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ABSTRACT

MICROWAVE RESET–

A NEW METHOD FOR RESETTING A MULTIWELL JOSEPHSON PHASE QUBIT

Isaac Storch

Department of Physics

Bachelor of Science

A new method for resetting a multiwell Josephson phase qubit using chirped

microwaves is proposed and tested on a two well potential. It is postulated

that the drive frequency should be a decreasing, linear function of time, based

on simulations of a classical particle in a cubic potential well and qualitative

observations of the “phase locking” phenomenon. An experiment is conducted

to test the effect of a linear chirp on a qubit with the standard cubic potential.

The chirp is generated using a Voltage Controlled Oscillator (VCO) and a

Digital to Analog Converter (DAC). The output of the VCO can be measured

by mixing it with a constant frequency signal and viewing the result on an

oscilloscope.

The four parameters that characterize the linear chirp are the start fre-

quency, end frequency, power, and duration. Data is presented showing the

effect these parameters have on the probability that the particle will escape



from its initial well, and a calibration procedure is outlined. It is found that

the end frequency does not affect escape probability as long as it is sufficiently

low, and the start frequency serves as a switch that, when it is near the res-

onant frequency, causes the particle to escape. The power and duration are

related by a phase locking threshold. Finally, the frequency selectivity of the

chirp is found to be 100-500 MHz, and based on this information, we predict

that we can reset a qubit with inductance as high as 5570 pH, corresponding

to 11 wells.
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Chapter 1

Introduction

1.1 Background

Put simply, a quantum computer works by evolving an initial quantum state

in time and then measuring the final state. Thus, no useful measurements can be

made unless the quantum computer can be reliably reset into a known initial state;

a requirement referred to as the second Divincenzo criterion. This paper explores a

new reset method for a Josephson phase qubit with high inductance.

The Josephson phase qubit can be modeled by the circuit elements in Fig. 1.1.

Physically, the Josephson junction (the ’X’ symbol) consists of two superconducting

wires separated by an insulator thin enough to allow electrons to tunnel across it.

The voltage and current across the Josephson junction are given by

VJ = φ0δ̇ IJ = I0 sin δ (1.1)

where δ is the phase difference between the electron wavefunctions on either side of

the thin insulator, I0 is the critical current (current above which the junction starts

behaving like a resistor), and φ0 = h̄/2e is a flux quantum. Using the junction rule

1



1.1 Background 2

Figure 1.1 Josephson phase qubit circuit elements. The current source
represents both the DC bias current and AC microwaves. The resistor is not
part of the physical circuit; it is added to simulate energy decay

from basic circuit theory and setting the total current equal to an external drive gives

CV̇J +
VJ

R
+ IJ +

∫ VJ

L
dt = Idrive (1.2)

Finally, substituting in the Josephson relations and multiplying (1.2) by φ0 to get

units of energy, one finds the classical Hamiltonian

Cφ2
0δ̈ +

1

R
φ2

0δ̇ +
∂

∂δ
(−φ0I0 cos δ − φ0Ibias +

1

2L
φ2

0δ
2) = φ0Idrive (1.3)

The Ibias term, which came from an integration constant associated with the inductor

element, can be thought of as a DC bias current. It is controlled by the magnetic flux

from a coupled inductor and is thus proportional to the “flux bias”, which is a term

that will be used throughout the rest of this paper.

The expression in parenthesis is the potential energy of the system: a cosine plus a

parabola. This potential provides a number of requirements for quantum computing,

such as nonlinearity and a method for measurement. However, these details will not

be discussed in this paper (see1 for more information). Note that Ibias controls the

location of the parabola’s minimum and L is proportional to the “breadth” of the

parabola. Thus, the higher the inductance, the more potential wells form (Fig. 1.2).



1.1 Background 3

Figure 1.2 Potential for low and high inductance. The critical current is 2
µA. Note: the well height is not to scale between the two plots.

The reason we care about inductance in the first place is because it is directly

related to flux noise. From electromagnetism

In = Φn/L

where Φn is flux noise, and In is noise that appears in the Ibias term of the Hamiltonian

given by (1.3). This type of noise vibrates the parabola, causing the |0 >→ |1 >

transition frequency to jitter, which makes the phase of the qubit state start to

wander unpredictably. Again, details will not be given here, but the important thing

to understand is that flux noise is related to the decoherence time T2. Furthermore,

flux noise is known to be independent of device parameters, such as inductance.2

Thus, the higher the qubit inductance, the lower the effect that flux noise has on the

qubit. However, increasing the inductance will make the qubit harder to reset.

