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Abstract

Readout and Calibration of Large Format Optical/IR MKID Arrays and Applications

to Focal Plane Wavefront Control

by

Neelay Fruitwala

Microwave Kinetic Inductance Detectors (MKIDs) are a cryogenically cooled, super-

conducting detector technology with applications in astronomical observations in the

radio through gamma-ray wavelengths. In the optical and IR, MKIDs have zero read

noise, single photon sensitivity, microsecond time resolution, and broadband energy res-

olution. These properties make MKIDs ideal for directly imaging exoplanets, as high

sensitivity/low noise are required for observing faint companions, and energy and time

resolution are useful for resolving atmospheric aberrations which are the dominant noise

source for such observations. Two MKID cameras have been built for this purpose:

the 20,000 pixel MKID Exoplanet Camera (MEC) at Subaru Observatory and 10,000

pixel DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotome-

ter (DARKNESS) camera at Palomar Observatory.

The first chapter of this thesis will discuss the development and testing of a second

generation digital readout system for large format optical/IR MKID arrays. Our system

retains much of the core signal processing architecture from the first generation system,

but with a significantly higher bandwidth, enabling readout of kilopixel MKID arrays.

Each set of readout boards is capable of reading out 1024 MKID pixels multiplexed over

2 GHz of bandwidth; two such units can be placed in parallel to read out a full 2048

pixel microwave feedline over a 4 – 8 GHz band. As in the first generation readout, our

system is capable of identifying, analyzing, and recording photon detection events in real
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time with a time resolution of order a few microseconds. We describe the hardware and

firmware, and present an analysis of the noise properties of the system. We also present

a novel algorithm for efficiently suppressing IQ mixer sidebands to below -30 dBc.

The second chapter will focus on the development of a machine learning pipeline for

automating the calibration of large MKID arrays. This process involves determining the

resonant frequency and optimal drive power of every pixel (i.e. resonator) in the array,

which is typically done manually. We instead use a deep-learning based object detection

scheme to localize correctly-driven resonators in the 2D (power x frequency) frequency

response data. Our method has performance equal to that of manual tuning, and only

takes 12 minutes of computational time per 2000 pixels, as opposed to 4-6 hours for the

manual method.

The final chapter will focus on the development of wavefront sensing and control

algorithms to enable more sensitive exoplanet imaging. We implement an additional

feedback loop between the MKID focal plane camera and adaptive optics (AO) system

deformable mirror (DM) to correct residual optical aberrations in real time. Using a sim-

ple Fourier mode based technique (speckle nulling), we demonstrate in-lab convergence

times < 1 second at a control rate of 30 Hz. We also show on-sky suppression of qua-

sistatic speckles by 25% with a convergence time of 10 seconds. Preliminary work on a

system identification scheme for improved calibration and control will also be discussed.
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Chapter 1

Introduction

1.1 High Contrast Imaging

High contrast imaging (or direct imaging) is a technically challenging but useful

technique for characterizing faint stellar companions such as debris disks and exoplanets.

It is sensitive to regions of (mass/separation) parameter space complementary to other

exoplanet detection and characterization techniques (figure 1.1), and is more naturally

suited to spectroscopic characterization of companions. High contrast imaging using large

thirty-meter-class ground based telescopes may even enable characterization of habitable-

zone planets around M-stars.

Ground-based high contrast imaging systems generally require an adaptive optics

(AO) system to correct for short-timescale (∼ 10 ms) optical aberrations caused by at-

mospheric turbulence, followed by a coronagraph to optically suppress the diffraction

pattern of the central star (known as the point spread function, or PSF). Current instru-

ments are limited to a performance of ∼ 10−6 due to a “speckle” background of scattered

starlight.
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Introduction Chapter 1

Figure 1.1: Mass vs orbital period plot of all currently known exoplanets. Unlike
the radial velocity and transit methods, the sensitivity of high contrast imaging in-
creases with separation (indicated here by orbital period). Figure reproduced from:
https://exoplanetarchive.ipac.caltech.edu.

DM
From 

Telescope

WFSController

Coronagraph

AO System

Science Camera

Figure 1.2: Block diagram of a basic high contrast imaging setup. Incoming light
from the telescope is first stabilized/corrected by the AO system, then passed through
the coronagraphic optics and finally imaged by the science camera. A beamsplitter
or dichroic controls how the light is divided between the WFS and science camera;
typically, shorter (. 1000 nm) wavelengths are used for wavefront sensing while longer
wavelengths are used for science imaging.

2
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Introduction Chapter 1

1.1.1 Adaptive Optics

AO is a control system used for correcting atmosphere-induced optical abberations.

It is crucial for ground-based high contrast imaging, as atmospheric turbulence causes

light from astronomical sources to diffract into a “seeing-limited” point spread function

(PSF) with characteristic angular size (λ/r0 ∼ 1 arcsec) in the focal plane. This is

comparable to the scale (i.e. angular distance between the primary and it’s companions)

of extrasolar systems of interest [1, 2], making it nearly impossible to distinguish between

the primary and companion in the focal plane. Modern adaptive optics systems are

capable of concentrating 70-90% [3] of starlight (and light from the companion) into a

diffraction limited image; i.e. the only resolution limit is that imposed by the optics

inside the telescope. The remaining scattered light outside of this diffraction pattern still

poses a significant problem for high contrast imaging, which we discuss in section 1.1.3.

