Homework 8, Astro 1

Solutions

Some formulas come with references on the right hand side if you'd like to track each step or discuss a particular step in the solutions with your TA.

1. (U11-21.27)

$$
\begin{equation*}
\Delta t^{\prime}=\frac{\Delta t}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{1}
\end{equation*}
$$

Setting $\Delta t^{\prime}=10$ years and $\Delta t=8$ years we have

$$
\begin{equation*}
\sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{8}{10} \tag{2}
\end{equation*}
$$

Squaring both sides gives

$$
\begin{gather*}
1-\frac{v^{2}}{c^{2}}=.64 \tag{3}\\
\frac{v^{2}}{c^{2}}=.36 \tag{4}
\end{gather*}
$$

Taking the square root of both sides shows that $v=.6 c$
2. (U11-21.30) Since the question is posed from the perspective of the astronaut, then we know that they are the observer. Using the time dilation formula:

$$
\Delta t^{\prime}=\frac{\Delta t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

We can then plug in $\Delta t=15 \& v=0.8 c$.
So, $\Delta t^{\prime}=25$. An observer on Earth would measure the trip as taking 25 years.
Now that we have the travel time from the astronaut's perspective, T_{a}, and the travel time from Earth's perspective, T_{E}, we can calculate the distance from each perspective.

Using the formula $d=v t$, we can obtain the distance from the known speed and travel time.
$\mathrm{L}_{a}=v \times \mathrm{T}_{a}=0.8 c \times 15$ years $=12 l y$
$\mathrm{L}_{E}=v \times \mathrm{T}_{E}=0.8 c \times 25 y e a r s=20 l y$
3. (U11-21.60)

$$
\begin{equation*}
r_{s}=\frac{2 G M}{c^{2}} \tag{7}
\end{equation*}
$$

Using this let us first calculate the three requested figures. The given mass of the earth, the sun, and the black hole of NGC 4261 are $5.97 \times 10^{24} \mathrm{~kg}, 1.99 \times 10^{30} \mathrm{~kg}\left(1 M_{\odot}\right)$, and $1.2 \times 10^{9} M_{\odot}$, respectively. Direct substitution into the equation above gives the values (a),(b),(c) for the earth, the sun, and the black hole to be
(a)The Schwarzschild radius is given by

$$
\begin{equation*}
r_{s}=8.87 \times 10^{-3} \mathrm{~m} \tag{8}
\end{equation*}
$$

Now, to calculate the corresponding density we imagine a spherical black hole with volume $\mathrm{V}=\frac{4}{3} \pi r_{s}^{3}$. Then the density is just $\rho=\frac{M}{V}$. Direct substitution into this equation yields the value

$$
\begin{equation*}
\rho=2.04 \times 10^{30} \mathrm{~kg} / \mathrm{m}^{3} \tag{9}
\end{equation*}
$$

(b)repeating for the sun gives a Schwarzschild radius

$$
\begin{equation*}
r_{s}=2970 \mathrm{~m} \tag{10}
\end{equation*}
$$

with a corresponding density of

$$
\begin{equation*}
\rho=1.82 \times 10^{19} \mathrm{~kg} / \mathrm{m}^{3} \tag{11}
\end{equation*}
$$

(c)Lastly, for the super-galaxy we find a Schwarzschild radius

$$
\begin{equation*}
r_{s}=3.56 \times 10^{9} \mathrm{~km} \tag{12}
\end{equation*}
$$

with a corresponding density of

$$
\begin{equation*}
\rho=12.6 \mathrm{~kg} / \mathrm{m}^{3} \tag{13}
\end{equation*}
$$

4. (U11-21.63) Let us begin with the proof. In the previous solution, it was stated that the volume of a black
hole is given by $V=\frac{-}{=} \pi r_{s}^{3}$. To find out the mass dependency of this equation we need to recall that the Schwarzschild radius is defined as $r_{s}=\frac{2 G M}{c^{2}}$. Substituting into our equation for V we find

$$
\begin{equation*}
V=\frac{4}{3} \pi\left(\frac{2 G M}{c^{2}}\right)^{3}=\frac{32}{3} \frac{\pi G^{3}}{c^{6}} M^{3} \tag{14}
\end{equation*}
$$

Then, recalling that density is given by $\rho=M / V$ we have

$$
\begin{equation*}
\rho=\frac{M}{V}=\frac{M}{\frac{32}{3} \frac{\pi G^{3}}{c^{6}} M^{3}}=\frac{1}{M^{2}} \frac{3 c^{6}}{32 \pi G^{3}} \tag{15}
\end{equation*}
$$

Which is what we set out to show. Now to answer the second part of the problem we must set $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and solve for the given mass.

$$
\begin{equation*}
1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{1}{M^{2}} \frac{3 c^{6}}{32 \pi G^{3}} \tag{16}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
M=\sqrt{\frac{1}{1000} \frac{3 c^{6}}{32 \pi G^{3}}} \mathrm{~kg}=2.7 \times 10^{38} \mathrm{~kg} \tag{17}
\end{equation*}
$$

5. (U11-22.26)

The orbital velocity is $v=400 \mathrm{~km} \mathrm{~s}^{-1}=400 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$.
The radius of the orbit is $r=20000 \mathrm{pc}=20000\left(3.09 \times 10^{13}\right)\left(10^{3}\right) \mathrm{m}=6.18 \times 10^{20} \mathrm{~m}$.
(a) To find the orbital period P,

$$
P=\frac{2 \pi r}{v} \Rightarrow P=\frac{2 \pi\left(6.18 \times 10^{20}\right)}{400 \times 10^{3}}=9.71 \times 10^{15} \mathrm{~s}=3.08 \times 10^{8} \text { years }
$$

