Two studies of frustration on the triangular lattice:

1. Bose Mott transitions on the Triangular Lattice

2. Is there room for exotica in Cs$_2$CuCl$_4$? Investigating the 1d-2d crossover

Frustrating Mott Transitions on the Triangular Lattice

• Leon Balents
• Anton Burkov
• Roger Melko
• Arun Paramekanti
• Ashvin Vishwanath
• Dong-ning Sheng

cond-mat/0505258

cond-mat/0506457
Outline (1)

• XXZ Model
 – persistent superfluidity at strong interactions
 – supersolid

• Dual vortex theory of Mott transition
 – Field theory
 – Mott phases in (dual) mean field theory
 – Supersolid as melted Mott state, and a candidate for deconfined Mott criticality
Bose Mott Transitions

• Superfluid-Insulator transition of bosons in a periodic lattice: now probed in atomic traps

Filling $f=1$: Unique Mott state w/o order, and LGW works

$f \neq 1$: localized bosons must order

Interesting interplay between superfluidity and charge order!

Triangular Lattice

- "Hard-core": no double occupancy
 \[\mathcal{P} = \text{hard-core projector} \]

\[H = -t \sum_{\langle ij \rangle} \mathcal{P} (b_i^\dagger b_j + \text{h.c.}) \mathcal{P} + V \sum_{\langle ij \rangle} n_i n_j \]

- S=1/2 XXZ model with FM XY and AF Ising exchange

\[H = \sum_{\langle ij \rangle} -\frac{J_{\perp}}{2} (S_i^+ S_j^- + \text{h.c.}) + J_z S_i^z S_j^z \]

- Frustration: Cannot satisfy all \(J_z \) interactions
 - no simple "crystalline" states near half-filling

Ising particle-hole symmetric

any solid order determined by kinetic energy
Supersolid Phase

• Recent papers on XXZ model find *supersolid* phase near $\frac{1}{2}$-filling

 - D. Heidarian, K. Damle, cond-mat/0505257
 - R. G. Melko *et al*, cond-mat/0505258
 - M. Troyer and S. Wessel, cond-mat/0505298

T=0

½ filling

from M. Troyer and S. Wessel

from Melko *et al*
Supersolid Phases

“ferrimagnetic”

spontaneous magnetization = phase separation

superfluid on \(\approx \frac{1}{4} \)-filled honeycomb

“interstitial lattice” of 1/3-triangular solid

particle-hole transform not identical

“antiferromagnetic”

superfluid on 1/2 -filled triangular

“interstitial lattice“ of honeycomb

“antiferromagnetic” solid

expect stabilized by 2\(^{nd}\) neighbor hopping
Surprises

- Superfluidity survives even when $V = J_z \to \infty$!

Symptomatic of frustration: superfluid exists within extensively degenerate classical antiferromagnetic ground state Hilbert space.

- Persistent superfluidity is exceedingly weak.

- Energy difference between 2 supersolid states is nearly unobservable.

$$\rho_s(J_z = \infty) \approx 0.04\rho_s(J_z = 0)$$ close to Mott insulator.
Mott Transition

- Goal: continuum quantum field theory
 - describes “particles” condensing at QCP

- Conventional approach: use extra/missing bosons
 - Leads to LGW theory of bose condensation
 - Built in diagonal order, the same in both Mott and SF state

- Dual approach: use vortices/antivortices of superfluid
 - non-LGW theory, since vortices are non-local objects
 - focuses on Mott physics, diagonal order is secondary
 - theory predicts set of possible diagonal orders
Duality

• Exact mapping from boson to vortex variables

\[n = \frac{1}{2\pi} \vec{\nabla} \times \vec{A} \]

\[\vec{\nabla} \phi = 2\pi \hat{z} \times \vec{E}, \]

\[\vec{\nabla} \cdot \vec{E} = N \]

\[\oint \vec{\nabla} \phi \cdot d\vec{l} = 2\pi \]

\[\int d^2 x B = 2\pi \]

• Dual magnetic field

\[B = 2\pi n \]

• Vortex carries dual U(1) gauge charge

\[n = 1 \]

\[\vec{v}_{sf} \propto \vec{\nabla} \phi \]

\[\vec{E} \]

\[N = 1 \]

• All non-locality is accounted for by dual U(1) gauge force
Dual Theory of QCP for f=1

- Two completely equivalent descriptions
 - really one critical theory (fixed point) with 2 descriptions

