,Y

ΦB

Cd

C

VdReadout

Other
Qubits

Figure 1.1: Adapted diagram of a scalable architecture for manipulating superconduct-
ing qubits by Kelly et.al [3]. Used with permission. The transmon qubit pictured is
described in Appendix B, although discussion of multi-qubit systems is neglected.

A key component of this approach is the use of error correcting methods such as the

surface code [1] that require fast, high-fidelity qubit operations. Because these error

correction methods benefit from greater qubit gate fidelity, we wish to minimize all

sources of error in our control and measurement chain.

4



Chapter 1. Introduction

One of the room temperature devices in our control chain is the IQ mixer – pictured in

the diagram above as it follows the XY Digital-to-Analog FPGA board.

5



Chapter 2

The IQ Mixer

The IQ mixer, also known as a quadrature mixer, is a key hardware element in the

microwave chain that lets us control qubits. Although we begin with a general treatment

of the device, it’s use for qubit rotations is as an Image Reject (IR) or Single Sideband

(SSB) mixer. Deviation from ideal performance at this element introduces error into

qubit operations, and reduces gate fidelity. Thankfully, the types of errors we discuss

here are easily corrected within the control software for the digital-to-analog waveform

generators which generate I(t) and Q(t).

As a side-product of our derivations, corrections for demodulation operation of the IQ

mixer will also arise.

2.1 Ideal Operation

An IQ mixer is functionally represented by two mixers and two hybrid couplers, where

one coupler introduces a π/2 phase delay to one copy of a local oscillating signal. An

ideal mixer (denoted by the symbol
⊗

) multiplies two input signals, while the hybrid

6



Chapter 2. The IQ Mixer

couplers may be realized by conducting geometry alone to add, split, and phase-shift

signals.

LO

I(t)

Q(t)

cos (Ωt)

0◦

90◦ 0◦

0◦ RF

IRF (t) cos (Ωt)−QRF (t) sin (Ωt)

I

Q

RFLO

Figure 2.1: An IQ Mixer

The output of an ideal IQ mixer may be written

RF = I(t) cos (Ωt)−Q(t) sin (Ωt) (2.1)

or equivalently as

RF = Re
{

(I + iQ) eiΩt
}

= 1
2

[
(I + iQ) eiΩt + (I − iQ) e−iΩt

]
(2.2)

IQ modulation may be used to mix to a single-sideband (SSB) from the LO carrier when

I and Q are single-tone signals with a relative π/2 phase-shift between them:

I = cos (∆t+ φ)

Q = sin (∆t+ φ)

 =⇒ RF = cos
(

(Ω + ∆)t+ φ

)
(2.3)

IQ Mixers are almost always used in this way when synthesizing signals.

7



Chapter 2. The IQ Mixer

2.1.1 The LO Frame

By the orthogonality of cos (Ωt) and sin (Ωt), we may decompose or synthesize an arbi-

trary time-varying signal in the basis of these two functions, where our coefficients are

similarly allowed to be arbitrary functions of time:

f(t) = I(t) cos (Ωt)−Q(t) sin (Ωt) (2.4)

Let us map the coefficients of this decomposition to a plane defined by the axes I and

Q. Of course, our coefficients are under-determined, as for fixed values of t, there are

an infinite number of coefficients we could choose, related linearly, along a line at angle

(π/2− Ωt). Indeed, the contribution of any motion parallel to this line in the IQ plane

has no effect on the value of the synthesized or decomposed signal.

(
I(t) + x cos (π2 − Ωt)

)
cos (Ωt)−

(
Q(t) + x sin (π2 − Ωt)

)
sin (Ωt)

=
(
I(t) + x sin (Ωt)

)
cos (Ωt)−

(
Q(t) + x cos (Ωt)

)
sin (Ωt)

= I(t) cos (Ωt)−Q(t) sin (Ωt)

(2.5)

This direction may be thought of as physically “imaginary”.

I

Q

1

iΩt
(
I(t), Q(t)

)

Figure 2.2: The rotating frame of the Local Oscillator in the complex plane
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Chapter 2. The IQ Mixer

We think of I and Q axes in complex plane which rotate at angular frequency Ω ac-

cording to multiplication by eiΩt. In the case of the IQ mixer, we will call this the LO

frame, as the angular frequency is set by the local oscillator.

We note that it is a merely a choice to have the LO frame rotate counter-clockwise:

Rotation in the opposite direction is equivalent to inverting the sign of one of the axes.

We choose counter-clockwise rotation by convention, but this has the consequence that

any constant signal in the lab frame will rotate clockwise in the LO frame.

We also note that we are entirely capable of doing math in the LO frame by ignoring

the factor of eiΩt. In the LO frame, we will think of I as the real axis, and Q as the

imaginary axis. This lets us simply map the output of an ideal IQ mixer in this frame

to the point (
I(t), Q(t)

)
= I(t) + iQ(t) = RFc

(
e−iΩt

)
(2.6)

where I(t) and Q(t) are the input voltages and where RFc denotes a complex represen-

tation of the RF signal in the lab frame, with an under-determined value along the i

axis.

RFc = (I + iQ) eiΩt (2.7)

As in (2.2), only the real part of RFc has any physical meaning. Due to this fact, we

will allow ourselves to write

RF = (I + iQ) eiΩt (2.8)

for convenience, knowing that only the real part of RF is significant.

9



Chapter 2. The IQ Mixer

2.2 A More Realistic Model

Real IQ mixers are not perfect, and there are different ways to build a real such a

device. Marki provides an overview of the doubly-double-balanced diode mixers we

use. [7] In addition to introducing spurious harmonic content, these devices exhibit some

non-orthogonality and amplitude imbalance between the in-phase and quadrature com-

ponents of the output signal.

Let us focus on the latter errors. We will see that the end result is the introduction of an

image sideband product of mixing to the qubit control. We claim that the spurious har-

monic content of the mixer will introduce additional sidebands and different frequency

offsets from the local oscillator. Hence, we claim that the results of our treatment for

the image sideband of IQ mixing may be readily adapted to treating spurious harmonic

content.

We will denote the degree of non-orthogonality in radians as δ and the degree of am-

plitude imbalance as ε. Although these parameters are in general dependent on signal

frequency, LO frequency, time, or temperature, we will treat them as constant for our

calculations.

Let us consider the action of the IQ mixer as a mapping of the input signals I(t) and

Q(t) onto the LO frame given by a new set of axes:

RF = I(t)I′ −Q(t)Q′ (2.9)

In general, these types of errors are capable of introducing overall gain and phase shifts,

which equate to scaling and rotation in the LO frame. We are not concerned with either

of these types of errors however: Any overall gain from the mixer will be accounted for

10



Chapter 2. The IQ Mixer

during the bringup routine for a qubit with unknown drive coupling [4], while an absolute

phase shift is equivalent to a time delay and will have no effect on gate orthogonality.