Resetting a small L potential is fairly straightforward. One can usually find a

flux bias value that will allow only one potential well. Shifting the flux bias to that

value, allowing the qubit to decay to the bottom, and moving the flux bias back to
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Figure 1.3 Illustration of tilting reset. The parabola is tilted left and right
repeatedly, creating and emptying wells, but the target well is the only one
that remains stable.

the operating point will provide 100% reset probability. However, a large L potential

has many wells for all flux biases. Suppose we wanted to reset to the bottom well.

We would first need to tilt the parabola far enough to the right to empty out all of

the wells on the left, but then we would have created more wells on the right for the

particle to be trapped in. The parabola would then need to be tilted all the way

over to the left, and so forth. The target well is the only well that remains stable

during this tilting procedure (Fig. 1.3), and with each tilt there is a relatively low

probability the particle would get trapped in the target well, so it must be repeated.

For a potential with 10 wells, 50 tilts would be required.3

At 10s of µs per tilt, the tilting method is not particularly efficient, but this paper

explores a new method using microwaves that could make the reset for a multiwell

potential significantly faster. Each well has its own resonant frequency, and a mi-

crowave signal could be used to drive all but the target well on resonance. Starting

at the highest well, the particle could be driven out of each well in turn until finally

relaxing into the bottom well. This method would be faster because no new wells are

created, and each microwave signal would be about 10-300 ns in length. However,
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Figure 1.4 Illustration of microwave reset. The bottom well has a higher
resonant frequency than all of the other wells, so the microwaves can be tuned
to not excite the particle if it lies at the bottom.

the key to making this work is frequency selectivity. In general, deeper wells have

higher resonant frequencies, and the bottom well is always the deepest. Therefore,

the microwaves must be tuned to not excite frequencies above a certain value (Fig.

1.4).

1.2 Motivation for a Linear Chirp

A single well in Fig. 1.4 can be approximated by a cubic potential. For mathe-

matical simplicity, we chose to simulate a potential of the form

U(δ) = δ2/2− δ3/3

which implies ωp = 1. The equation of motion was

δ̈ + δ − δ2 = A sinφ(t)
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Figure 1.5 Simulated response to a constant frequency drive. Initially phase
locked, but nonlinearity causes dephasing as the amplitude increases.

where the drive amplitude A = 0.005, which was chosen to be small compared to the

barrier height ∆U = 1/6 (experimentally we only care about the dynamics of low

amplitude drives), and φ(t) =
∫
ω(t)dt is the drive phase.

Figure 1.5 shows the response of the system to a constant drive frequency. The

initial period where the phase difference is zero and the energy increases is known

as “phase locking.” Note that the initial increase in energy is quadratic in time,

like that of the harmonic oscillator. However, as the particle’s energy increases, the

nonlinearity of the potential starts to take over and its oscillation frequency decreases,

causing the drive to no longer be phase locked. Eventually, the drive is π out of phase

and the particle is driven (harmonically) back to the bottom of the well, starting

the process over again. If the drive frequency could match the particle’s oscillation

frequency for all time, the particle would eventually escape out of the well.
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Figure 1.6 Nonlinear resonant frequency versus energy. Points on this curve
are found by simulating the particle at some energy with no drive or decay,
then finding the average frequency over several oscillations.

We can estimate what the frequency of the particle would be if it were driven on

resonance for all time. By simulating the particle’s oscillations at given energies with

no drive and finding the average period, we can map out ω(E) (Fig. 1.6). Then,

by assuming the energy increases quadratically with time, like that of the harmonic

oscillator on resonance,

E =
A2t2

8m

we find ω(t) (Fig. 1.7). To take advantage of phase locking, we clearly want our

drive frequency to decrease with time and in general follow some approximation of

this curve. We refer to a drive frequency that changes with time as a “chirp”.

Starting with the lowest order approximation, we simulated the system’s response

to a linear chirp (Fig. 1.8). Note that it succeeds in driving the particle out of

the well where the constant drive frequency had failed. The chirp shown in Fig.

1.8 was optimized by MATLAB’s fminsearch to drive the particle out of the well
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Figure 1.7 Ideal drive frequency function of time. If the drive frequency
followed this ω(t), it would remain phase locked with the particle for all time
and excite it resonantly.

in the shortest time. The particle remains phase locked longer than it does in Fig.