C. Dasgupta and B.I. Halperin,
Phys. Rev. Lett. 47, 1556 (1981);

\[S = \int d^3x \left[|\partial_\mu \psi|^2 + s|\psi|^2 + u|\psi|^4 \right] \]

\[\tilde{S} = \int d^3x \left[|(\partial_\mu - iA_\mu)\varphi|^2 + \tilde{s}|\varphi|^2 + u|\varphi|^4 + \frac{1}{2e^2}(\epsilon_{\mu\nu\lambda}\partial_\nu A_\lambda)^2 \right] \]

- N.B.: vortex field \(\varphi \) is not gauge invariant
 - not an order parameter in Landau sense

- Real significance: "Higgs" mass \(|\langle \varphi \rangle|^2 A^2 \)
 indicates insulating dielectric constant \(\epsilon_d \sim 1/|\langle \varphi \rangle|^2 \)
Non-integer filling $f \neq 1$

- Vortex approach now superior to Landau one
 - need not postulate unphysical disordered phase

- Vortices experience average dual magnetic field
 - physics: phase winding

- Vortex field operator transforms under a *projective* representation of lattice space group

Aharonov-Bohm phase in vortex wavefunction encircling dual flux

2π winding of boson wavefunction on encircling vortex
Vortex Degeneracy

- Non-interacting spectrum = honeycomb Hofstadter problem
- Physics: magnetic space group

\[T_1 T_2^{-1} T_3 T_1^{-1} T_2 T_3^{-1} = e^{2\pi i f} \]

and other PSG operations

- For \(f = p/q \) (relatively prime) and \(q \) even (odd), all representations are at least \(2q \) \((q)\)-dimensional

- This degeneracy of vortex states is a robust property of a superfluid (a “quantum order”)
1/3 Filling

• There are 3 vortex “flavors” ξ_1, ξ_2, ξ_3 with the Lagrangian

$$\mathcal{L} = \sum_{\ell} \left[|(\partial_{\mu} - iA_{\mu})\xi_{\ell}|^2 + s|\xi_{\ell}|^2 \right] + \frac{1}{2e^2} (\epsilon_{\mu\nu\lambda} \partial_{\nu}A_{\lambda})^2 + u(\sum_{\ell} |\xi_{\ell}|^2)^2 + \sum_{\ell \neq \ell'} \{v|\xi_{\ell}|^2|\xi_{\ell'}|^2 + w \text{ Re } [(\xi_{\ell}^*\xi_{\ell'})^3]\}$$

• Dual mean-field analysis predicts 3 possible Mott phases

v>0:

1/3 solid of XXZ model

v<0:

Expect “deconfined” Mott QCP with fluctuations included
½-Filling

• $2 \times 2 = 4$ vortex flavors with pseudo-spinor structure $z_{\pm\sigma}$
 - Space group operations appear as “rotations”

\[T_1, T_2, T_3, R_{2\pi/3} \]

• Order parameters

\[\tilde{S}_\alpha = z_\alpha^* \vec{\tau} z_\alpha \]

\[\psi = e^{i\pi/4} z_+^* \vec{\tau} z_- \]

\[\vec{d} = z_+^* \vec{\tau} z_- \]

XXZ supersolid diagonal order parameter

ordering wavevectors
Dual $\frac{1}{2}$-Filling Lagrangian

\[
\mathcal{L} = \mathcal{L}_0 + u \left(|S_+| + |S_-| \right)^2 + v |S_+||S_-| + w_1 \vec{S}_+ \cdot \vec{S}_- + w_2 \sum_{\alpha} \left((S_{x\alpha}^\alpha)^4 + (S_{y\alpha}^\alpha)^4 + (S_{z\alpha}^\alpha)^4 \right) - w_3 \text{Re} \left(\psi^6 \right) \]

- Emergent symmetry:
 - Quartic Lagrangian has SU(2)×U(1)×U(1)_g invariance
 - SU(2)×U(1) symmetry is approximate near Mott transition
 - Leads to “skyrmion” and “vortex” excitations of SU(2) and U(1) order parameters

- Mean field analysis predicts 10 Mott phases
 - e.g. $v,w_1<0$

Note similarity to XXZ supersolids
Hard-Spin Limit: Beyond MF analysis

• Example: $v, w_1 < 0$: $\vec{s}_+ = \vec{s}_- \quad |S_+| = |S_-| = \text{const.}$

 - Solution: $z_{\pm \sigma} = z_\sigma e^{\pm i\theta/2}$
 $z_\sigma^* z_\sigma = 1$

 - \mathbb{Z}_2 gauge redundancy: \[
 \begin{align*}
 & z_\sigma \rightarrow -z_\sigma \\
 & \theta \rightarrow \theta + 2\pi
 \end{align*}
 \]