Let us find an adequate transformation from the axes to I and Q to I′ and Q′ that

captures this non-orthogonality and amplitude imbalance.

(
I′

Q′

)
= M

(
I

Q

)
(2.10)

We will do this by combining a scaling operation with two shearing operations that

commute in the limit of small δ. Each operation has determinant 1 and so preserves

area. To first order,

M =

1 −δ2
0 1


 1 0

−δ2 1


 1√

1 + ε
0

0
√

1 + ε

 ≈
(1− ε

2) −δ2

−δ2 (1 + ε

2)

 (2.11)

Q

I
I′

Q′

π
2 + δ

1+ǫ︷ ︸︸ ︷
︸ ︷︷ ︸

1

Figure 2.3: An approximately area preserving, irrotational transformation of basis vec-
tors in the LO frame
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Chapter 2. The IQ Mixer

We may express some interesting features of this transformation with the parameters s,

and η which we will define by

s ≡ ε2 + δ2

4 ; η ≡ tan−1(δ
ε
) (2.12)

we will see that s is equal to 1 over the sideband rejection of the mixer or the ratio of

power in an image sideband to the desired signal.

The determinant of the transformation is

∣∣∣M ∣∣∣ = 1− s (2.13)

suggesting invertibility, while its eigendecomposition reveals orthogonal eigenvectors:

Circles traced by the ideal IQ mixer are mapped to ellipses according to

λ1 = 1 +
√
s

v1 =

− sin (η2 )

cos (η2 )


λ2 = 1−

√
s

v2 =

cos (η2 )

sin (η2 )


(2.14)

2.2.1 Corrected Output

In accordance with (2.11), in the LO frame, we map

a+ ib→ a− aε

2 −
bδ

2 + ib+ i
bε

2 − i
aδ

2 (2.15)

from which it follows

eiΩt → eiΩt − ε+ iδ

2 e−iΩt (2.16)

12



Chapter 2. The IQ Mixer

By applying this mapping to (2.8), the output of an IQ mixer with non-orthogonality δ

and amplitude imbalance ε is

RF =
(
I(t) + iQ(t)

)[
eiΩt − ε+ iδ

2 e−iΩt
]

(2.17)

or rather

RF =
(
I(t) + iQ(t)

) [
eiΩt −

√
se−i(Ωt−η)

]
(2.18)

Alternately, in the limit of small δ and ε, we may treat the shear transformations as

rotations of a single axis. Performing these operations on our model given in (2.1)

directly, to first order we obtain

RF = I(t)
(
1− ε

2
)

cos
(
Ωt+ δ

2
)
−Q(t)

(
1 + ε

2
)

sin
(
Ωt− δ

2
)

(2.19)

2.2.2 A Mechanical Analogue

(2.18) reveals an alternate method of construction for the ellipse mapped from the unit

circle by M . Specifically, we see that the ellipse may be constructed from counter-

clockwise motion along the unit circle added to a clockwise motion of radius
√
s with

the same angular frequency. This suggests a mechanical analog similar to epicyclic or

planetary gearing:

13



Chapter 2. The IQ Mixer

1

√
s

Figure 2.4: A mechanical analogue for the action of IQ mixer non-orthogonality and
amplitude imbalance. In the LO frame, the outer gear is fixed. While the position of
the center of the inner gear is given by (I,Q). For a pure tone of the form (2.3), the
inner gear moves in a counter-clockwise path, spinning clockwise. The path traced by
a point on the inner gear a distance

√
s away from the center traces an ellipse.

This model is very useful for changing frames:

In the lab frame, the position of the inner gear with respect to the outer gear is given

by I(t) and Q(t), while the outer gear spins counter-clockwise at angular frequency Ω.

To enter the qubit frame, we rotate the entire system clockwise at an angular frequency

ω determined by the qubit, then walk behind the page to view it from the other side.

This inconvenience is given by the differing forms of equations (2.1) and (2.23). In the

qubit frame, a nominally static signal is achieved by fixing the center of the inner gear,

while the outer gear rotates counterclockwise (clockwise from in front of the page) at

angular frequency ω−Ω. We see that the actual signal traces circles in the qubit frame

counter-clockwise (from behind the page) at angular frequency 2(ω − Ω).

14



Chapter 2. The IQ Mixer

We may confirm our intuition by continuing to analyze the equations.

2.2.3 Image Sideband

Equation (2.17) shows us that IQ mixer non-orthogonality and amplitude imbalance

will create an image sideband during SSB mixing:

For a pure tone input signal of the form

I(t) = V cos (∆t+ θ) ; Q(t) = V sin (∆t+ θ) ; I(t) + iQ(t) = V ei(∆t+θ) (2.20)

the output of the mixer is given by

RFpt = V
[
ei((Ω+∆)t+θ) −

√
se−i((Ω−∆)t−θ−η)

]
(2.21)

Or alternately

RFpt = V cos
(
(Ω + ∆)t+ θ

)
− V
√
s cos

(
(Ω−∆)t− θ − η

)
(2.22)

Where we observe a signal at angular frequency (Ω−∆) of relative amplitude
√
s. From

this relation, we verify that s as defined in (2.12) is indeed the ratio of the power in

the unwanted sideband to the desired signal, where we use the fact that for sinusoidal

signals, power is proportional to the square of the amplitude in Volts.

2.3 Qubit Control

The output of the IQ mixer is coupled to a qubit with angular frequency ω. We may

thus represent RF in the rotating frame of the qubit with orthogonal components X

15



Chapter 2. The IQ Mixer

and Y according to (B.37):

RF = Y (t) cos (ωt)−X(t) sin (ωt) (2.23)

or ignoring the complex component,

RF =
(
Y (t) + iX(t)

)
ei(ωt) (2.24)

where the voltages X and Y define an instantaneous rotation axis for a Bloch state in

the rotating frame (Appendix B).

Let us appropriate the symbol ∆ for the detuning of the LO from the qubit frequency,

adopting a sign convention of up-mixing from the LO frequency to the higher qubit

frequency:

∆ ≡ ω − Ω (2.25)

For the rest of this chapter, we will neglect to write the explicit time dependence of our

various amplitude envelopes.

Now we consider the RF output of the IQ mixer in the rotating frame of the qubit. We

first equate our different representations for the RF signal, (2.19) and (2.23), using the

definition of ∆, (2.25). Introducing polar coordinates A and φ, we have

X ≡ A cos (φ) = −I
(
1− ε

2
)

sin
(
∆t− δ

2
)

+Q
(
1 + ε

2
)

cos
(
∆t+ δ

2
)

(2.26)

Y ≡ A sin (φ) = I
(
1− ε

2
)

cos
(
∆t− δ

2
)

+Q
(
1 + ε

2
)

sin
(
∆t+ δ

2
)

(2.27)

from which retrieve the law of cosines and a relation for φ:

A2 = (1− ε)I2 + (1 + ε)Q2 + 2 sin (δ)IQ (2.28)

16
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tan (φ) = I cos (∆t− δ/2) + (1 + ε)Q sin (∆t+ δ/2)
−I sin (∆t− δ/2) + (1 + ε)Q cos (∆t+ δ/2) (2.29)

Reworking the initial equations also yields

I = −A(1 + ε

2) sin
(
∆t− φ+ δ

2
)

(2.30)

Q = A(1− ε

2) cos
(
∆t− φ− δ

2
)

(2.31)

which we may use to send pulses to the qubit for known ε and δ.

