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Abstract. By manipulating the discrete optical levels inside an optical

resonator, we obtain a classical realization of a twisted Landau ± Zener model.

We experimentally demonstrate the geometric amplitude factor in the transition

amplitude that arises for this model. We consider in particular the region of

parameter space addressed in the original study of the geometric amplitude

factor by M. V. Berry [7].

1. Introduction

In previous papers we have demonstrated that the quantum-mechanical

description of a coupled two-level system also applies to macroscopic optical

two-level systems [1 ± 6]. The discrete levels correspond to resonance conditions,

the optical ® eld inside the resonator can be mapped onto the quantum-mechanical

wave function, and the evolution of the optical ® eld is approximately governed by

a SchroÈ dinger equation. The macroscopic nature of the optical two-level system

provides some advantages over quantum-mechanical two-level systems. First, a

precise control of the various parameters is possible. Second, a continuous

measurement can be performed on the classical optical ® eld without in¯ uencing

its dynamics, whereas in the quantum case a measurement yields a collapse of the

wavefunction. These advantages enable an experimental study of topics in quantum

physics that have received almost exclusively theoretical attention.

One of these topics deals with the geometric amplitude factor in quantum

transitions, as predicted by Berry in 1990 [7] and further elaborated upon by

Nakamura and Rice [8, 9]. Similar theoretical predictions were independently

made by Joye, Mileti, P® ster and Kunz [10, 11]. Up to now only one experiment

has been reported, performed on a nuclear spin ± 1
2 system, which demonstrates

some features of the geometric amplitude factor [12].

The geometric amplitude factor is a direct consequence of the geometric phases

that arise due to the curvature of the path followed in parameter space [13, 14].

Whereas the geometric phase is usually considered for a closed path in parameter

space, the geometric amplitude factor arises for avoided-crossing models for which
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the corresponding path is open. The reason why the geometric phase is only

unambiguously de® ned for a closed path is that only a phase diŒerence is physically

relevant. The geometric phase is then de® ned as the diŒerence between the initial

phase of the system and the ® nal phase after the control parameters of the system

have returned to their initial values and after substracting the dynamical phase.

At ® rst sight it seems, therefore, impossible that a phase of geometric origin gives

rise to an observable eŒect for an open path. However, one should realize that if

the open path represents an avoided-crossing model it leads to transition dynamics

that depend on the relative diŒerences between the two adiabatic eigenstates. Since

curvature in the path followed in parameter space induces opposite geometric

contributions to the phases of the two adiabatic states, a relative geometric phase

diŒerence is locally de® ned. If this geometric phase diŒerence changes as function

of time then observable eŒects can arise in the transition probability.

Throughout the theoretical presentation of the geometric amplitude factor we

will use the familiar quantum-mechanical formulation in which ò appears. Our

experiments are, however, performed on classical optical systems for which optical

frequency levels play the role of quantum-mechanical energy levels. Using the

relation E = h n (where E is energy, n is frequency and h the Planck constant) allows

for a simple transformation of the quantum-mechanical formulation to the classical

formulation. Throughout the experimental presentation we will use the familiar

optical notion in terms of frequencies.

In order to give a clear presentation of the geometric amplitude factor, as

introduced by Berry [7], we brie¯ y review in section 2 the mathematical formula-

tion of the geometric phase and describe in section 3 the elegant method developed

by Dykhne [15], and by Davis and Pechukas [16], which we refer to as the DDP

method, for calculating transition probabilities. In section 4 the useful relation

between geometric eŒects and dynamical eŒects is reviewed. This relation, in

combination with the DDP method, provides clear insight into the consequences

of the geometric amplitude factor. In section 5 we introduce an experimentally

realizable twisted Landau ± Zener model for which a geometric amplitude factor is

expected to arise. The optical implementation of this speci® c model is described

in section 6. The experimental results, in the parameter region where our model

closely resembles the model proposed by Berry [7], are presented in section 7.

Conclusions are drawn in section 8.