1.5 (a nonlinear phenomenon known as “autoresonance”), and even after losing phase

locking, the energy oscillates and gradually increases until the particle escapes. These

simulations motivate our experiment to see if linear chirps would be able to reset a

Josephson phase qubit.
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Figure 1.8 Simulated response to a linear chirp. Initially, E ∝ t2 like a
harmonic oscillator, then it stops increasing because the drive loses phase
locking. Note how the oscillation frequency follows the drive frequency even
after losing phase locking, and the energy oscillates, but continues to increase.



Chapter 2

The Experiment

2.1 Setup

Consider the linear chirp in Fig. 1.8: it sweeps through 30% of its starting

frequency in 80 oscillations. The duration of this chirp for a potential well with

resonant frequency 8 GHz would be 10 ns. Thus, we needed to produce a microwave

signal that sweeps through several GHz in 10 ns, which could not be done with any

commercial generators we know of. The solution was to use a voltage controlled

oscillator (VCO), which outputs a signal with a frequency proportional to an input

voltage. The experimental setup is shown in Fig. 2.1.

We chose to use the Hittite HMC586LC4B VCO, which is specified for 4 - 8 GHz

but was measured to have a range of 3.91 - 8.45 GHz. These frequencies correspond

Figure 2.1 Experimental setup. Key components are a DAC board,4 a
custom amplifier, a custom VCO board, and an HP 11720A Pulse Modulator
to gate the signal.

10



2.2 Measuring the Output of the VCO 11

to a tuning voltage of 0 - 18 V, however, the digital to analog converter (DAC)4 used

to generate the voltage ramp can only output a voltage from 0 - 0.5 V. To get to the

desired voltage range, an amplifier was designed using two high speed, high output

voltage op-amps (Texus Instruments THS3001). The VCO itself came just as a chip,

so a board was designed to house it, using proper microwave impedance matching

techniques.

Using this setup, the deepest well that the particle could be successfully driven out

of (80% probability) had a resonant frequency of 8.85 GHz. However, the resonant

frequencies of the wells adjacent to the bottom well in a high inductance qubit can be

as high as 12.5 GHz. Thus, an additional VCO with a range that extends to higher

frequencies will most likely be needed in order for the microwave reset to work on a

high inductance qubit.

2.2 Measuring the Output of the VCO

How to measure the rapidly changing output of a VCO is not immediately obvious,

so we will outline the process here. We use a mixer to multiply the VCO output by a

constant frequency sine wave from a signal generator and display the resulting signal

on an oscilloscope (Figs. 2.2 and 2.3). The mixer output consists of the sum and

difference of the two frequencies, and the oscilloscope filters out the sum component.

Thus, the waveform will appear flat or slowly varying when the difference between

the two frequencies is zero, oscillate faster when it is greater than zero, and finally

get filtered out completely when it is much greater than zero. One can map out the

frequency of the output versus time by manually incrementing the frequency of the

signal generator and recording the time at which the two frequencies are equal. This

was done for the data in Fig. 2.4, which shows the VCO’s response to a step function.
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Figure 2.2 Setup to measure VCO.

We see about a 5 ns time constant for a changing output frequency, so the frequencies

will follow our programmed values for the 10-300 ns chirps used in our experiment.

2.3 Procedure

The procedure for this experiment is fairly straightforward. We used a low in-

ductance qubit with a two well potential and designated an initial well and a target

well. The particle was then prepared in the initial well using the simple tilting reset

described in §1.1, which has 100% probability of placing the particle in the desired

well (again, only for sufficiently low inductance). Various linear chirps were applied,

and the probability of the particle escaping from the initial well was measured.
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Figure 2.3 Oscilloscope waveform used to sample points for a frequency
versus time plot of the VCO output.

Figure 2.4 VCO step function response. Time constant is 5 to 10 ns.



Chapter 3

Data and Analysis

3.1 Chirp Parameters

The four parameters that characterize a linear chirp are start frequency, end

frequency, power, and duration. The easiest way to understand how all of these

influence the reset is to fix two of them and plot the other two as axes on a 2D color

plot, where the escape probability is the color axis.

Figure 3.1 shows the data for fixing power and duration, while varying start fre-

quency and end frequency. Several conclusions can be drawn from this plot. First,

we succeeded at driving the particle out of the well using linear chirps, and second,

downward chirps are more effective than upward chirps. The most effective chirps are

those that start near the resonant frequency of the well, and also the end frequency

has little effect so long as it is sufficiently low.