2.3.1 Sideband-Induced Error

If we assume perfect IQ mixer operation when calculating the necessary I and Q for a

desired amplitude A0 and phase φ0 in the rotating frame of the qubit, we let

I = −A0 sin (∆t− φ0) (2.32)

Q = A0 cos (∆t− φ0) (2.33)

Substituting these inputs into (2.28) and (2.29), our error is given to first order in δ and

ε by Taylor expansion of the resulting expressions for A and φ:

A ≈ A0

[
1 + ε

2 cos
(
(2(∆t− φ0) + ξ

)
− δ

2 sin
(
2(∆t− φ0) + ξ

)]
(2.34)

φ ≈ φ0 + ε

2 sin
(
2(∆t− φ0) + ξ

)
+ δ

2 cos
(
(2(∆t− φ0) + ξ

)
(2.35)

or rather

A ≈ A0

[
1 +
√
s cos

(
2(∆t− φ0) + ξ + η

)]
(2.36)
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Chapter 2. The IQ Mixer

φ ≈ φ0 +
√
s sin

(
2(∆t− φ0) + ξ + η

)
(2.37)

Where we have introduced the phase ξ to account for the uncontrolled phase difference

between the primary and image sidebands of mixing, or equivalently, half of the phase

difference between the rotating frames of the LO and the qubit, for a gate with an

arbitrary start time.

ξ ≡ −2∆t0 (2.38)

Unless the timing of gates is controlled with regards to the detuning frequency in a

careful way, we anticipate ξ to be a quasi-linear function of the detuning and the gate

time. We will treat it as being sampled from a uniform distribution.

We note that (2.34) and (2.35) agree with our mechanical model.

For reference, we compute the errors in terms of X and Y as well:

X ≈ X0

[
1 +

√
(s) cos

(
2∆t+ ξ + η

)]
+ Y0

[√
(s) sin

(
2∆t+ ξ + η

)]
(2.39)

Y ≈ X0

[√
(s) sin

(
2∆t+ ξ + η

)]
+ Y0

[
1−

√
(s) cos

(
2∆t+ ξ + η

)]
(2.40)

Or in matrix form:

(
X −X0
Y − Y0

)
≈
√
s

(
cos (2z) sin (2z)
sin (2z) − cos (2z)

)(
X0
Y0

)
(2.41)

where z = (∆t+ ξ + η/2). The matrix on the right has an eigendecomposition

λ1 = 1

v1 =

cos (z)

sin (z)


λ2 = −1

v2 =

− sin (z)

cos (z)


(2.42)
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Chapter 2. The IQ Mixer

Revealing that its action is to mirror across the line defined by v1, which will be swept

counter-clockwise with time at angular frequency ∆, tracing a circle counter-clockwise

at angular frequency 2∆ with the image of a fixed point X0 and Y0. The vector from

(X0, Y0) to (X,Y ) traces this circle, scaled by
√
s, completing our analogy to the me-

chanical system we introduced in Section 2.2.2.

Given the way in which IQ mixer non-ideality affects qubit control, it remains to show

how this translates to gate error.
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Chapter 3

Quantifying Gate Errors

Having determined that the unwanted sideband product of mixing distorts our control

signals to the qubit, we now wish to quantify how this affects gate error.

3.1 Single Gate Error Approximation

It is useful to derive an approximation of gate error as a function of rotation error:

Consider a rotation operation which nominally prepares a target state. Let us quantify

rotation error by the distance θer on the Bloch sphere from the target state to the actual

prepared state. If the target state is an eigenstate of measurement, then the probability

of being measured in the target state is

pt = cos2
(
θer
2

)
≈ 1− 1

4θ
2
er (3.1)
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Chapter 3. Quantifying Gate Errors

Defining gate error E in a manner consistent with randomized benchmarking [5] as 1−pt,

we have

E ≈ 1
4θ

2
er (3.2)

3.2 First Principles

We noted following (2.36) and (2.37) that we will treat ξ as being sampled from a random

distribution; as such, it makes little sense to talk about η, or the relative magnitudes of

ε and δ. We will thus focus only the relative power in the image sideband, given by s,

and we will average over ξ.

The Martinis Group uses rotation pulses of duration T with a nominal Voltage envelope

A0(t) ∼ Ap sin2 (tπ/T ).

X

φ

A
Y

t = T

t = 0

X ′

Y ′

2A
√
s

Figure 3.1: A rotation pulse with an image sideband present as seen in the rotating
frame of the qubit, where depth represents time.

The rotation produced by a perfect gate is the integrated amplitude of the RF signal

in the rotating frame of the qubit multiplied by g/2h̄ (B.39), where g is the qubit drive
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Chapter 3. Quantifying Gate Errors

coupling given in (B.32). Requiring nominal rotations of π or π/2 radians, we may write,

g

2h̄

∫ T

0
Ap sin2

(
tπ

T

)
dt = ApTg

4h̄ = Θ ; Θ ∈
{
π

2 , π
}

(3.3)

For generality, we will introduce two dimensionless parameters:

Let τ be the fraction of total gate time elapsed during a single gate:

τ ≡ t/T (3.4)

and let k be the wave number given by

k ≡ 2∆T (3.5)

We may then express the accumulated rotation ζ(τ) of a Bloch state by an ideal gate

of total angle Θ as

ζ(τ) =
∫ τ

0
2Θ sin2 (πτ ′) dτ ′ = 2Θ

(
τ

2 −
sin (2πτ)

4π

)
(3.6)

Z

X

Y
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Figure 3.2: The set of final Bloch states for a simulated X(π/2)-pulse starting from the
ground state. The trace on the sphere represents the range of final states obtained when
sweeping over the phase ξ. The expected final state is at negative Y. The wave number
parameter k = 0.32 and the sideband rejection s = −21.2 dB.

We wish to predict the average distance θ on the Bloch sphere that a state prepared by an

imperfect gate will be away from its target state as a function of sideband rejection and

detuning so that we may use (3.2) to extract gate error. To do this, we first decompose

the matrix representation of the gate R̂ into a product of infinitesimal rotations. We

will do this in a primed coordinate system that places the nominal rotation along the

X ′ axis. Interleaved between infinitesimal X̂ ′ rotations which alone would result in

the nominal gate when compounded, we insert infinitesimal rotations x̂′ and ŷ′ which

represent errant rotations about the X ′ and Y ′ axes respectively due to the sideband

signal.