2. Geometric phase

Throughout this article we will exclusively consider the case of a two-level

system characterized by the Hamiltonian

HÃ (t) = 3 Z(t)

X(t) + iY(t)

X(t) ± iY(t)

± Z(t) 4 . (1)

The parameter space has three coordinates X, Y, Z, and the path g , followed in

parameter space is given by (X(t), Y(t), Z(t)). An expression for the geometric

phase is obtained starting from the SchroÈ dinger equation:

i ò
d

dt
|Y(t)= HÃ (R(t)) |Y(t). (2)

Here, R(t) indicates that the Hamiltonian depends on a set of time-dependent
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parameters. We assume that at t = 0 the two-level system is in one of the two

adiabatic eigenstates, labelled with + or ± ,

|Y(0)= |±, R(0). (3)

Under the assumption of adiabatic following, the wavefunction evolves as:

|Y(t)= exp 5 ±
i

ò #
t

0

E± (R(s)) ds + i g ± (t) 6|±, R(t), (4)

where E± are de® ned by

E± = ± [X2
(t) + Y

2
(t) + Z

2
(t)]1

/2
. (5)

The ® rst term in the exponent of equation (4) is i times the dynamical phase

and the second term is i times the geometric phase [13]. The latter can be expressed

as

g ± (t) = i #
t

0

¬ ±, R(s) |
d

ds
|±, R(s) ds (6)

= ±
1

2 #
t

0

(XYÇ ± YXÇ )Z

(X
2 + Y

2
)(X

2 + Y
2 + Z

2
)
1/2

ds, (7)

where the overdots denote derivatives with respect to time. For later use, it is

convenient to express HÃ (t) and g ± in polar coordinates E, v , f ,

HÃ (t) = E(t) 3 cos v (t)

sin v (t) exp (+i f (t))

sin v (t) exp ( ± i f (t))

± cos v (t) 4 , (8)

g ± (t) = ±
1

2 #
t

0

cos v (s) f Ç (s) ds (9)

The function f (t) will play an important role in this paper and we will refer to it

as the twist function.

As mentioned above, the geometric phase is usually written in the form of a

closed circuit integral in parameter space. Such an expression explicitly indicates

that the geometric phase is a global quantity and that it is independent of how fast

the path in parameter space is followed. In this paper, however, local aspects of

the geometric phase are essential and therefore an expression in the form of

equation (6) is convenient. Unlike the closed circuit expression for the geometric

phase, equation (6) is not explicitly time independent. A simple way to see if an

expression obtained by an open-path integral is independent of how fast the path

is followed is to replace t by a scaled time t º d t. We will refer to d as the

scaled-time parameter. If an expression is independent of d it is clearly independent

of how fast the path is followed; this is the often-used criterion for a geometric

eŒect. We will use the scales time t throughout the rest of this paper.

3. The Dykhne ± Davis ± Pechukas method

The adiabatic assumption, crucial for the derivation of the geometric phase,

seems to impose a severe restriction on the application of the above theory.

However, the DDP method allows transitions, i.e. diabatic dynamics, to be

described under the adiabatic assumption [15 ± 17]. Therefore, the DDP method
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provides a way of including the eŒect of geometric phases on the transition

properties [7, 9 ± 11].

The DDP method is based on the adiabatic assumption that coupling between

the adiabatic energy levels can only occur at positions where the adiabatic energies

are degenerate. In the case of avoided-crossing models the adiabatic energy levels

are degenerate at complex time points t 0. For example in the case of the

conventional Landau ± Zener model [18, 19], characterized by X( t ) =D , Y( t ) = 0,

and Z( t ) = a t , the adiabatic energies and the complex time points where de-

generacies occur are given by

E± = ±( a 2 t 2 +D 2
)
1/2

, (10)

t 0 = ±iD /| a | . (11)

An adiabatic energy surface corresponding to a two-level system is usually

de® ned through the square root of a complex function, as is the case in equation

(10), and is therefore a double-valued function. To emphasize the mathematical

properties of such functions, consider the generic case of

f (z) = z
1/2 = r

1/2
exp (i y /2). (12)

Clearly z remains unchanged if y is replaced by y + 2 p , whereas z
1/2

changes sign.

In this situation, it is common to introduce a Riemann surface which is a

generalization of the complex plane to a surface of two Riemann sheets. On the

Riemann surface f (z) is single-valued. The two Riemann sheets are connected by

a cut starting at the zero point t 0 of the square root. As a point z starts on one

Riemann sheet and describes a continuous circuit around t 0 it passes to the other

Riemann sheet when it crosses the cut. The point t 0 is referred to as a branch

point. The real part of the adiabatic energy surfaces E± , given in equation (10),

are the two sheets of the Riemann surface draw in ® gure 1.