• Hard-spin (space-time) lattice model:

\[
\mathcal{L}_{\text{eff}} = -t z_i \sigma_{i\mu} e^{-iA_{i\mu}} z_{i\sigma}^* z_{i+\mu\sigma} - t \theta \sigma_{i\mu} \cos(\Delta_{\mu \theta i}/2) + \frac{1}{2e^2} (\epsilon_{\mu\nu\lambda} \Delta_{\nu A_i \lambda})^2
\]

• \mathbb{Z}_2 gauge field
• $\mathbb{C}P^1$ field
• XY field
• $U(1)$ gauge field

Phase Diagram

- Blue lines: LGW “roton condensation” transitions
- Red lines: non-LGW transitions
 - Diagonal order parameters change simultaneously with the superfluid-insulator transition
- Should be able to understand supersolids as “partially melted” Mott insulators
Physical Picture

- Superfluid to columnar VBS transition of $\frac{1}{4}$-filled honeycomb lattice!
Skyrmion

• VBS Order parameter: pseudo-spin vector $\langle \vec{S} \rangle = S_0 \hat{n}$

$\hat{n} = (100)$ $(00-1)$ (001) $(0-10)$ (010) (-100)

• Skyrmion:
 - integer topological index
 - finite size set by irrelevant “cubic anisotropy”

\[Q = \frac{1}{4\pi} \int d^2r \hat{n} \cdot \partial_x \hat{n} \times \partial_y \hat{n} \]

• Boson charge is bound to skyrmion!

$N_b = Q$
Mott-SS3 Criticality

• SS3-Mott transition is *deconfined quantum critical point*
 - Non-compact CP¹ universality class
 - Equivalent to hedgehog-free O(3) transition

• Disordering of pseudospin

• Hedgehogs = skyrmion number changing events

Motrunich+Vishwanath

skyrmions condense: superfluid
Conclusions (1)

• Frustration in strongly interacting bose systems seems to open up a window through to observe a variety of exotic phenomena
• The simplest XXZ model exhibits a robust supersolid, and seems already quite close to non-trivial Mott state
• It will be interesting to try to observe Mott states and deconfined transitions by perturbing the XXZ model slightly (Chromium condensate?)
 – Cartoon pictures of the supersolid and Mott phases may be useful in suggesting how this should be done
Is there room for exotica in Cs$_2$CuCl$_4$? Checking the consistency of a “prosaic” 1d-2d crossover.

L.B.
O. Starykh, University of Utah
Cs$_2$CuCl$_4$: magnetic structure

\[\mathcal{H} = \sum_{(ij)} J_{ij} \vec{S}_i \cdot \vec{S}_j - \sum_{(ij)} \vec{D}_{ij} \cdot \vec{S}_i \times \vec{S}_j - \hbar \cdot \sum_i \vec{S}_i \]

• (Very good) approximate conservation of total S^a
2d Spin Liquid Physics?

- Broad inelastic neutron spectra have been interpreted as evidence for “exotic” physics.
 - Scenario: some “exotic” effective field theory governs intermediate energy behavior

\[E \sim J \]
Decoupled chains

\[E \sim J', D? \]
exotic

\[E \sim T_N \]
ordered

- Is there room?
 - investigate possibility of direct crossover
 - i.e. assume most relevant perturbations of decoupled chains drive ordering, and study resulting phase diagram (can be done by RG+”chain mean field theory”)

Measurement of Couplings

- Single-magnon energies of fully-polarized state (in a-direction) exactly related to Hamiltonian parameters

- Fit gives

\[J \approx 0.37 \text{ meV} \]
\[J' \approx 0.3 \text{ J} \]
\[D \approx 0.05 \text{ J} \]

- Spatially anisotropic S=1/2 antiferromagnet with non-negligible DM interaction
Low-T phase diagram

• Very different behavior for two field orientations indicates importance of DM interaction

• Phase diagram in transverse field roughly agrees with classical analysis

• How well can we understand this phase diagram from a quasi-1d approach?

