Appendix C
By Isaac Storch
7/17/09

This document is a write-up of the data | tookiigithe summer after my
graduation, and is intended to be an appendix tgenyor thesis, “Microwave Reset.”
While there are still many problems left to solvhppe these findings, along with my
thesis, will provide a starting point for whoeventinues work on the Microwave Reset.

The following data sets were taken on the samentelbpotential described in
the body of the thesis. Based on the squid stegaddle point occurs at a 540 mV flux
bias, and the two wells are symmetric at a 900 fa¥ lbias, so when | refer to the
“operating bias” later, one has some idea of hoepdée well is. Also, only three of the
variables “start frequency”, “end frequency”, “dtioa”, and “rate” are independent, and
when taking these data sets, “duration” was derfv@u the other three during the
experiment. When most of the thesis data sets ta&es, “rate” had been the derived
variable.

We start by exploring the amplitude-rate phaseitagbhenomenon of Section
3.1 in more detail. Figure C.1 shows the phasemgcthreshold for three different
operating biases on a log scale. Note that onlybaet of the data follows the linear
relationship predicted by autoresonance theory.slbges average to 0.53 (including the
fits on Fig. C.2). This number is closer to thediceed value of 0.75 than the thesis data,
which gave 0.34. The slopes for different operabiages vary by about 8%,
dramatically less than the simulated threshold<idgn 3.3. However, the linear regions on
these plots correspond to chirp durations betw@@mns and 5 ns, while the thesis data
sampled points with durations as long as 3000 fs0,Ahe thesis data points were taken
with even spacing in “duration” and not the lod'@fte”, so the fitted theory curve had
been weighted by the large number of points taketofv chirp rates. As we can see
from Figs. C.1 and C.2, at low chirp rates theshotd no longer follows a linear curve.
Thus a linear model was not a good representafitimedhesis data (see Fig. 3.3).
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Figure C.1: Amplitude versus rate for various vagpths (log scale). Start frequency =
7.315 GHz, end frequency = 3.91 GHz, and the regdnequencies from left to right are
7.343 GHz, 6.672 GHz, 6.202 GHz. The y-intercepimfleft to right are 3.5 nA, 3.1

nA, and 2.8 nA. The chirp durations that correspianithe limits on the chirp rate axis

are calculated to be 201 ns and 1 ns. Note: sortfeeafata taken at high chirp rates (the
columns) is redundant because the DAC board canooeate a chirp that is an integral
number of nanoseconds in length, i.e. chirp rdtaswould give 0.8 and 1.2 ns chirps are
experimentally the same as a 1 ns chirp.

In the thesis | suggested that the end frequeanyatways be eliminated as a
variable by setting it as low as possible. Howettgs statement should be qualified.
Figure C.3 shows end frequency versus start freqyuplots for two different durations,
the same kind of plot that provided the basis ofargument for keeping end frequency
low (compare with Fig. 3.1). There are diagonatdimf lower escape probability that cut
across these plots, which seems to imply thathisrgarticular set of parameters, it is
actually better to not set the end frequency ttoitgest value. By observation, these lines
correspond to specific chirp rates, which lie betw8.01 GHz/ns and 0.045 GHz/ns.
One can see that these rates cover a region afdoape probability on the amplitude-
rate plots in Fig. C.2 (the drive amplitude is 184). However, note that from Fig. C.2
increasing the end frequency has little effecttmamplitude-rate behavior (lowering the
start frequency does have an effect though). Tén frequency should be kept low for a
given rate, not a given duration. If the resetisup so that changing the end frequency
also changes the rate, then the escape probabiligrder to predict.
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Figure C.2: Amplitude versus rate for various séard end frequencies (log-log scale).

Operating bias = 750 mV, resonant frequency = 7®Hz. The start and end
frequencies are given above each plot.
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Figure C.3: End frequency versus start frequencywo different durations. The
operating bias is 750 mV, and the attenuation idB@19.4 nA at the qubit).

In Section 3.2 | studied frequency selectivityfiogt making a 2D plot of start
frequency versus attenuation, and then takingduts at various attenuations (Fig. 3.4).
However, this process is overly complicated foed®ining frequency selectivity
because a chirp with a given rate already hastanuation that makes sense (one that
puts it just above the phase locking thresholdyseweeping attenuation we are looking
at a lot of chirps that will not likely be used.rrexample, the start frequency versus
attenuation plot shown in Fig. C.4 is like Fig.,34cept the rate is held constant instead
of the duration. Looking up the rate on Fig. C.D2Y2 GHz/ns), one can choose an
appropriate amplitude, which is marked by a smatle (24.4 nA or 8 dB attenuation).
Considering again Fig. C.4, a line cut taken aB8wbuld look like a nice step function
that demonstrates the frequency selectivity (ciifiee in frequency between “not reset”
and “reset”). Higher attenuations give lower esgaqdabilities, and at lower
attenuations the frequency selectivity is negayiediected by small resonance peaks due
to some unknown phenomenon. Thus, a simpler wéyotoat frequency selectivity is to
choose both the amplitude and the rate based & lj{e those in Fig. C.1, then make a
1D plot of escape probability versus start freqyenc
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Figure C.4: Start frequency versus attenuation thighchirp rate fixed for all points. The
operating bias is 750 mV (a line is drawn at tteonant frequency).