Figure 1. Real part of the adiabatic energy surface for (positive imaginary) complex times.

The parameters used are a = 1 J s
± 1

,D = 1 J, and d = 1. The front surface of the plot

shows the familiar avoided crossing curves for real times. The thick curve indicates

the path of integration used in the Dykhne ± Davis ± Pechukas method.
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Figure 2. Illustration of the Dykhne ± Davis ± Pechukas method. This graph is a schematic

representation of the thick curve in ® gure 1.

As mentioned before, for transitions to occur under the adiabatic assumption,

|Y( t ) must ` reach ’ a branch point around which the transition between the

adiabatic energy levels takes place. Subsequently |Y( t ) must return to the real

time axis as indicated in ® gure 1 by the thick curve. A schematic drawing of this

curve is shown in ® gure 2.

If we assume as initial state one of the adiabatic eigenstates, say |+, then

equation (4) for the adiabatic `evolution ’ of |Y( t ) from t = 0 to the branch point

t = t 0 reads

|Y( t 0)= exp 5 ±
i

ò d #
t 0

0

d t 3 E+( t ) +
ò d

2
f Ç cos v 4 6|+. (13)

Since the time is complex valued, the exponent in equation (13) no longer

represents a pure phase factor; instead is also represents damping if the branch

point is chosen in the lower half of the complex-time plane.* Subsequent

integration along an in® nitesimally small circle around the branch point accomplishes

the change from the one adiabatic energy (Riemann) sheet to the other. Integration

along the return path to the real time axis yields an expression identical to equation

(13) since exchange of the integration boundaries and change of the adiabatic

energy sheets both give a multiplication factor ± 1. An additional factor of 2 in the

exponent is needed to obtain from the total transition amplitude the expression

for the total transition probability P,

P » exp { ± Cd } exp {+Cg }. (14)

Here the dynamical amplitude factor is given by

Cd = ±
4

ò d
Im #

t 0

0

d t E( t ), (15)

* The branch points in the lower-half of the complex-time plane should be used if

transitions from the higher energy levels to the lower energy levels are considered. The

branch points in the upper-half of the complex-time plane should be used in the opposite

case.
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and the geometric amplitude factor by

Cg = ± 2 Im #
t 0

0

d t f Ç cos v . (16)

We note that the dynamical (geometric) amplitude factor arises from the

analytical continuation of the dynamical (geometric) phase into the complex-time

plane. We stress that equation (14) is an approximate equality since the DDP

method has been only rigorously proven in the adiabatic limit, i.e. for small d . It

is, however, well known that the DDP method happens to provide the exact

expression in the case of the conventional Landau ± Zener model.

4. Geometric versus dynamical amplitude factors

Note that the adiabatic energies of the general two-level Hamiltonian [equation

(8)] are independent of the twist function f ( t ). Hence the branch points will also

be independent of the curvature of the path in parameter space induced by

f ( t ).

It is possible to relate the geometric amplitude factor to the familiar dynamical

amplitude factor by performing the following unitary transformation [7].

|Y( t )= UÃ ( t ) |Y Â ( t )

º 3 exp ( ± i f ( t )/2)

0

0

exp (+i f ( t )/2) 4 |Y Â (t). (17)

The corresponding Hamiltonian is given by

HÃ Â ( t ) = UÃ ²
HÃ UÃ ± i ò d UÃ ²

UÇ
Ã

= 3 Z ± 1
2 ò d f Ç

(X
2 + Y

2
)
1/2

(X
2 + Y

2
)
1/2

± (Z ± 1
2 ò d f Ç ) 4

= 3 Z Â X Â

X Â ± Z Â 4 . (18)

HÃ Â is now real symmetric instead of complex hermitian. This yields a zero

geometric phase and geometric amplitude in the primed frame. The twist function,

f ( t ), now manifests itself in the adiabatic energy levels

E Â ± = ± [(Z ± 1
2 ò d f Ç )2 + X

2 + Y
2]

1/2
. (19)

Since the transformation matrix UÃ between |Y(t) and |Y Â (t) contains only phase

factors on its diagonal elements, the transition probability between the adiabatic

levels in the primed frame is identical to that in the unprimed frame.

The advantage of the transformation to the primed frame is that the geometric

eŒects, induced by f ( t ), are expressed as shifts and splittings of the branch points.