R̂ =
∏
i

x̂′(αi)ŷ′(βi)X̂ ′(γi) (3.7)

The degree of rotation for each matrix is allowed to vary with the index i. The product∏
i X̂(γi)′ will be a rotation of angle Θ, while the products

∏
i x̂
′(αi) and

∏
i ŷ
′(βi) will

be smaller rotations of order θ.

We first assert that the commutators of any individual x̂′ or ŷ′ with the total product

of the matrices to the left or right will be dominated by the compounded X̂ ′ rotations,

as we expect rotations of order θ to approximately commute with each other. Since

[x̂′, X̂ ′] = 0, we may separate all x̂′ operations from the rest of the product:

R̂ =
(∏

i

x̂′(αi)
)(∏

j

ŷ′(βj)X̂ ′(γj)
)

(3.8)
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To account for the commutator of infinitesimal ŷ′ with a rotation X̂ ′, we note that to

first order,

X̂ ′
(
ζ

)
ŷ′
(
β

)
≈ ŷ′

(
β cos(ζ)

)
ẑ

(
− β sin(ζ)

)
X̂ ′
(
ζ

)
(3.9)

We may approximate the commutation of x̂′, ŷ′, and ẑ when θ � 1. Representing the

infinitesimal degrees of rotation as functions of τ , we may now write

R̂ = x̂′
(∫ 1

0
α(τ) dτ

)
ŷ′
(∫ 1

0
β(τ) cos(ζ(τ)) dτ

)
ẑ

(
−
∫ 1

0
β(τ) sin(ζ(τ)) dτ

)
X̂ ′
(

Θ
)

(3.10)

where we may identify α and β with reference to (2.36) and (2.37) as oscillating signals in

the rotating frame of the qubit with π/2 phase separation, frequency 2∆, and amplitude

bounded by the envelope of the gate:

α(τ, ξ) =2Θ
√
s sin2 (πτ) cos (kτ + ξ) (3.11)

β(τ, ξ) =2Θ
√
s sin2 (πτ) sin (kτ + ξ) (3.12)

where ξ reprises its role to capture a phase dependent on time, η, and φ.

Let us write

u = 1
2Θ

∫ 1

0
α(τ) dτ

=
∫ 1

0
sin2 (πτ) cos (kτ + ξ) dτ (3.13)

v = 1
2Θ

∫ 1

0
β(τ) cos(ζ(τ)) dτ

=
∫ 1

0
sin2 (πτ) sin (kτ + ξ) cos

(
2Θ
(
τ

2 −
sin (2πτ)

4π

))
dτ (3.14)

w = − 1
2Θ

∫ 1

0
β(τ) sin(ζ(τ)) dτ

= −
∫ 1

0
sin2 (πτ) sin (kτ + ξ) sin

(
2Θ
(
τ

2 −
sin (2πτ)

4π

))
dτ (3.15)
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and introduce the vectors

r ≡

uv
w

 ; ψ′ ≡

x
′

y′

z

 (3.16)

In general then, the operator for rotation error R̂X̂† (Θ) may be captured by the compo-

sition of the first three operators on the right side of equation (3.10). This composition

is a rotation matrix in the three-dimensional space of the Bloch sphere, which we may

represent in the basis given by the φ rotated axes X ′, Y ′, and Z. For small θ, we

approximate this composition as a sum:

R̂X̂† (Θ) = I + 2Θ
√
s

 0 −w v

w 0 −u
−v u 0

 (3.17)

We may represent the action of r̂ for small θ as the addition of a cross-product term.

The deviation from the nominal gate ˆX ′(Θ) is thus

θ = 2Θ
√
s
[
ψ′ × r

]
(3.18)

and we may extract the single-gate error using equation (3.2):

E ≈ s
∣∣∣∣ψ′ × r

∣∣∣∣Θ2 (3.19)

We will comment here that our results are more general than discussions about an image

sideband of IQ mixing: If the relative phase shift and power of each harmonic is known

for spurious frequencies produced by the IQ mixer, the mathematics we have developed

in this section may be applied. These results are also applicable to systems in which

multiple frequency-addressed qubits share a single drive line: In this case, we allow Θ

to be values other than π/2 or π.
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3.2.1 Bounding Average Gate Error

As a vector cross-product, E is easily maximized for normalized ψ:

Emax ≈ s
(
u2 + v2 + w2

)
Θ2 (3.20)

Let us consider gate error averaged over ξ. In this average, v2 and w2 are equivalent.

This may be shown by rewriting the integrals by appeal to (3.6) and (3.12):

v =
∫ Θ

0

√
s cos

(
ζ

)
sin
(
kτ(ζ) + ξ

)
dζ (3.21)

w = −
∫ Θ

0

√
s sin

(
ζ

)
sin
(
kτ(ζ) + ξ

)
dζ (3.22)

As an aside, we comment that τ(ζ) has no algebraic solution; (3.6) has a functional form

equivalent to Kepler’s Equation with eccentricity 1. As such, we should not expect to

be able to do these integrals by hand.

We may thus bound average gate error due to the presence of a sideband on the qubit

drive channel:

〈Emax〉ξ ≈ s
(〈
u2
〉
ξ

+ 2
〈
v2
〉
ξ

)
Θ2 (3.23)

where we use angle brackets with a subscript ξ to denote an average over that variable.

Let us evaluate this result.

We start with u2:

u =
∫ 1

0
sin2 (πτ) cos (kτ + ξ) dτ =

cos (k2 + ξ) sin (k2 )
k
(
1− k2

(2π)2

) (3.24)
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When squared and averaged over ξ, we may replace the factor of cos2 with 1/2 to obtain

〈
u2
〉
ξ

=
sin2 (k2 )

2k2
(
1− k2

(2π)2

)2 (3.25)

As we noted above, we should not expect to be able to compute
〈
v2〉

ξ by hand. We

shall write down the expression:

〈
v2
〉
ξ

= 1
π

∫ π

0
dξ
(∫ 1

0
dτ cos

(
2Θ
(τ

2 −
sin (2πτ)

4π
))

sin2 (πτ) sin
(
kτ + ξ

))2
(3.26)

As consolation, we can at least compute the value of 〈Emax〉ξ when k = 0:

〈Emax〉ξ
∣∣∣∣
k=0

= s
Θ2

8 + s sin2 (Θ)
4 (3.27)

We will resort to a graphical representation of our full results, obtained numerically, for

π and π/2 gates:
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Figure 3.3: Estimated maximum average gate error 〈Emax〉ξ for π/2 and π rotations
normalized by the power s in the image sideband. The x-axis value k corresponds to
a wave-number – the product of the angular frequency of detuning between the qubit
and the image sideband and the gate time T . For a constant k, we expect gate error E
to be directly proportional to the sideband rejection s.