We will now use the aforementioned method for carmg the frequency
selectivity of linear and quadratic chirps, and‘¢yadratic chirp” | mean a chirp with

frequencyu(t) = w, — ct®. Figure C.5 shows the phase locking thresholdéifear and

quadratic chirps at two different operating biaslks;top two plots are quadratic chirps
and the bottom two plots are linear chirps (not the linear chirp plots are on a log
scale). Three points were picked for frequencycsiliéy plots, which are shown in Fig.
C.6. The blue, cyan, and green traces on Fig. @respond to the blue, cyan, and green
circled points on Fig. C.5. Depending on what pholitées one chooses to define as
“reset” and “not reset”, Fig. C.6 suggests theddtis difference in frequency selectivity
between using linear or quadratic chirps. Howewiat is interesting about the quadratic
chirps is that the escape probability drops at Bigint frequencies. This makes sense
because the quadratic chirp is a second order gippaiion to the ideab(t) shown in

Fig. 1.7, and is thus more “fine tuned” to a paiée start frequency. Hence, in a
multiwell potential, a quadratic chirp would be fuddor calibrating a separate chirp for
each well, but a linear chirp would make more seéhgee were going to design a single
chirp for multiple wells.

It is also important to know if quadratic chirpe daster and/or require less power
than linear chirps. Table C.1 shows the amplituttk@duration for each of the circled
chirps in Fig. C.5. One can see from this table finathe 750 mV operating bias, when
guadratic and linear chirps have similar duratidhs,quadratic chirp has about a third
less amplitude than the linear chirp, and when tiexe similar amplitudes, the quadratic
chirp has about half the duration. However, for808 mV operating bias (a deeper well)
the quadratic and linear chirps have about the san@itude and duration.



Admittedly, this would be a better analysis if dhaicked exactly the same
amplitude or duration for all four of the blue/cygreen points when | took the data. In
any case, it might also be worthwhile to investgather types of chirps, such as higher
order polynomials or functions of time with nonager powers.
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Figure C.5: Amplitude versus curvature and rateviar different operating biases. The
top two plots are quadratic chirps and the bottemplots are linear chirps. Top left:
durations corresponding to limits of curvature axit14 ns to 6 ns; start frequency =
6.861 GHz. Top right: durations corresponding maits of curvature axis =122 nsto 6
ns; start frequency = 7.315 GHz. Bottom left: diarag corresponding to limits of rate
axis and limits of the linear region: 201 ns, 504s8s, 1 ns. For bottom right: 201 ns, 82
ns, 7 ns, 1 ns. Both bottom plots have start freque 7.315 GHz.
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Figure C.6: These 1D sweeps correspond to theeamblarcles in Fig. C.5.

750 mV, quad, blue 750 mV, quad, cyan 750 mV, qgaekn
15.4nA | 9 ns 10.9 nA | 16 ns 7.7nA | 29 ns
750, 800 mV, linear, blue 750, 800 mV, linear, cyan750, 800 mV, linear, green
19.4nA | 11ns 15.4 nA | 18 ns 10.9 nA 30 ns
800 mV, quad, blue 800 mV, quad, cyan 800 mV, qgeekn
19.4nA | 10 ns 13.7 nA | 17 ns 9.7nA| 32ns

Table C.1: Derived amplitudes and durations foritReelected chirps in Figs. C.5 and
C.6.

We have deduced that quadratic chirps are mogtsento the start frequency
than linear chirps, but what about chirps that Haoth linear and quadratic components?

(i.e. chirps of the formu(t) = w, — ¢t —c,t?) Figure C.7 shows color plots sweeping the

linear and quadratic components with the attenoastart and end frequencies fixed.
The x-axis is purely linear chirps, while the ysig purely quadratic chirps. The right
plot has a start frequency that is higher than @l ideal for a purely quadratic chirp.
As we saw in Fig. C.6, the particle escapes forefequadratic chirps when the start
frequency is increased, but the linear chirps omtito be able to make the particle
escape. The transition between the plots in Fig.t€lls us that any positive quadratic
component will make a linear chirp more sensitvéhe start frequency.
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Figure C.7: Escape probability for combinationgjo&dratic and linear chirp

components. Attenuation = 10 dB (19.4 nA), enddmwy = 3.91 GHz, operating bias =
750 mV.