Shifts of branch points towards or away from the real time axis indicate an increase

or decrease, respectively, of the transition amplitude. Splitting of the branch

points indicates that the particular model behaves as a sequence of conventional

Landau ± Zener crossings. The extension of the DDP method to the case that several

pairs of branch points in¯ uence the transition dynamics can be found in references

[11, 20, 21].
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At this point we would like to make a critical comment regarding the

experiments of Zwanziger, Rucker, and Chingas [12], which were claimed to be

a demonstration of the geometric amplitude factor. In that work, transformation

(17), which is a mathematical tool to compare the geometric eŒects to the familiar

dynamical eŒects, has been taken to the experimental level; a conventional

Landau ± Zener experiment has been performed where a t is simply replaced by

( a t ± 1/2 ò d f Ç ) and which is analyzed as if it originated from a system characterized

by a complex hermitian (twisted Landau ± Zener) Hamiltonian. Therefore the

experiment was in essence a conventional Landau ± Zener experiment. In fact, it is

straightforward to formulate the optical variety of this approach ² .

5. Twisted Landau ± Zener models

We consider avoided-crossing models which are characterized by the following

Hamiltonian:

HÃ
twist = 3 a t

D exp {+i f ( t )}

D exp { ± i f ( t )}

± a t 4 . (20)

We refer to such models as twisted or winding Landau ± Zener models [7, 9]. Berry

analyzed, in particular, the case that [7]

f ( t ) = b t 2
. (21)

According to equations (15) and (16) the dynamical amplitude factor and the

geometric amplitude factor are given by

Cd = pD 2/( ò d | a |), (22)

Cg = ± ( p b D 2/ a 2
) sgn ( a ). (23)

Recall that both expressions are approximations valid for small d . Note that Cg is

independent of d and ò which is usually taken as the characteristic feature of a

geometric eŒect. In the primed frame, the branch points of equation (19) read for

this particular model

t Â0 = ±iD / | a ± ò d b | . (24)

The branch points have been shifted with respect to the branch points of the

conventional Landau ± Zener (LZ) model [equation (11)]; this indicates a change

in the transition amplitude. The exact expression for the transition probability in

the primed frame contains only a dynamical amplitude factor

C Âd = pD 2/( ò d |( a ± ò d b ) | . (25)

This model illustrates in the simplest way the geometric amplitude factor however;

it has the unphysical property of diverging values for f ( t ) as t ® ± ` .

² The optical variety of the experimental approach of reference [12] is as follows.

Consider an optical resonator with only two EOM’s and perform an conventional Landau ±
Zener experiment with a t replaced by ( a t ± 1/2 ò f

.
) [5]. The light leaking out of the cavity

can be analysed after performing the unitary transformation given in equation (17) by an

additional EOM outside the resonator. Since this EOM must be placed with its axis along

the detection axis of the polarization it cannot alter the population of the detected

polarization. Therefore this EOM can be omitted in the experiment. What remains is the

conventional dynamical Landau ± Zener experiment.
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Figure 3. Plot of the Hamiltonian curve for the Gaussian twisted Landau ± Zener model

( m = 4´5 rad, a = 1 s, d = 1).

From an experimental point of view, we are interested in twisted LZ models

with ® nite values for f ( t ) as t ® ± ` . We have performed our experiments by

implementing the following model:

f ( t ) = m (1 ± exp { ± ( t /a)
2}), (26)

which approaches the f ( t ) = b t 2
model near the avoided crossing at t = 0, but

approaches the constant value m for t ® ± ` . The path in parameter space

corresponding to this model ( m = 4´5 rad, a = 1 s, d = 1) is drawn in ® gure 3. We

will refer to this model as the Gaussian twisted LZ model.

This model has many pairs of branch points for equation (19) in the primed

frame; however, only those for which the amplitude factor C Âd is relatively small

will contribute signi® cantly to the transition amplitude. For our model these

dominant points are the ones closest to the real-time axis ³ . Their positions are

obtained most easily numerically. However, to gain some insight it is useful to

present ® rst some analytical considerations regarding their positions.

