Quantum Lifshitz point and a multipolar cascade for frustrated ferromagnets

Leon Balents, KITP, UCSB

Progress and Applications of Modern Quantum Field Theory, Aspen, Feb. 2015
Collaborators

Oleg Starykh
U. Utah

Teddy Parker
UCSB
What this talk is not

• (almost) nothing topological
• No gauge fields
• Nothing fractional
• No anyons. Not even fermions
• No CFT, no bootstrap
What this talk is not

• (almost) nothing topological
• No gauge fields
• Nothing fractional
• No anyons. Not even fermions
• No CFT, no bootstrap
• Not even a complete solution 😞
What it is about

• I will discuss the simplest example of a “frustrated ferromagnet”, and argue that there is a simple QFT description of such systems, with surprisingly rich phenomenology

• It is clear that this description extends to higher dimensions and perhaps the phenomenology does as well
Outline

• Introduction and phenomena:
 • a QCP, and multipolar phases
 • QFT: what we need
 • Lifshitz NLsM
 • Limits and analysis
Frustrated ferromagnet

1d $S=1/2$ chain

$J_1 < 0$ FM

$J_2 > 0$ AF

$H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - h \sum_i S_i^z$

<table>
<thead>
<tr>
<th>Compound</th>
<th>J_1, J_2 (K)</th>
<th>\angle Cu-O-Cu (deg)</th>
<th>T_N (K)</th>
<th>H_s (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$_2$ZrCuO$_4$[12, 13]</td>
<td>-151, 35</td>
<td>94.1</td>
<td>6.4</td>
<td>-</td>
</tr>
<tr>
<td>Rb$_2$Cu$_3$Mo3O${12}$[14, 15]</td>
<td>-138, 51</td>
<td>89.9, 101.8</td>
<td>< 2</td>
<td>14</td>
</tr>
<tr>
<td>PbCuSO$_4$(OH)$_2$[16–18]</td>
<td>-100, 36</td>
<td>91.2, 94.3</td>
<td>2.8</td>
<td>5.4</td>
</tr>
<tr>
<td>LiCuSbO$_4$[19]</td>
<td>-75, 34</td>
<td>89.8, 95.0</td>
<td>< 0.1</td>
<td>12</td>
</tr>
<tr>
<td>LiCu$_2$O$_2$[20–22]</td>
<td>-69, 43</td>
<td>92.2, 92.5</td>
<td>22.3</td>
<td>110</td>
</tr>
<tr>
<td>LiCuVO$_4$[23–31]</td>
<td>-19, 44</td>
<td>95.0</td>
<td>2.1</td>
<td>44.4</td>
</tr>
<tr>
<td>NaCuMoO$_4$(OH)</td>
<td>-51, 36</td>
<td>92.0, 103.6</td>
<td>0.59</td>
<td>26</td>
</tr>
</tbody>
</table>

K. Nawa et al, arXiv:1409.1310
Frustrated ferromagnet

1d $S=1/2$ chain

$J_1<0$ FM

$H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - h \sum_i S_i^z$

$J_2/(|J_1|+J_2)$

M

FM

PM

gap

gap
Frustrated ferromagnet

1d $S=1/2$ chain

$J_1<0$ FM

$J_2>0$ AF

$H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - h \sum_i S_i^z$

$\frac{J_2}{(|J_1|+J_2)}$

M

0 1/5 1

FM PM gap
Frustrated ferromagnet

1d $S=1/2$ chain

$J_2>0$ AF

$J_1<0$ FM

\[H = J_1 \sum_i S_i \cdot S_{i+1} + J_2 \sum_i S_i \cdot S_{i+2} - h \sum_i S_i^z \]

$J_2/(|J_1|+J_2)$

FM

PM

gap

very weakly dimerized
Multipolar phases

\[\frac{H}{|J_1| + J_2} \]

\[\frac{1}{5} \]

FM

VC

Hikihara et al., 2008

Sudan et al., 2009
Multipolar phases

\[J_2/(|J_1|+J_2) \]

0 \[\rightarrow\] 1

\[H/(|J_1|+J_2) \]