In general, we note that the errors due to π rotations are an order of magnitude greater

than those for π/2 gates. We anticipate that the total error rate due to the presence

of image sidebands will depend on the ratio of π gates to π/2 gates used in any given

algorithm.

3.3 Simulation

To evaluate our approximations, let us assume the types of IQ mixer errors we have

discussed and apply them to the control of simulated qubits, integrating the equations

of motion. This simulation uses a nice chunk of the Martinis group code base which
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was modified slightly to accommodate this error mechanism. The list of contributors is

sizable.

We will simulate π and π/2 gates starting from the ground state, averaging over ξ. Be-

cause u, v, and w are all dependent on ξ, even if we happen upon the lucky scenario

that places our final state on the vector r and eliminates our sideband error for one data

point, we this to be drowned out by all other data points.
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s = 10−3

Figure 3.4: Simulated gate error for π-gates normalized by s, averaged over 10 evenly
spaced, but randomly oriented samples of ξ. Different values of s were simulated. The
dashed line represents the small-s limit calculated above.

Unfortunately, we have a noise floor to the simulation of ∼ 10−8, as errors of this

magnitude are present even when s = 0. While our predictions appear to hold up well

above this noise floor, increasing s to maximize visibility of the high-detuning behavior

begins to violate the assumptions of our model, which was taken in the limit of small

s. We thus have a limited dynamic range in which we are able to evaluate our model.
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It appears that values of s in the neighborhood of 10−2.5 is the best that we are able to

do, yet for a noise floor ∼ 10−4.5 below that, our model still agrees quite well.
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Figure 3.5: A repeated simulation of single-gate error for π/2-gates.

In addition to partially verifying our predictions of Gate Error as a function of detuning,

we may also confirm the linear scaling of the gate error with sideband power. The noise

floor of the simulation again becomes apparent at ∼ 10−8.
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Figure 3.6: Simulated gate error for π-gates at zero detuning, with varied sideband
power s. The dashed lines represent the predictions given by equation (3.27).
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Figure 3.7: A repeated simulation for π/2-gates. The notch at 10−8 is curious, although
an explanation was not immediately forthcoming. (3.27).

Without time to write a new simulation package, and without the knowledge to increase

the accuracy of the existing software, we will fly our “Mission Accomplished” banner

and conclude the exposition of this thesis. Thank you sincerely for your attention.
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Appendix A

Superconductivity

Let us briefly derive the equations that govern Josephson junctions and SQUID loops

as they pertain to superconducting qubits. A formal treatment of superconductivity

from thermodynamic considerations will be unnecessary, though we will gloss over our

definition of critical current. We will use the wave-function of a condensate of Cooper

pairs in conjunction with a classical Hamiltonian to derive the phase-current and phase-

Voltage relations for a single Josephson junction before analyzing SQUID loops. More

rigorous derivations are presented by Martinis and Osborne. [2]

For some expressions, we will implicitly substitute the flux quantum Φ0, which is justified

in A.3.1.

2π
Φ0
≡ 2e

h̄
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A.1 Semiclassical Tools

A.1.1 Probability Current

We begin with a quantum mechanical description of current. Given a macroscopic

wave function ψ that describes a Bose-Einstein condensate of Cooper pairs, we appeal

to the classical Hamiltonian for a charged particle without magnetic moment in an

Electromagnetic field:

Ĥ = 1
2m(p̂− qA)2 + qV (A.1)

We should clarify that the normalization condition on ψ should correspond to a single

charged particle, thus the magnitude of
∫
d3r|ψ|2 corresponds to the number of charged

particles contained within the integrated region. The magnitude of |ψ|2 thus corresponds

to classical number density.

We begin by writing down the momentum operator and the time-dependent Schrödinger

equation for reference

p̂ = −ih̄∇ (A.2)

ih̄∂t = Ĥ (A.3)

Applying the Schrödinger equation to ψ, we obtain

∂tψ = −i
h̄

( 1
2m(ih̄∇+ qA)2 + qV

)
ψ (A.4)

=⇒ ∂tψ
∗ = i

h̄

( 1
2m(ih̄∇− qA)2 + qV

)
ψ∗
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Identifying ψ∗ψ as particle number density and taking a time derivative, (A.4) and its

complex conjugate find direct substitution via the product rule:

∂t(ψ∗ψ) = ψ∗
−i
h̄

( 1
2m(ih̄∇+ qA)2 + qV

)
ψ + ψ

i

h̄

( 1
2m(ih̄∇− qA)2 + qV

)
ψ∗

We note that terms of V and A2 cancel and drop out of the expression. We next expand

one cross term from each binomial according to the vector identity

∇(Aψ) = (∇ ·A)ψ + A · (∇ψ) (A.5)

to obtain

∂t(ψ∗ψ) = ih̄

2m

[
ψ∗∇2ψ − ψ∇2ψ∗

]
+ q

m

[
ψ∗A · ∇ψ + ψA · ∇ψ∗ + (∇ ·A)ψ∗ψ

]

Utilizing the vector identities

ψ∗∇2ψ = ∇(ψ∗∇ψ)− (∇ψ∗)(∇ψ) (A.6)

ψ∗A · ∇ψ + ψA · ∇ψ∗ + (∇ ·A)ψ∗ψ = ∇(Aψ∗ψ) (A.7)

We see that

∂t(ψ∗ψ) = ∇ ·
[
ih̄

2m(ψ∗∇ψ − ψ∇ψ∗) + q

m
Aψ∗ψ

]
(A.8)

But we may define the probability current j by the continuity equation,

∂t(ψ∗ψ) ≡ −∇ · j (A.9)
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where j has units of [s]−1[m]−2. Hence

j = h̄

2im(ψ∗∇ψ − ψ∇ψ∗)− q

m
A|ψ|2 (A.10)

Before continuing, we will find it convenient to present an alternate form of this equation.

Noting that

j = h̄

2m [(−iψ∗)(∇ψ) + (iψ)(∇ψ∗)]− q

m
A|ψ|2

= Re
{
−ψ∗ 1

m
(ih̄∇+ qA)ψ

}
(A.11)

If we write the form of ψ as a product of amplitude and phase,

ψ = |ψ|eiθ (A.12)

We may substitute (A.12) into (A.11) to write the probability current as

j = |ψ|2 1
m

(h̄∇θ − qA) (A.13)

A.1.2 Conventional Current in a Superconductor

Conventional current density J is given by

J ≡ qj (A.14)

We may write conventional current in the forms of (A.10) and (A.13), where we will

substitute mcp ≈ 2me for the mass of a Cooper pair with charge qcp = −2e.