The conventional LZ model has branch points on the imaginary time axis [see

equation (11)] which indicates that the position of nearest approach of the two

levels is at t = 0. If we assume that the addition of a twist function gives rise to

small changes only, it is expected that the dominant branch points remain on the

imaginary time axis. Therefore we insert t = i x , with x real and d = 1, into

³ There exist crossing-models for which the dominant branch points are not those closest

to the real-time axis [10, 11].
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Figure 4. Graphs (a), (c), and (e) are plots of f ( x ) for m ò = 0´2, 0´46, 0´7 J s. The solutions

for f ( x ) = 0 indicate branch points on the imaginary time axis. Graphs (b), (d ), and

( f ) show the branch points corresponding to graphs (a), (c), and (e), respectively.

Note that pairs 1 and 2 in graph ( f ) cannot be determined by graph (e) but have been

obtained by numerical calculations.

equation (19), with f ( t ) given by equation (26). The branch points (determined

by E Â ± = 0) on the imaginary axis are i times the solutions for x of

f ( x ) º a x ± ò m ( x /a2
) exp {( x /a)

2} ±D = 0. (27)

The function f ( x ) is plotted in ® gures 4(a), (c) and (e), for increasing magnitude m
of the twist function ( a = 1 J s

± 1
, a = 1 s, d = 1, andD = 0´2 J). The corresponding

branch points are plotted in ® gures 4 (b), (d) and ( f ).

For ò m = 0´20 J s, shown in ® gures 4 (a) and (b), pair 1 of the branch points

will dominate the transition amplitude. The additional pairs 2 and 3 are the

consequence of the physical requirement that f ( t ) is ® nite for t = ± ` . Since both

pairs 2 and 3 have large imaginary values they have negligible in¯ uence on the

transition amplitude. In this situation the Gaussian twisted LZ model is a good
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approximation to the f ( t ) = b t 2
model, and is therefore suited to study the

geometric amplitude factor as described by Berry [7].

If the magnitude of the twist function is increased another interesting situation

arises. First, the pairs 1 and 2 of the branch points approach each other as shown

in ® gures 4 (c) and (d ), for ò m = 0´46 J s. Next, as shown in ® gure 4 (e) and ( f ),

for ò m = 0´70 J s, pairs 1 and 2 disappear from the imaginary axis as can be seen

from the reduction from 6 to 2 solutions for f ( x ) = 0 in ® gure 4 (e). By numerical

calculations one ® nds that these pairs move away from each other keeping equal

distance to the real time axis. The transition amplitude will now be dominated by

three pairs of branch points and interference phenomena similar to those arising

for a sequence of three conventional LZ crossings are expected. In this situation

the in¯ uence of the twist function can no longer be described by a geometric

amplitude factor but manifests itself in an intertwined way with the dynamical

amplitude factor [23].

6. Optical realization

For our experiments we used an optical two-level system which is schematically

shown in ® gure 5. The two levels are formed by two orthogonal polarization states

of a single longitudinal mode of a 7-meter long ring cavity. The degeneracy in

frequency of the two polarizations is lifted by an electro-optic modulator (EOM1)

which consists of a birefringent crystal. The birefringence is controlled by applying

an electric voltage over the crystal. Including a second electro-optic modulator

(EOM2) under 45 Ê with respect to EOM1 provides coupling between the two

polarizations.

The optical two-level system is prepared in its initial state by injecting linearly

polarized light from a single-frequency HeNe laser. As soon as the injection light is

Figure 5. Schematic drawing of the optical part of the setup. The acronyms used are

AOM for acousto-optic modulator, P for polarizer, EOM for electro-optic modulator,

PZT for piezo element, NPBS for non-polarizing beam splitter, and APD for

avalanche photo diode. The dotted line below EOM1 and EOM3 indicates that they

have been combined into one EOM in the actual experiments.
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resonant with the ring cavity (which is slowly scanned in length by a piezo element

(PZT) mounted behind one of the cavity mirrors), the light intensity builds up

inside the ring cavity. At a certain intracavity intensity the injection light is

switched oŒwithin 10 ns using an acousto-optic modulator (AOM). Due to optical

losses of the EOMs and the mirrors, the light intensity will decrease after switching

oŒthe injection, with a characterized cavity decay time tcav . Within tcav we must

perform our experiments, i.e., drive the EOMs with the proper time-dependent

voltages (up to 400 V) and analyse the small fraction of the light intensity that

leaks through one of the cavity mirrors. In order to make such experiments

electronically feasible tcav must be at least a few m s; for our cavity length this

corresponds to a cavity ® nesse & of the order of 10
3
. To obtain such a high cavity