(b) To find the mass of the galaxy, we use the equation in Box 22-2 in Universe,

$$
M=\frac{r v^{2}}{G} \Rightarrow M=\frac{\left(6.18 \times 10^{20}\right)\left(400 \times 10^{3}\right)^{2}}{6.67 \times 10^{-11}}=1.48 \times 10^{42} \mathrm{~kg}=7.45 \times 10^{11} M_{\odot}
$$

6. (U11-22.41)
(a) Sagittarius A* is a supermassive black hole with $M_{\bullet}=4.1 \times 10^{6} M_{\odot}$, and therefore comparatively, the mass of the stars S0-2 and $\mathrm{S} 0-19$ is negligible.

$$
M_{1}+M_{2}=\frac{a^{3}}{P^{2}} \quad \Rightarrow \quad M_{\bullet}=\frac{a^{3}}{P^{2}} \quad \Rightarrow \quad a=\left(M_{\bullet} P^{2}\right)^{1 / 3}
$$

For S0-2, with $P=14.5$ years, $a=\left(\left(4.1 \times 10^{6}\right)\left(14.5^{2}\right)\right)^{1 / 3}=952 \mathrm{AU}$.
For S0-19, with $P=37.3$ years, $a=\left(\left(4.1 \times 10^{6}\right)\left(37.3^{2}\right)\right)^{1 / 3}=1790 \mathrm{AU}$.
(b) To calculate the angular size of the semi-major axis as seen from Earth, use the small-angle formula,

$$
D=\frac{\alpha d}{206265} \Rightarrow \alpha=\frac{206265 D}{d}
$$

which we will set $D=a=$ semi-major axis. Since Sagittarius A* is at the Galactic center, and the distance between the Milky Way and the Galactic center, i.e. Sagittarius A*, is around 8 kpc , we set $d=8 \mathrm{kpc}=8\left(10^{3}\right)(3.26)(63240)=1.65 \times 10^{9} \mathrm{AU}$.

For S0-2, with $a=952 \mathrm{AU}$,

$$
\alpha=\frac{206265(952)}{1.65 \times 10^{9}}=0.119 \operatorname{arcsec}
$$

For S0-19, with $a=1790 \mathrm{AU}$,

$$
\alpha=\frac{206265(1790)}{1.65 \times 10^{9}}=0.224 \mathrm{arcsec}
$$

High-resolution of infrared images are required due to the presence of dust, and the angular sizes of the two stars are very small.
7. (U11-22.46)
(a) Volume of a cylinder $=\pi r^{2} h$, where r is the radius, h is the height of cylinder. Given the Galaxy disk has diameter of 50 kpc , and thickness of 600 pc , we have $r=50 / 2=25 \mathrm{kpc}$, and $h=600 \mathrm{pc}$.

$$
V=\pi r^{2} h \quad \Rightarrow \quad V_{\text {disk }}=\pi\left(25 \times 10^{3}\right)(600)=1.18 \times 10^{12} \mathrm{pc}^{3}
$$

(b) Volume of a sphere $=4 \pi r^{3} / 3$, where r is the radius of the sphere. With $r=300 \mathrm{pc}$,

$$
V=\frac{4}{3} \pi r^{3} \quad \Rightarrow \quad V_{\text {sphere }}=\frac{4}{3} \pi(300)^{3}=1.13 \times 10^{8} \mathrm{pc}^{3}
$$

(c) The region 300 pc around the Sun is the spherical region we considered in part (b).

Probability of the supernovae to occur 300 pc around the $\mathrm{Sun}=\frac{V_{\text {sphere }}}{V_{\text {disk }}}=\frac{1.13 \times 10^{8}}{1.18 \times 10^{12}}=9.58 \times 10^{-5}$
If there are about 3 supernovae per century in our Galaxy, there is 1 supernova per 33.3 years on average $(100 / 3=33.3$ years $)$. For 1 supernova to occur in the sphere of 300 pc in radius, there will be $1 / 9.58 \times 10^{-5}=1.04 \times 10^{4}$ supernovae in the whole Galaxy.

Time interval for 1 supernova to occur in the sphere $=\left(1.04 \times 10^{4}\right)(33.3)=3.46 \times 10^{5}$ years
8. (U11-22.47)
(a) For the RR Lyrae star, we are given $L=100 L_{\odot}$ and $b=1.47 \times 10^{-18} b_{\odot}$. Let d_{\odot} be the Sun-Earth distance, i.e. $d_{\odot}=1 \mathrm{AU}$ and use $b=L /\left(4 \pi d^{2}\right)$,

$$
\frac{b}{b_{\odot}}=\frac{L}{L_{\odot}}\left(\frac{d_{\odot}}{d}\right)^{2} \Rightarrow d=d_{\odot} \sqrt{\left(\frac{L}{L_{\odot}}\right)\left(\frac{b_{\odot}}{b}\right)}=(1 \mathrm{AU}) \sqrt{(100)\left(\frac{1}{1.47 \times 10^{-18}}\right)}=8.25 \times 10^{9} \mathrm{AU}
$$

(b) To also express the distance in parsec, note that $1 \mathrm{pc}=3.26 \mathrm{ly}$, and $1 \mathrm{ly}=63240 \mathrm{AU}$,

$$
d=8.25 \times 10^{9} \mathrm{AU}=\left(8.25 \times 10^{9} \mathrm{AU}\right)\left(\frac{1 \mathrm{ly}}{63240 \mathrm{AU}}\right)\left(\frac{1 \mathrm{pc}}{3.26 \mathrm{ly}}\right)=40000 \mathrm{pc}
$$