J = ieh̄

mcp
(ψ∗∇ψ − ψ∇ψ∗)− 4e2

mcp
A|ψ|2 (A.15)
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J = −2e|ψ|2

mcp
(h̄∇θ + 2eA) (A.16)

A.1.3 Gauge Invariant Phase Differences

We have not yet limited ourselves to a particular gauge choice in deriving our expressions

for probability current or conventional current. Given that J is observable and thus

gauge independent, it is apparent that θ must respond to gauge transformations of A.

Specifically, we are constrained by (A.16) to demand

A′ = A +∇χ ⇐⇒ θ′ = θ − 2e
h̄
χ (A.17)

We wish to define differences of phase which will be gauge invariant. In general however,

the vector field ∇χ need not be constant; performing a gauge transformation accord-

ing to (A.17) leaves the simple definition of phase difference θb − θa gauge dependent.

To amend our definition to this constraint, we will define the gauge invariant phase

difference δ between points a and b according to the equation

δ ≡ θb − θa + 2e
h̄

∫ b

a
A · dl (A.18)

A.2 Josephson Junctions

Josephson Junctions are realized by two superconducting regions separated by a thin

insulator. The insulator is thin enough to allow the tunneling of Cooper pairs across

the junction.
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Va, θa Vb, θb

I d

S, I, S

Figure A.1: Two Depictions of a Josephson Junction

A.2.1 Current-Phase Relation

A common derivation of the Current-Phase Relation may be obtained by the standard

treatment of tunneling across as potential barrier: It involves solving Schrödinger’s

equation in three regions of space and joining the solutions by matching boundary

conditions. We present an alternative derivation which assumes a finite phase difference

across an infinitesimal distance in an otherwise superconducting bulk.

Consider two superconducting regions separated by a thin region of thickness d in the

x direction (figure A.1). With sufficient smallness of d, we may approximate

∇ψ = ∂xψ ≈
ψb − ψa

d

where we have chosen the vector from point a to point b to be the positive x-axis.

For simplicity, let us choose the Coulomb gauge (∇ ·A = 0). Noting the expulsion of

magnetic fields from a superconducting bulk via the Meissner effect, (B = ∇×A = 0),

we may appeal to Helmholtz decomposition to set A = 0 in the presence of weak

magnetic fields. This has the added consequence of setting δ = θb − θa.

Substituting our approximation into (A.15), we see

Jx = ieh̄

mcp

[
ψa
∗ψb − ψa

d
− ψa

ψb
∗ − ψa∗

d

]
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Writing the wave function on either side of the junction as a product of amplitude and

phase (A.12), this evaluates to

Jx = −2eh̄|ψa||ψb|
mcpd

[ei(θb−θa) − e−i(θb−θa)

2i
]

(A.19)

Choosing to define the positive direction of current to be from b to a so as to be consistent

with Ohm’s law – sgn (I) = sgn (Vb − Va) – we write.

J← = 2eh̄|ψa||ψb|
mcpd

sin(δ)

Identifying the coefficient of sin as the critical current density of the junction (by which

an unbiased supercurrent is bounded without regard to phase), we arrive at the Joseph-

son current-phase relation:

I = Ic sin(δ) (A.20)

A.2.2 Voltage-Phase Relation

Appealing to the Meissner effect in a bulk superconductor, the Lorentz force reduces to

F = q[E + (v×B)] = qE (A.21)

By Newton’s second law, we then have

qE = m
∂tj
|ψ|2

(A.22)

where we interpret j as classical particle velocity density j = |ψ|2v. Expanding j ac-

cording to (A.13), we have

E = − h̄

2e
∂

∂t
(∇θ + 2e

h̄
A) (A.23)
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Integrating across the junction yields

∆V = h̄

2e
∂

∂t

[
θb − θa + 2e

h̄

∫ b

a
A · dl

]
(A.24)

Substituting our definition for phase difference (A.18), we conclude

δ̇ = 2e
h̄
V = 2π

Φ0
V (A.25)

A.2.3 Junction Energy

Given the Voltage-phase relation (A.25) and the current-phase relation (A.20), inte-

grating the product of current and Voltage in time will give us the energy stored in the

magnetic field around a Josephson junction as it acts as a non-linear inductor:

HJ =
∫
dt IV = Φ0Ic

2π

∫
dt δ̇ sin δ = −Φ0Ic

2π cos δ = −EJ cos δ (A.26)

A.3 SQUID Loops

Consider two Josephson junctions in parallel.

IL IR

Icir
a

b c

d

I, V

⊙
ΦB

δL = θa − θb + 2e
h̄

∫ a

b
A · dl

δR = θd − θc + 2e
h̄

∫ d

c
A · dl

IL = I

2 + Icir = Ic sin δL

IR = I

2 − Icir = Ic sin δR

Figure A.2: A SQUID Loop
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A.3.1 Flux Quantization

If we allow ourselves to treat the SQUID loop as constructed from a bulk supercon-

ductor by assuming weak magnetic fields, then we may assume that J = 0 in the

superconducting regions of the loop. By (A.16) then, we have

∇θ = −2e
h̄

A (A.27)

for all regions excluding the junctions. We make use of the constraint that a closed path

integral of ∇θ must evaluate to an integer multiple of 2π, and take such a path integral

around the SQUID loop:

∮
C
d~l · (∇θ) = δR − δL −

2e
h̄

∮
C
dl ·A = 2πn (A.28)

By Stokes’ theorem,

∮
C
dl ·A =

∫∫
S
dS · (∇×A) =

∫∫
S
dS ·B = ΦB (A.29)

Thus

δR − δL = 2e
h̄

ΦB + 2πn = 2π(ΦB

Φ0
+ n) (A.30)

When junctions in a superconducting loop do not exist, the left side of the equation is

0, and ΦB is constrained to be an integer multiple of Φ0.

When junctions do exist, we observe that ΦB is permitted to be any value, and that

the left side of the equation is constrained by the application of an external magnetic

flux bias with a period of Φ0. It is for this reason that SQUID loops are capable of

being used as extremely sensitive magnetometers – very small external magnetic fields

directly control the SQUID Hamiltonian:
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A.3.2 SQUID Hamiltonian

For simplicity, let us assume that both junctions in a SQUID loop are identical. The

asymmetric case is treated by Koch et al. [6], but the functional form of the result is

equivalent. If we also allow ourselves to ignore the self-inductance of the SQUID loop,

such that ΦB is equal to an exterior, applied flux bias, then we see from (A.26) that the

Hamiltonian for the SQUID loop is

H = −EJ
[

cos δL + cos δR
]

(A.31)

By the relation between the two phases (A.30), this becomes

H = −EJ
[

cos δL + cos (δL + 2πΦB

Φ0
)
]

(A.32)

= −2EJ cos (πΦB

Φ0
) cos (δL + πΦB

Φ0
) (A.33)

If we assume that ΦB is effectively constant over the timescale of phase evolution (qubit

oscillation), then we may introduce the change of variables

δs ≡ δL + πΦB

Φ0
; δ̇s = δ̇L (A.34)