Hikihara et al, 2008
Sudan et al, 2009

FM

VC

1/5

2

4

3
Magnon BEC

1-magnon

$E - E_{FM} = \varepsilon_1 + h$

E

$S^z = -1$

Magnon (quasi-)BEC

$\langle S_i^- \rangle \sim \Psi e^{i q x_i}$
1-magnon

\[
E - E_{FM} = \varepsilon_1 + h
\]

T. Radu et al, 2007
Magnon BEC

$E - E_{FM} = \varepsilon_1 + h$

T. Giamarchi et al, 2008
Magnon binding

For $d>1$ at $T=0$ this is a molecular BEC = true spin nematic
Hidden order

No dipolar order

\[\langle S_i^z \rangle - M = 0 \]
\[\langle S_i^+ S_j^- \rangle \sim e^{-|i-j|/\xi} \]
\[\langle S_i^{\pm} \rangle = 0 \]
\[\langle S_i^+ S_{i+a}^+ \rangle \neq 0 \]

Nematic order

\[S^z = 1 \text{ gap} \]

Magnetic quadrupole moment

Symmetry breaking \(U(1) \rightarrow Z_2 \)

can think of a fluctuating fan state
Multipolar phases

H/(|J_1|+J_2)

0 1/5

1 J_2/(|J_1|+J_2)

A progression of higher and higher multipolar phases on approaching the QCP!
Multipolar phases

Is there a QFT that describes this region?

Hikihara et al., 2008
Sudan et al., 2009
A QFT?

- Is this behavior generic?
- Is the cascade infinite, or does it terminate?
- Can a single QFT describe an infinite number of order parameters?
- Is this specific to one dimension?

$$\Psi_n \sim \langle (S^-)^n \rangle$$
A QFT?

- A strong constraint:
 - Entire green area including the QCP itself has exact trivial FM ground state
- Not a CFT

\[\Psi_n \sim \langle (S^-)^n \rangle \]
Lifshitz Point

- Effective action - NLσM

\[S = \int dx d\tau \left\{ i \sigma A_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\} \]

WZW/Berry phase term

\[A_B = \frac{\hat{m}_1 \partial_\tau \hat{m}_2 - \hat{m}_2 \partial_\tau \hat{m}_1}{1 + \hat{m}_3}. \]

tunes QCP

two symmetry allowed interactions at \(O(q^4) \)

All properties near Lifshitz point obey “one parameter universality” dependent upon \(u/K \) ratio
Lifshitz Point

\[S = \int dxd\tau \{ isA_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h\hat{m}_z \} \]

- Intuition: behavior near the Lifshitz point should be semi-classical, since "close" to FM state which is classical

\[x \rightarrow \sqrt{\frac{K}{|\delta|}} x \quad \tau \rightarrow \frac{K}{\delta^2} \tau \]

\[S = \sqrt{\frac{K}{\delta}} \int dxd\tau \{ isA_B[\hat{m}] + \text{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \overline{h}\hat{m}_z \} \]

Large parameter: saddle point!

\[v = \frac{u}{K} \quad \overline{h} = \frac{hK}{\delta^2} \]
Lifshitz point

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ i s A_B[\hat{m}] + \text{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - h \hat{m}_z \right\} \]

\(v \) derives from quantum fluctuations

Need it be positive?

\[\hat{m} \cdot \hat{m} = 1 \quad \Rightarrow \quad \partial_x \hat{m} \cdot \partial_x \hat{m} = -\hat{m} \cdot \partial_x^2 \hat{m} \leq |\partial_x^2 \hat{m}| \]

Theory is stable for \(v > -1 \)

In fact, \(v < 0 \)

- Semiclassical large \(s \) limit: \(v \sim -3/2s \)
- \(s = 1/2 \) exact 2-magnon calculation \(v = -5/8 \)
Saddle point

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ i s A_B [\hat{m}] + \text{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - h \hat{m}_z \right\} \]

\[\hat{m} = \begin{pmatrix} |\Psi| \cos(qx + \phi) \\ \pm |\Psi| \sin(qx + \phi) \\ \sqrt{1 - |\Psi|^2} \end{pmatrix} \]

-1 < v < -\frac{1}{4}

\[h_c = \frac{\delta^2}{8K \sqrt{|v|(1 - \sqrt{|v|})}} > \frac{\delta^2}{2K} \]
Multipolar phases