S=1/2 AF Chain: a primer

\[\mathcal{H} = J \sum_x \vec{S}(x) \cdot \vec{S}(x+1) - h \sum_x S^z(x) \]

- **Exact solution:**
 - Power-law spin (and dimerization) correlations

 \[h = 0 \quad h \rightarrow h_{\text{sat}} \quad \delta = \pi M \]

- XY AF correlations grow with h and remain commensurate
- Ising “SDW” correlations decrease with h and shift in k
- Even all amplitudes of these correlations are known (Hikihara+Furusaki, 2004)
An Academic Problem

- **D=h=0, J’ \ll J**: Spatially anisotropic triangular lattice AF

 - problem: J’ is frustrated: S_π doesn’t couple on neighboring chains

 - naïve answer: spiral state with exponentially small gap due to “twist” term $\vec{S}_\pi \cdot \partial_x \vec{S}_\pi$

 - True answer: effective 2nd–neighbor chain couplings generated $\sim (J')^4/J^3$

- Probable GS: four-fold degenerate “diagonal dimer” state
Why it’s academic

• Even $D=0.05J \gg (J')^4/J^3$ (with constants)
• DM allows *relevant* coupling of S^b_{π} and S^c_{π} on neighboring chains
 – immediately stabilizes spiral state
 – small J' *perturbatively* makes spiral weakly incommensurate

\[
\mathcal{H}_{\text{eff}} \sim \sum_{y \in 2\mathbb{Z}} \left[D \left(S^b_{\pi}(y) S^c_{\pi}(y + 1) - S^c_{\pi}(y) S^b_{\pi}(y + 1) \right) + J' \vec{S}_{\pi}(y) \cdot \partial_x \vec{S}_{\pi}(y + 1) \right]
\]

relevant: dim = 1 marginal: dim = 2
Transverse Field

- DM term becomes *more relevant*
- b-c spin components remain commensurate: XY coupling of “staggered” magnetizations still cancels by frustration (reflection symmetry)
- Spiral (cone) state just persists for all fields.

Experiment:

Order *increases* with h here due to increasing relevance of DM term

Order *decreases* with h here due to vanishing amplitude as h_{sat} is approached
Longitudinal Field

- DM term: $S^b S^c \sim S^z S^{\pm}$
 - wavevector mis-match for $h>0$: DM “irrelevant” for $h \gtrsim D$
- With DM killed, sub-dominant instabilities take hold
- Two important couplings for $h>0$:
 \[\mathcal{H}_{\text{eff}} \sim \sum_{y \in 2\mathbb{Z}} \left[J' \sin(\delta) S_{\pi-2\delta}(y) S_{\pi+2\delta}(y+1) + J' \left(S^+_{\pi}(y) \partial_x S^-_{\pi}(y+1) + \text{h.c.} \right) \right] \]
 \[\begin{array}{l}
 \text{dim } 1/2\pi R^2 \\
 \text{“collinear” SDW}
 \end{array} \]
 \[\begin{array}{l}
 \text{dim } 1+2\pi R^2 \\
 \text{spiral “cone” state}
 \end{array} \]
- “Critical point”: $2\pi R^2 = (\sqrt{5} - 1)/2 \approx 0.62$

Predicts spiral state for $h > h_c \approx 0.9 h_{\text{sat}} \approx 7.2 \text{ T}$

observed for $h > 7.1 \text{T}$
• **Guess:** “spin liquid” region is really SDW with low ordering temperature

 - expected since amplitude of SDW interaction vanishes at $h=0$, and relevance (in RG sense) decreases with h.
Beyond the naïve

• Collinear state is not truly collinear:
 - “irrelevant” DM involves $\sim D S_y^b S_{y+1}^c$
 - effective oscillating field in c-direction with $\langle S^b \rangle \neq 0$:
 result is very elongated cycloid

• “Collinear” SDW state locks to the lattice at low-T
 - “irrelevant” (1d) umklapp terms become relevant once
 SDW order is present (when commensurate)
 - strongest locking is at $M=1/3 M_{sat}$

• Same “uud” state predicted by large-S expansion (Chubukov…)

• coincidentally uud state seems to occur near maximum T_c of collinear region
Cs$_2$CuBr$_4$

- Isostructural to Cs$_2$CuCl$_4$ but believed to be less quasi-1d

T. Ono et al, 2004

- Magnetization plateau at $M=1/3\, M_{\text{sat}}$ observed for longitudinal but not transverse fields

(additional feature at $2/3\, M_{\text{sat}}$)

- “Commensurate Collinear” order of some sort has apparently been observed in Cs$_2$CuCl$_4$ recently (Coldea, private communication)
Conclusions (Cs$_2$CuCl$_4$)

• A quasi-1d approach based on direct decoupled chain → ordered crossover is quite successful in explaining low-energy behavior
• Work in progress to calculate ordering temperature, wavevector, spin stiffness, etc. quantitatively
• Appears likely the “spin liquid” state is just another ordered (quasi-collinear) phase with low T_c
 – perhaps can observe “uud” commensurate state?
• “Exotic” scenario with intervening non-trivial fixed point seems rather unlikely

• A proper theoretical calculation (open problem!) of the inelastic spectrum in a 1d-2d crossover is sorely needed.