Now that we understand the start and end frequencies, we can fix them and vary

the other two parameters. Figure 3.2 shows data for setting the start frequency near

the resonant frequency and setting the end frequency low, while varying duration and

power. Note that a threshold exists between parameter values that give high and low

14



3.1 Chirp Parameters 15

Figure 3.1 Escape probability versus start and end frequency. Attenuation
= 7 dB, resonant frequency = 7.66 GHz, and duration = 100 ns. Lines mark
the resonant frequency ωp/2π of the cubic well.

escape probabilities. In other words, for a given duration, the chirp works at high

power, but eventually stops working when the power is decreased below a certain

level.

It is more enlightening to view these data on a log-log plot of drive amplitude

versus chirp rate, with points marking 50% probability. Figure 3.3 shows the data

plotted with simulations of the potential at different flux biases. The points tend to lie

on straight lines, suggesting a power law. The positive slope makes sense intuitively:

the higher the chirp rate, the more power is needed to cause autoresonance because

the drive frequency is moving too quickly to “pick up” the particle. The form of this

power law was found by Naaman et. al. to be Athreshold ∝ α0.75 for a Josephson

junction system,5 where α = dω/dt is the chirp rate. However, a fit to the data in

Fig. 3.3 suggests the scaling is α0.335, and our explanation for the discrepancy is that
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Figure 3.2 Escape probability versus power and duration. Start frequency
= 6.86 GHz, resonant frequency = 6.34 GHz, and end frequency = 5.39 GHz.
Note the phase locking threshold.

our potential is different and highly nonlinear. The simulations also show that this

number changes with well depth, and can be tweaked enough to get 0.738. However,

the most relevant information for this experiment is that a phase locking threshold

exists and roughly follows a power law.

Based on this analysis, the procedure for tuning up a chirp would be something

like the following. Set the end frequency as low as possible and guess where the start

frequency should be, based on simulations; it should be low enough to not excite the

bottom well, which has the highest resonant frequency. Choose the duration, keeping

in mind that with everything else held constant, long chirps are more effective at

exciting the particle than short chirps. Start at high power and see how well the reset

works. If the reset probability is low, then tweak the start frequency up (in case it

was not high enough to excite the wells near the bottom) and down (in case it was so
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Figure 3.3 Drive amplitude versus chirp rate for data and simulations. The
points mark the phase locking threshold, above which the particle escapes.

high that the bottom well was being excited), or choose a longer duration. If the reset

probability is high, then decrease the power until it is just above the aforementioned

amplitude-rate threshold.

The author feels that because a chirp calibrated to empty the deep wells should

automatically empty the shallow wells, only one calibration is necessary. However, he

suggests further investigation be done to see if a series of custom-tuned chirps for each

well would be more effective than repeating the same chirp. Also, further research

should be done to determine whether multiple short chirps are more effective than

a single long chirp, and how the escape probability depends on the delay between

chirps.
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Figure 3.4 Escape probability versus start frequency and power. Resonant
frequency for top plot = 6.33 GHz and resonant frequency for bottom plot
= 7.52 GHz. Line cuts show frequency selectivity is 100-500 MHz.

3.2 Reset Efficacy

Of the four parameters discussed, the start frequency is most like the “switch” that

determines whether the particle escapes from a particular well, based on how close it is

to the resonant frequency. Consider Fig. 3.4, which shows how the escape probability

varies with start frequency and power. Note that when the start frequency is too

low, the escape probability is exactly 0% (not reset), and when the start frequency

is close to the resonant frequency, it is greater than 90% (reset), but decreases with

power. For the deeper well, “not reset” is still 0% and “reset” has lowered to about

80%. This implies that a deeper well is harder to reset, which makes sense.

A key issue to consider when projecting how this reset method will work on a

multiwell potential is frequency selectivity; we need to know how far below the bottom
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well’s resonant frequency we can start the chirp and not excite the particle out of the

bottom well. In other words, we must find the change in frequency from “reset” to

“not reset”. From the line plots in Fig. 3.4 we can see that the frequency selectivity

is about 100 MHz, but can be as high as 500 MHz because of small peaks that form,

which we do not understand. However, these peaks vanish at low power, so we can

conclude that the frequency selectivity improves at low power.

In addition, Fig. 3.5 shows how the frequency selectivity changes with the resonant

frequency of the well (i.e. well depth). There appears to be no correlation between

the two; the frequency selectivity is still somewhere between 100 MHz and 500 MHz.