® nesse the optical losses inside the cavity must be compensated for. Therefore we

designed a polarization-independent He ± Ne 633 nm ampli® er tube. This tube has

anti-re¯ ection coated windows (AR @ 633 nm and AR @ 3´39 m m) instead of

Brewster windows. Operating the optical ring system closely below threshold

provides a cavity decay time of approximately 10 m s; this is su� ciently large for

the experiments ( & » 1300). Of course, this optical ampli® cation scheme would

not be useful in the limit of a few photons in the ring since the amplifying medium

will always contribute, on average, one spontaneously emitted photon to the optical

cavity mode, thus randomizing the optical ® eld both in phase and in polarization.

However, we deal with relatively high optical intensities (of the order of 1 mW);

hence it is legitimate to neglect the in¯ uence of spontaneous emission.

In a previous paper [5] we demonstrated that the conventional LZ model can

be realized in an optical two-level system by applying a linear voltage sweep to

EOM1 and keeping the voltage across EOM2 constant. The mapping of the

polarization state vector in the ring cavity to the quantum-mechanical wavefunction

for a two-level system is obtained using Jones calculus [22]. For further details

concerning this method and the experimental realization of an optical two-level

system we refer to our previous papers [5, 6].

The Hamiltonian of current interest, given by equation (20), can be generated

from the conventional LZ Hamiltonian by the following matrix multiplication:

Htwist = M(t) 3 a t

D

D

± a t 4 M(t)
± 1

, (28)

where

M(t) = 3 exp ( ± i f (t)/2

0

0

exp (+i f (t)/2) 4 . (29)

The matrices M(t) and M(t)
± 1

are physically obtained by means of additional

birefringent elements, EOM3 and EOM4, their axes being parallel to those of

EOM1 (see ® gure 5). The three control parameters are the voltages applied to the

EOMs [ a t µ VEOM1, D µ VEOM2 and f (t) µ VEOM3 = ± VEOM4]. We remind the

reader that it is essential to have three control parameters; a simpler setup, using

only two control parameters, is inadequate. Note that we do indeed create

Htwist as given by equation (20) instead of merely performing transformation (18).

The polarization state of the light leaking out of the cavity is analysed by two

avalanche photo diodes (APD) and is expected to provide a direct observation of

the geometric amplitude factor.
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There are two complications of the current experiments compared to the

previously reported LZ experiments [5]. First, it becomes necessary to employ a

unidirectionally passed ring cavity instead of a bidirectional standing-wave cavity.

The reason for this is that the precise ordering of the EOMs is of crucial importance

to generate the twisted LZ model, whereas for the conventional LZ model the

ordering is irrelevant. In other words, we explicitly use the fact that diŒerently

oriented EOMs do not commute. The disadvantage of using a ring cavity is that

the alignment of the EOMs becomes very di� cult, since the EOMs tend to slightly

deviate the light path by an amount proportional to their electrical birefringence.

In a standing-wave cavity such deviations are automatically corrected for since the

light path reverses at the mirrors. To alleviate somewhat the alignment problem,

we make use of the fact that EOM1 and EOM3 have their axes parallel and can

be combined into one EOM.

The second complication is that more than one EOM must have a time-

dependent birefringence in order to generate the twisted LZ model. As a

consequence, one should take into account retardation eŒects of the light propa-

gating in between the optical elements [6]. The simplest way to overcome this

complication is to place the time-dependent EOMs as close as possible to each

other so that they operate approximately at the same position in the cavity.

7. Experimental results

The main experimental results presented in this article are in the parameter

range for which the Gaussian twisted LZ model is a good approximation to the

f ( t ) = b t 2
model treated by Berry [7]. This situation corresponds to ® gures 4 (a)

and (b) where the contributions of the pairs of branch points 2 and 3 to the

transition amplitudes is at least a factor e
± 3 » 0´03 smaller than the contribution

of the dominant pair of branch points 1. In other words, using the theoretical

results for the f ( t ) = b t 2
model to analyse our Gaussian twisted LZ experiments

should give an error of less than 3% in the transition amplitude. Figure 6 shows

typical experimental data (the scaled-time parameter d = 1). Curves 1, 3, and 5

are conventional LZ experiments in the diabatic, intermediate, and adiabatic limit,

respectively. Curves 2 and 4 are experimental results for the Gaussian twisted LZ

model (see equation (26)) with a = 0´6 m s, and m = +1´52 and ± 1´52 rad, respec-

tively; the values for a and D are the same as for curve 3 ( a = 1´65 MHz m s
± 1

,

D = 0´25 MHz). Each curve shows the time evolution of the normalized intensity

of the polarization along the linear polarization of the injection light, say the +

polarization.