H/(|J_1|+J_2)

J_2/(|J_1|+J_2)

FM

3

VC

Sudan et al., 2009

“metamagnetism”
Saddle point

\[S = \sqrt{\frac{K}{\delta}} \int dx d\tau \left\{ isA_B[\hat{m}] + \text{sgn}(\delta) |\partial_x \hat{m}|^2 + |\partial_x^2 \hat{m}|^2 + v |\partial_x \hat{m}|^4 - \bar{h}\hat{m}_z \right\} \]

N.B.: at saddle point level there is no scale for \(\delta \)
Beyond saddle point

• Issues:
 • Fate of ordered saddle points?
 • Endpoint of metamagnetic line?
 • Multipolar orders?
Zero field

• Saddle point is a spiral phase

\[\hat{m}(x) = \hat{e}_1 \cos qx + \hat{e}_2 \sin qx \]

\((\hat{e}_1, \hat{e}_2, \hat{e}_3 = \hat{e}_1 \times \hat{e}_2)\) form an SO(3) matrix

• Fluctuations are described by an SO(3) NLsM

\[S_{\text{eff}} = \frac{1}{g} \int d^2x \, \text{Tr} \left[(\partial_\mu O)^2 \right] + iS_{\text{topo}} \]
Zero field

\[S_{\text{eff}} = \frac{1}{g} \int d^2 x \ Tr \ [(\partial_\mu O)^2] + i S_{\text{ topo}} \]

- NLsM is asymptotically free

\[\Pi_1(SO(3)) = Z_2 \quad "Z_2 \ vortex\" \ \text{instanton} \]

\[S_{\text{ topo}} \quad \text{carries phase factor } (-1)^x \]

dimerization
Multipolar phases

\[
\frac{H}{|J_1| + J_2} = 0
\]

\[
\frac{|J_1| + J_2}{|J_2|/(|J_1| + J_2)}
\]

\[
dimerized
\]
Multipolar phases

\[H/(|J_1|+J_2) \]

\[J_2/(|J_1|+J_2) \]

dimerized

FM

2

3

VC??

\[\hat{m} = \begin{pmatrix} |\Psi| \cos(qx + \phi) \\ \pm |\Psi| \sin(qx + \phi) \\ \sqrt{1 - |\Psi|^2} \end{pmatrix} \]

\[S_{\text{eff}} = \frac{1}{g} \int d^2 x (\partial_\mu \phi)^2 \]

\[c=1 \]

broken "TR" symmetry

\[\hat{z} \cdot \langle S_i \times S_{i+1} \rangle \neq 0 \]
Metamagnetic endpoint?

\[\frac{h}{K} \]

\[\varepsilon_{FM} = \varepsilon_{cone} \]

\[\epsilon_1 = 0 \]

\[-1 < v < -\frac{1}{4} \]
Metamagnetic endpoint?

Quantum corrections penalize E_{cone} but not E_{FM}
Metamagnetic endpoint?

Quantum corrections penalize \(E_{\text{cone}} \) but not \(E_{\text{FM}} \)

\[
\Delta E_{\text{cone}} = +f(v)\delta^{5/2}
\]
Metamagnetic endpoint?

\[S = \int dx d\tau \{ i s A_B [\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \} \]

\[\hat{m} = \sqrt{2 - n_1^2 - n_2^2 (n_1 \hat{e}_1(x) + n_2 \hat{e}_2(x)) + (1 - n_1^2 - n_2^2) \hat{e}_3(x)} \]

\[\hat{e}_1 \times \hat{e}_2 = \hat{e}_3 = \hat{m}_{sp}(x) \]

\[\eta = n_1 + in_2 \quad \bar{\eta} = n_1 - in_2 \]

\[S = S_{sp} + \int dx d\tau \{ \bar{\eta} \partial_{\tau} \eta + H(\bar{\eta}, \eta) \} + O(\eta^3) \]

Bogoliubov transformation gives correction to GS energy
Metamagnetic endpoint?