This change of variables preserves the Voltage-phase relation (A.25). While it changes

the form of the current phase relation (A.20), we have the convenience of being able to

characterize a superconducting qubit without appealing to the current through SQUID

loop for our purposes. With this change of variables, we see that we may write the

Hamiltonian for the SQUID loop as

H = −Es(ΦB) cos (δs) ; Es(ΦB) = 2EJ cos (πΦB

Φ0
) (A.35)
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Where

δ̇s = 2π
Φ0
V
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The Quantum Bit (Qubit)

B.1 General Qubits

B.1.1 Representation (Bloch Sphere)

While we have given a general representation for the pure state of a single qubit (1.1), it

is worth noting that only the relative complex phase between the 0 and 1 states matters

for the dynamics of one qubit. This allows us to rewrite |ψ〉 with only two degrees of

freedom:

|ψ〉 = cos θ2 |0〉+ sin θ2e
iφ |1〉 (B.1)

Where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π describe a point on the surface of a sphere named

after Felix Bloch.
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φ

θ

|0〉

|1〉

Z

Y

X
1√
2
|0〉+ 1√

2
|1〉

1√
2
|0〉+ i 1√

2
|1〉

|ψ〉

Figure B.1: The Bloch Sphere

ψ = ẑ cos θ + ŷ sin θ sinφ+ x̂ sin θ cosφ (B.2)

That the ground state is plotted at the North pole of the sphere seems backwards, but

this is done for the sake of increased visibility of the Bloch vector near the ground state

as opposed to the excited state.

A pure state may also be mapped onto the Bloch sphere by appealing to the density

matrix. For a pure state, the density matrix is simply

ρ̂ = |ψ〉 〈ψ| (B.3)

Substituting (B.1) into the definition for the density matrix, we use the basis |0〉 = ( 1
0 ),

|1〉 = ( 0
1 ) to write

ρ̂ =

 cos2 θ
2 e−iφ cos θ2 sin θ

2

eiφ cos θ2 sin θ
2 sin2 θ

2

 = 1
2

1 + cos θ e−iφ sin θ

eiφ sin θ 1− cos θ

 (B.4)

Referencing the basis formed by the Pauli matrices –

Î =
(

1 0
0 1

)
σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
(B.5)
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we see that the density matrix may be expanded as

ρ̂ = 1
2(Î + σ̂z cos θ + σ̂y sin θ sinφ+ σ̂x sin θ cosφ) (B.6)

Projecting the density matrix onto the space of the Bloch sphere according to

ρ ≡ ρxx̂ + ρyŷ + ρzẑ ; ρ̂ = ρ0Î + ρxσ̂X + ρyσ̂y + ρzσ̂z (B.7)

we see that the vector is parallel to the Bloch sphere representation of |ψ〉 itself:

ρ = 1
2ψ (B.8)

B.1.2 Dynamics (Rotation)

This Bloch sphere representation of operators in the Pauli matrix basis is useful, because

this allows us to map the Hamiltonian onto the Bloch sphere as well.

H ≡ Hxx̂ +Hyŷ +Hzẑ ; Ĥ = Hxσ̂z +Hyσ̂y +Hzσ̂x (B.9)

Appealing to the Liouville – von Neumann equation,

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂] (B.10)

and the commutation relation between the Pauli matrices,

[σa, σb] = 2iεabc σc (B.11)
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we may view the Hamiltonian as an instantaneous rotation axis about which the qubit

state precesses on the Bloch sphere.

ρ̇ = 1
h̄

(H× ρ) =⇒ ψ̇ = 1
h̄

(H×ψ) (B.12)

This is functionally equivalent to Larmor precession.

|0〉

|1〉

|ψ〉

Ĥ

Figure B.2: Qubit Rotation

B.1.3 The Rotating Frame

Without any external fields, the qubit precesses about a Hamiltonian that is intrinsic

to the two-level system (i.e. |1〉 is a higher-energy state than |0〉, and the |1〉 component

of a Bloch state will lose phase relative to the |0〉 component at a rate proportional to

the energy gap). The frequency of this precession is given by

f10 = E1 − E0
2πh̄ ≡ ωq

2π (B.13)
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and the Hamiltonian of the qubit in the absence of external fields may be written

(
−h̄ωq/2 0

0 h̄ωq/2

)
(B.14)

This intrinsic Hamiltonian is always present, although we will see in the next section

that f10 is tunable for some systems. Because all points on the Bloch sphere regress

in phase (precess clockwise) together at a constant rate, it becomes useful to view the

Bloch sphere in a rotating frame, where the effective dynamics of the natural qubit

Hamiltonian are nullified and ψ remains static without an external field.

It is in this rotating frame that we wish to introduce externally-applied terms to the

Hamiltonian which induce rotations about a fixed axis. Because the axis must be

constant in the rotating frame, we must actually apply a Hamiltonian to the qubit

which also regresses in phase on the Bloch sphere at an angular frequency ωq.

Let us motivate the formula for the necessary change of basis: Consider an operator

that rotates a state counter-clockwise around the Bloch sphere by an angle ωqt:

R̂ =
(
e−iωqt/2 0

0 eiωqt/2

)
(B.15)

Consider a state |ψ〉 in the lab frame which evolves by Schrödinger’s equation in accor-

dance with the Hamiltonian Ĥ. In the rotating frame, the description of the same state

|ψ〉rot appears to advance by ωqt counter-clockwise relative to the lab frame description

and to evolve according to the Hamiltonian Ĥrot.

Ĥ |ψ〉 = ih̄∂t(|ψ〉) ; |ψ〉rot = R̂ |ψ〉 ; Ĥrot |ψ〉rot = ih̄∂t(|ψ〉rot) (B.16)
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Joining these equations, we find

Ĥrot |ψ〉rot = ih̄∂t(R̂ |ψ〉)

= ih̄
[ ˙̂
R |ψ〉+ R̂ ˙|ψ〉

]
= ih̄

˙̂
R |ψ〉+ R̂Ĥ |ψ〉

= ih̄
˙̂
RR̂† |ψ〉rot + R̂ĤR̂† |ψ〉rot

=⇒ Ĥrot = ih̄
˙̂
RR̂† + R̂ĤR̂†

(B.17)

Substituting R̂, we conclude that for a general Hamiltonian,

Ĥ =
(
a b

c d

)
=⇒ Ĥrot =

(
a+ h̄ωq/2 b(e−iωqt)
c(eiωqt) d− h̄ωq/2

)
(B.18)

For the case of the intrinsic Hamiltonian of the qubit, Ĥrot is identically 0, as desired.