However, note that the reset edge pulls in closer to the resonant frequency as the well

gets deeper. Considering that the frequency of the bottom well is usually as high as

12-13 GHz, this implies that frequency selectivity alone determines how close we can

set the start frequency to the resonant frequency of the bottom well without exciting

it.

Now that we know the frequency selectivity, we can predict the highest inductance

qubit that we can reset with this method. The standard two well potential has L =

720 pH. A potential with L = 2440 pH has 5 wells and ∆f , the difference between

the frequencies of the two lowest wells, is 500 MHz; a potential with L = 3910 pH

has 9 wells and ∆f = 200 MHz, and a potential with L = 5570 pH has 11 wells and

∆f = 100 MHz. Because the dephasing time T2 scales as
√
L, being able to use the

11 well potential would increase T2 by a factor of 2.78.
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Figure 3.5 Escape probability versus start frequency and resonant fre-
quency. Attenuation = 10 dB and duration = 100 ns.



Chapter 4

Conclusion

We have successfully demonstrated that linearly chirped microwaves can be used to

reset a Josephson phase qubit. In addition, we understand how to optimize the chirp

parameters to give a high escape probability with low power. This involves setting

the start frequency near the resonant frequency, setting the end frequency as low as

possible, and choosing power and duration near the phase locking threshold. We have

determined the frequency selectivity of this method to be as low as 100 MHz, and

predict that we can reset a qubit with L = 5570 pH. A qubit with this inductance

would increase T2 by a factor of 2.78.

Further research should be conducted in the following areas. Quadratic and

parabolic chirps should be investigated because our simulations show that they might

be more frequency selective than linear chirps (see Appendix B). A comparison should

be made between using multiple short chirps and using one long chirp, and the depen-

dence of the escape probability on the delay time between chirps should be analyzed.

The phase locking threshold determined by the chirp’s power and duration should be

investigated more carefully, and a theory should be developed for the autoresonance

of our specific system. Also, if a microwave reset is to work for a multiwell qubit, it

21
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is likely that a VCO that reaches frequencies as high as 12.5 GHz will be needed. A

method of stitching two chirps in different frequency ranges together might also need

to be developed. Finally, the microwave reset must be applied to a multiwell qubit

and compared with a tilting reset to see if it is indeed more efficient.
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Appendix A

Electronics

This appendix contains schematics and photos of the custom designed amplifier and

VCO boards.
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Figure A.1 VCO board schematic.
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Figure A.2 VCO amplifier schematic.
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Figure A.3 Photo of the two custom boards.



Appendix B

Quadratic Chirp Simulations

This appendix contains a brief investigation into chirps other than linear functions

of time. Figures B.1 and B.2 show the results of simulations on the cubic potential

from §1.2 of a linear chirp, a quadratic chirp (defined by ω(t) = c0 + c1t+ c2t
2), and

a parabolic chirp (defined by ω(t) = c0 + c1t
2). Each of these chirps were optimized

by fminsearch to make the particle escape in the shortest time: 77, 56, and 119

oscillations for the linear, quadratic, and parabolic chirps respectively (the ideal ω(t)

given in Fig. 1.7 is 37 oscillations long). The change in frequency from E = 0.1 to

E = 1 is 0.0208 for the linear chirp, 0.0328 for the quadratic chirp, and 0.0056 for the

parabolic chirp. If the real potential well has a resonant frequency of 8 GHz, then

this simulation implies that a linear chirp should have a frequency selectivity of 166

MHz. This is within the range found in §3.2, which suggests these simulations are

reasonable.

Note that the quadratic chirp actually worsens frequency selectivity (increases

∆f) by a factor of 1.58, while the parabolic chirp improves it (decreases ∆f) by a

factor of 3.71. This is surprising because the quadratic is a better approximation of

the ideal ω(t) curve. Also note that the parabolic chirp takes the longest amount of

28
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Figure B.1 Plot of various drive frequency functions. All drive frequency
parameters were found with MATLAB’s fminsearch.

time to cause the particle to escape. However, the frequency selectivity in Fig. B.2 is

based on the maximum energy the particle obtains throughout the chirp, which may

not directly correspond to the quantum mechanical probability of tunneling in the

actual experiment. Also, fminsearch can only be used to find local minima, and it is

quite possible that more optimal parameters for these chirps exist.
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Figure B.2 Frequency selectivity of various types of chirps. The change in
frequency from E = 0.1 to E = 1 is 0.0208 for the linear chirp, 0.0328 for
the quadratic chirp, and 0.0056 for the parabolic chirp.
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