Corrected first order curve bends slightly downward to intersect second order line
Metamagnetic endpoint?

\[\frac{h}{K} \]

\[\mathcal{E}_{FM} = \mathcal{E}_{cone} \]

\[\epsilon_1 = 0 \]

\[\mathcal{E}_{FM} - \mathcal{E}_{cone} \sim a\delta^2 - f(v)\delta^{5/2} \]

Control?

\[v = -1/4 - \varepsilon \]

\[\mathcal{E}_{FM} - \mathcal{E}_{cone} \bigg|_{\epsilon_1=0} \sim \varepsilon^3 \delta^2 - \varepsilon^2 \delta^{5/2} \]

\[\delta_c \sim \varepsilon^2 \ll 1 \]
Still need to understand multipolar phases!
Instabilities

- Choose $E_{FM} = 0$

What about multi-particle instabilities?
Low density limit

\[\hat{m}^x + i\hat{m}^y = (2 - \overline{\psi}\psi)^{1/2} \psi \]

\[\hat{m}^z = 1 - \overline{\psi}\psi \]

Low energy

\[\psi \sim \psi_1 e^{iqx} + \psi_2 e^{-iqx} \]

\[\mathcal{L} \sim \overline{\psi}_a (\partial_\tau + h - \frac{\delta^2}{2K} - 4\delta \partial_x^2)\psi_a \]

\[+ \gamma_1 [(\overline{\psi}_1 \psi_1)^2 + (\overline{\psi}_2 \psi_2)^2] + \gamma_2 \overline{\psi}_1 \psi_1 \overline{\psi}_2 \psi_2 \]

\[\gamma_1 = \frac{\delta^2}{4K} (1 + 4\nu) \]

\[\sim -\varepsilon \delta^2 < 0 \]

\[\gamma_2 = \frac{\delta^2}{K} (5 + 4\nu) \]

\[\sim + \delta^2 \]
Low density limit

\[H = -4\delta \sum_i \frac{\partial^2}{\partial x_i^2} + 2\gamma_1 \sum_{i<j} \delta(x_i - x_j) \]

\[\gamma_1 \sim -\varepsilon \delta^2 < 0 \]

attractive delta-function gas!

\[\epsilon_n = \epsilon_b \frac{n(n^2 - 1)}{6} \quad \epsilon_b = -\frac{\gamma_1^2}{8\delta} = -\frac{\varepsilon^2 \delta^3}{8} \]

collapse: bound states have size

\[\ell_n \sim \frac{\delta}{n|\gamma_1|} \sim \frac{1}{n\varepsilon \delta} \]
At low density level it appears higher bound state instabilities dominate.
Instabilities

- Choose $E_{FM}=0$

But the bound states cannot get arbitrarily deep - low density approximation is violated.
A guess

• Scaling

\[\epsilon_n \sim -\epsilon^2 \delta^3 n^3 \mathcal{F}(n\delta^{1/2}, \frac{\delta^{1/2}}{\epsilon}) \]

• Matching?

\[n\delta^{1/2} \gg 1 \quad \mathcal{F}(X, Y) \sim 1/X^2 f(Y) \]

• Suggests maximum bound state

\[n_{\text{max}} \sim \delta^{-1/2} \sim 1/\epsilon \]

(at this scale, 3-body interactions enter)
Instabilities

- Choose $E_{FM}=0$

Expect that n-boson bound states bend with increasing n to approach continuum line
Instabilities

• Choose $E_{FM}=0$

Expect that n-boson bound states bend with increasing n to approach continuum line.
Summary

Lifshitz point is a "parent" of many phases

\[S = \int dx d\tau \left\{ i s A_B [\hat{m}] + \delta |\partial_x \hat{m}|^2 + K |\partial_x^2 \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\} \]
Other frustrated ferromagnets

• In 1+1d, we could figure out (nearly) everything by numerically exact methods (DMRG)

• But in d>1, we have fewer tools but plenty of experiments
Eg. a frustrated ferrimagnet

volborthite

\[S = \int dxd^{d-1}y d\tau \left\{ isA_B[\hat{m}] + \delta |\partial_x \hat{m}|^2 + c |\partial_y \hat{m}|^2 + K |\partial^2_x \hat{m}|^2 + u |\partial_x \hat{m}|^4 - h \hat{m}_z \right\} \]

same saddle point analysis applies...