Far before the avoided crossing, that is on the left-hand side of ® gure 6, all

intracavity light is + polarized. The + and ± polarizations correspond to the

diabatic, i.e., the uncoupled, energy states of the system. Hence the experimental

data provide a time trace of one of the diabatic populations. From this information

the transition probability between the adiabatic eigenstates can be determined as

follows. We use the fact that on the left- and right-hand side of ® gure 6, far away

from the avoided crossing at t = 0, the adiabatic and the diabatic eigenstates

coincide; they change labels at the avoided crossing. In the region near the avoided

crossing the adiabatic eigenstates are superpositions of the + and Ð polarizations.

If, after the avoided crossing, the two-level system is in a superposition of the

adiabatic eigenstates, a beat frequency in both + and the ± component of the

polarization is present which increases in frequency and decreases in amplitude
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Figure 6. The solid curves are the experimentally obtained time traces for the normalized

intensity of the + polarization. Each time trace corresponds to the average over 25

experimental runs. Curves 1, 3, and 5 are conventional Landau ± Zener curves in the

diabatic, the intermediate ( a = 1´65 MHz m s
± s

, D = 0´25 MHz), and the adiabatic

limit, respectively. Curves 2 and 4 are experimental results for the Gaussian twisted

Landau ± Zener model for a = 1´65 MHz m s
± 1

, D = 0´25 MHz, m = ±1´52 rad, and

a = 0´6 m s. The dotted curves are the corresponding numerical simulations.

further away from the avoided crossing. To obtain the transition probability

between the adiabatic energy levels we take the center of the oscillating time traces

at the right-hand side of the graph, as indicated in ® gure 6.

The diŒerences between the conventional LZ curve 3 and the two Gaussian

twisted LZ curves 2 and 4 in ® gure 6 illustrate the signi® cance of the geometric

amplitude factor. We remind the reader that the adiabatic energy levels corres-

ponding to curves 2, 3, and 4 are identical; the diŒerence in the time traces is

completely due to the twist function f ( t ). Note that curves 2 and 4 have the

opposite sign for f ( t ).

To demonstrate that the geometric amplitude factor is independent of how fast

the path in parameter space is followed, we performed a series of Gaussian twisted

LZ experiments for diŒerent values for the scaled-time parameter d . In other

words, we performed the same experiment faster and faster. In ® gure 7 we plot

± ln P, which is, according to equation (14), equal to Cd ± Cg , as function of 1/ d .

According to equations (22) and (23) we expect straight lines with slopes p D / | a |,

and vertical oŒsets of Cg compared to the conventional LZ line. Line 2 is the

experimental result for the conventional LZ model. Line 1 and 3 are the experi-

mental results for the Gaussian twisted LZ model with opposite signs for the twist

function. The three lines have an identical slope, 0´98 ± 0´01, in excellent agreement

with the theoretical value of 0´98. The oŒsets of curves 1 and 3 yield a geometric

amplitude factor of Cg = ± 0´23 ± 0´01 and Cg = 0´14 ± 0´01, respectively. The

theoretical values predicted in the limit of small d are Cg = ±0´16. Here, the

agreement with the experimental results seems modest; however, one should keep

in mind that deviations must be expected since the experiments cannot be

performed for very small values of d . If the exact expression for the transition
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Figure 7. The data points on curve 1 and 3 are the experimental results obtained for the

Gaussian twisted Landau ± Zener model for opposite signs of the twist function. The

parameters are a = 1´00 MHz m s
± 1

, D = 0´223 MHz, a = 1 m s, and m = ±1´14 rad.

The data points on curve 2 are experimental results for the conventional Landau ± Zener

model for the same values for a and D . The dotted lines are the corresponding

numerical simulations.

probability equation (25) is used, the oŒsets are predicted to be ± 0´22 and

0´15, which is in perfect agreement with the experimental results.

The results presented in ® gure 7 already indicate that the twist function does

not give rise to a constant geometric amplitude factor over the full dynamical range.