B.2 Superconducting Qubits (The Transmon)

Although different superconducting qubit constructions are possible – utilizing different

dynamical variables as good quantum numbers – we will focus our discussion on the

transmon, which is a variation of the superconducting charge qubit. Most of our dis-

cussion is readily adapted to other architectures.
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Z X, Y

ΦB

Cd

C

Vd

Figure B.3: A Transmon Qubit

The transmon qubit is constructed from a superconducting quantum interference device

(SQUID) placed in parallel with a capacitor and capacitively coupled to a drive voltage

(the XY line). The energy of the SQUID is tunable by the application of an external

flux, via inductive coupling to the Z line.

We will show that the amount of electric charge contained on the superconducting

island (sometimes called a “Cooper pair box”) demarcated by the dashed line in the

figure above behaves according to the dynamics of an anharmonic LC oscillator and

forms our qubit.

B.2.1 Hamiltonian

As shown in A.3.2, by equation (A.35) the energy of a SQUID loop may be written like

flux-tunable junction energy:

− Es(ΦB) cos δ (B.19)

where Es is the maximum unbiased energy of the SQUID, δ is the effective phase

difference across it, and where we have ignored self-inductance to treat ΦB as a static,

external flux bias applied through inductive coupling to the Z control line.
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The energy of the two capacitors may be written

1
2Cd(Vd − Vs)

2 + 1
2CV

2
s (B.20)

Recalling the Voltage-phase Josephson relation (A.25)

Vs = Φ0
2π δ̇ (B.21)

we identify terms with δ as potential energy and terms with δ̇ as kinetic energy. Ne-

glecting terms with no dependence on δ, we may write the Lagrangian for the system

as

L = CΣ
2

(
Φ0δ̇

2π

)2

− CdVd

(
Φ0δ̇

2π

)
+ Es(ΦB) cos δ (B.22)

The canonical momentum of the system is the charge located on the superconducting

island:
∂L
∂δ̇

= Φ0
2π

2
CΣ δ̇ − Φ0

2πCdVd

= Φ0
2π [CVs + Cd(Vs − Vd)]

= Φ0
2πQ

(B.23)

from which we extract the Voltage relation

Φ0
2π δ̇ = Q+ CdVd

CΣ
(B.24)

Substituting Q into the Lagrangian according to (B.24) and again neglecting constant

terms, we have

L = Q2

2CΣ
+ Es(ΦB) cos δ (B.25)
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We apply the standard Legendre transformation

H = ∂L
∂δ̇
δ̇ − L (B.26)

to obtain

H = Q2

2CΣ
− Es(ΦB) cos δ + Cd

CΣ
QVd (B.27)

This system is a driven anharmonic oscillator.

B.2.2 First Quantization

While qubit anharmonicity is desired to avoid having equal energy separation between

the states of the qubit (and thus possible two-photon transitions to the second excited

state), we will not concern ourselves with the two-level dynamics of the system here. We

thus assume low energy states and Taylor expand in δ to obtain a two-level Hamiltonian:

Ĥ = Q̂2

2CΣ
+ δ̂2

2 Es(ΦB) + Cd
CΣ

Q̂Vd (B.28)

The state of the qubit may be described by a wavefunction in δ-space. In this picture,

we have that

Q̂ ≡ −ih̄2π
Φ0
∂δ = −2ie∂δ ; [δ̂, Q̂] = 2ie (B.29)

We reference Appendix B in the thesis by D. Sank [9] to introduce the ladder operator

â = 1
2
√
e

[(
CΣEs(ΦB)

)1/4
δ̂ + i

(
CΣEs(ΦB)

)−1/4
Q̂

]
(B.30)

We may thus rewrite the Hamiltonian

Ĥ = h̄ω(ΦB)
(
â†â+ 1

2

)
− ig(ΦB)

(
â− â†

)
Vd (B.31)
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where

ω(ΦB) = 2π
Φ0

√
Es(ΦB)
CΣ

; g(ΦB) ≡
Cd
√
e
(
Es(ΦB)

)(1/4)

(CΣ)(3/4) (B.32)

We note as an aside that g has units of charge. Referencing (A.35), we note that

the dependence of g on ΦB looks like cos( 1
4 ) and is approximately constant away from

ΦB/Φ0 = ±1
2 . For small flux bias, we conclude that the effect on X and Y rotations

during a Z rotation will be small.

As an additional note, the tuning of the anharmonicity and relative width of the δ and

Q-space waveforms is addressed by Koch et al, [6] using the ratios of the variables we

have presented. This work introduced the transmon qubit.

Having successfully written the Hamiltonian in terms of ladder operators, we may thus

express the Hamiltonian in matrix form in the computational basis of energy eigenstates

according to

|0〉 =
(

1
0

)
|1〉 =

(
0
1

)
â =

(
0 1
0 0

)
â† =

(
0 0
1 0

)
(B.33)

Subtracting out the identity component from the Hamiltonian, we are left with

Ĥ =
(
−h̄ω/2 −igVd
igVd h̄ω/2

)
(B.34)

B.2.3 Qubit Driving

That the qubit frequency is tunable by ΦB leads to the possibility of rotations about

the Z-axis in a straight-forward way – temporarily increasing or decreasing the qubit

frequency relative to some standard ωq will cause a net loss or gain of phase of the state

|ψ〉 as observed in the ωq frame. We will thus focus on X and Y rotations in the rotating

frame of frequency ω(ΦB), whatever it may be.
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In this frame, the transmon Hamiltonian (B.34) is transformed according to (B.18) to

become

Ĥrot =
(

0 gVde
−iωt

gVde
iωt 0

)
(B.35)

Decomposing the Hamiltonian according to (B.9), we have

Ĥrot = gVd
(
− sin (ωt)σ̂x + cos (ωt)σ̂y

)
(B.36)

Let us express an arbitrary drive voltage in the form

Vd = Y (t) cos (ωt)−X(t) sin (ωt) (B.37)

we expand

Ĥrot = g

2


σ̂x

[
X(t)

(
1− cos (2ωt)

)
− Y (t)

(
sin (2ωt)

)]
+σ̂y

[
Y (t)

(
1 + cos (2ωt)

)
−X(t)

(
sin (2ωt)

)]
 (B.38)

The high-frequency terms introduce oscillating signals to the control of the instantaneous

axis of rotation in a way that maps perfectly to our discussion of sidebands in Chapter

2. We see that (B.38) maps perfectly to equations (2.39) and (2.40) when s = 1 and

ξ + η = π.

We approximate the error we anticipate due to sidebands in Section 3.2, with the corre-

sponding error mapped in Fig 3.3. For qubit frequencies greater than 5 GHz and gate

times greater than 10 ns, we anticipate errors on the order of 10−8, and are justified in

neglecting these high-frequency terms.
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As such, we are left with a Bloch sphere projection of the Hamiltonian (B.9) in the

rotating frame given by

Hrot ≈
g

2

(
X(t)x̂+ Y (t)ŷ

)
(B.39)

and we are able to match drive Voltages of the form (B.37) to instantaneous rotation

axes on the Bloch sphere in the rotating frame of the qubit.
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