Clearly the transition amplitude will always go to 1 if d is large enough. In ® gure

8 we show the experimental changes in the transition probability due to the twist

function over the full dynamical range, i.e., from the adiabatic limit to the diabatic

limit. Instead of varying d we varied the adiabaticity parameter L = a /2 pD 2
by

changing the coupling strength D . In this way, all experimental traces cover an

equal time span; this is experimentally much more convenient than changing d
(we remind the reader that the experiments must be performed within the limited

cavity decay time). Besides it is no longer advantageous to plot ± ln P as function

of 1/ d since no straight lines are expected in the diabatic limit. The experimental

results are in good agreement with the numerical simulations (dotted curves).

Note that within the present accuracy of the experiment (±5% error in the

transition probabilities), and for the speci® c region in parameter space in which

the experiments are performed, no diŒerences can be observed between the

Gaussian twisted model and the f ( t ) = b t model (recall that the theoretical

diŒerence between the transition amplitudes for the two models is less than 3% ).

We now brie¯ y report an experimental result in the parameter region where

three pairs of branch points in the primed frame [shown in ® gure 4 ( f )] dominate

the ® nal transition probability. In this region, the f ( t ) = b t 2
model is no longer a

proper approximation of the Gaussian twisted LZ model and oscillatory structure

is expected in the transition probability as a function of the control parameters.

In ® gure 9 we have plotted the experimental results for a series of measurements of

P as a function of 1/ d . Clearly the experimental data points for the Gaussian twisted
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Figure 8. Plot of the experimental data points obtained for P, as function of L = a /2 pD 2

for a = 1´28 MHz m s
± 1

. The open circular data points are the conventional Landau ±
Zener results. The open square, the closed circular, and the closed square data points,

respectively, are the results for the Gaussian twisted LZ model with a = 1 m s, and

m = 1´5, 3´0, and 4´5 rad. The dotted curves show the corresponding numerical

simulations.

Figure 9. The square data points show experimental results for the conventional Landau ±
Zener model ( a = 0´50 MHz m s

± 1
, and D = 0´125 ± 0´01 MHz). The circular data

points show the experimental results for the Gaussian twisted Landau ± Zener model

in the parameter region where three pairs of branch points in the primed frame

dominate the transition phenomena. The parameters are a = 0´50 MHz m s
± 1

, D =
0´125 ± 0´01 MHz, a = 1 m s, and m = 8´36 rad. The dotted curves 1 and 2 show the

corresponding numerical simulations.
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LZ model (circles) are not on a straight line parallel to the conventional LZ line

(square data point). A distinct maximum in ± ln P, i.e. a minimum in P, is visible;

this indicates the presence of interferences. A quantitative treatment of this situa-

tion is outside the scope of the present paper and has been published elsewhere [23].

8. Conclusions

We have performed a theoretical and experimental study of the geometric

amplitude factor in an optical system. In our presentation, we emphasized the

physical insight that is obtained when the Dykhne ± Davis ± Pechukas method is

used in combination with a speci® c unitary transformation. To perform our

experiments we introduced the Gaussian twisted Landau ± Zener model which

ful® lls the physical requirement of ® nite values for f ( t ) as t ® ± ` . By using this

model for small magnitudes of the twist function we veri® ed the theoretical

predictions made by Berry [7]. In particular, we observed the geometric amplitude

factor in the near adiabatic region and demonstrated that it is independent of the

scaled-time parameter d . For large magnitudes of the twist function we observed

the onset of interference phenomena in the transition amplitude due to the interplay

of geometric and dynamical eŒects. The dominant features of such interferences

on the transition amplitude is the subsect of a separate paper [23].

For our experiments, we have made use of a classical optical two-level systems

for which the quantum-mechanical treatment of two-level systems fully applies.

The conventional Landau ± Zener model is a very popular model in many branches

of physics and chemistry. Therefore, the optically demonstrated phenomena should

also be observable in these various branches of science if twist functions are

included. For example, in the case of two-level atoms a twist function can be

realized by applying additional electro-magnetic ® elds which are frequency-

modulated. Recently, it was shown by Agarwal and Harshawardhan [24] that under

this condition population trapping in two-level systems can occur. In the context

of the present paper, this population trapping can be seen as a consequence of

geometric amplitude eŒects.
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