In its simplest form, an AO system has a wavefront sensor camera (WFS) for measur-

ing the phase of the aberrated wavefront, and a deformable mirror (DM), for correcting

the wavefront in real time. These components are generally connected in a closed-loop

fashion; i.e. the WFS is downstream of the DM, such that it measures residual aberra-

tions that remain uncorrected by the DM.

The most common wavefront sensors (and the ones used in this thesis) are Shack-

Hartmann WFS and Pyramid WFS. A Shack-Hartman WFS consists of a lenslet array

located in the pupil plane of the optical system. Each lenslet in the array will image that

region of the pupil plane into a spot in the focal plane; the location of the spot can be

used to infer the local slope of the wavefront [4]. A pyramid WFS consists of a pyramid-

shaped optic with a tip located in the focal plane. This optic creates four images of the

pupil (one for each pyramid face), the relative intensity patterns of which can be used to

solve for the wavefront phase [5, 6]. Relative to the pyramid WFS, the Shack-Hartman

3



Introduction Chapter 1

Figure 1.3: Schematic of a simple AO system. The phase of the distorted wavefront is
measured by the WFS, and corrected in a closed-loop fashion by the DM. The DM is
a flexible mirror whose shape is modulated by an array of actuators. WFS images are
not generally useful for scientific measurements, so light is typically split between the
WFS and a dedicated science camera. Reproduced from the Lyot Project (lyot.org)

4
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Introduction Chapter 1

is relatively stable and highly linear (i.e. the spot displacements are linear in wavefront

phase error over a relatively large range), but suffers from low sensitivity to low-order

aberrations [7].

Modern AO systems built with an eye towards high contrast imaging often have

feedback rates upwards of 2 kHz and DM actuator counts in the few thousands [3, 8].

These high actuator count DMs allow for the correction of high-order (i.e. high spatial

frequency) aberrations that may have relatively little effect on the stellar PSF but could

interfere with signal from a companion. It is also common to have a multi-stage system,

where each stage is tuned for correcting a certain aberration regime. One example of this

is a “woofer-tweeter” architecture, where a high-stroke, low actuator count DM stage is

used for correcting low-order aberrations, and is followed by a low-stroke, high actuator

count DM stage for correcting high-order aberrations [3, 8, 9].

1.1.2 Coronagraphy

A coronagraph generally consists of a series of focal plane and pupil plane masks de-

signed to suppress the diffraction pattern resulting from on-axis starlight, while maximiz-

ing the thoughput of any off-axis signal. The Lyot coronagraph (figure 1.4) is one of the

simplest and most widespread designs; its advantages include broadband wavelength cov-

erage and robustness to wavefront errors (especially tip/tilt PSF jitter). Other designs,

such as the phase induced amplitude apodization (PIAA) or vector-vortex coronagraph

offer increased suppression at smaller separations at the cost of increased sensitivity to

wavefront error [7].

5
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Figure 1.4: Schematic of a Lyot coronagraph, showing two conjugate pupil planes
(P1 and P3), and two focal planes (P2 and P4). A focal plane mask at P2 blocks
out the on-axis PSF core, while an optic known as the “Lyot stop” at P3 obscures
the resulting diffraction ring around the edge of the pupil. The final (under ideal
conditions!) focal plane image is shown at P4. Figure reproduced from Ref. [10].

1.1.3 Speckles

The dominant noise source in high contrast imaging is the speckle background; i.e. a

pattern of scattered starlight that can obscure the light from a companion. This speckle

background has two major sources:

1. Quasistatic speckles, or non-common path aberrations (NCPA), result from op-

tical aberrations that are downstream of the AO system (and so aren’t sensed or

corrected for). These aberrations are caused by mechanical changes/imperfections

in the instrument, and vary on relatively slow timescales (tens of minutes).

2. Atmospheric speckles result from atmosphere-induced aberrations that are not

corrected by the AO system. These vary on timescales of ∼ 10 ms [11]. These have

a variety of possible causes, including [7]:

• Chromaticity: difference in wavelength between wavefront sensor and science

6
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images

• Bandwidth Error: atmospheric fluctuations that have higher frequency than

the AO system control bandwidth (i.e. feedback loop frequency)

• Amplitude aberrations

• WFS measurement noise: depending on the camera and system configuration

this could be either detector read noise or photon noise

A variety of post-processing techniques exist for mitigating the impact of quasistatic

speckles, such as angular differential imaging (ADI) and spectral differential imaging

(SDI). Atmospheric speckles too quickly to be effectively imaged for subtraction in post-

processing in conventional imagers; they will generally average down into a diffuse “halo”

around the stellar PSF.

1.1.4 Focal Plane Wavefront Control

Focal plane wavefront control (FPWC) involves measuring and correcting wavefront

error using data from the focal plane science camera. Since FPWC uses the same images

for both science and wavefront sensing, it avoids both chromatic wavefront error and

NCPA, making it a useful tool for reducing the speckle background. FPWC requires a

stable, well calibrated system, so the main AO loop is still required to perform the initial

correction; FPWC is run concurrently as an additional input to the DM (figure 1.5).

Focal plane images only measure electric field intensity, so there is no straightforward

way to directly extract the wavefront phase. This is usually accomplished by applying

“probe” patterns to the DM which coherently interfere with the speckle pattern. With

enough probes, the set of interference patterns can be used to calculate the electric field

phase, allowing the aberrations to be corrected by the DM. Performing this calculation

requires some form of a calibrated system model; i.e. knowledge of the focal plane electric

7
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DM
From 

Telescope

WFSController

Coronagraph

AO System

Science Camera

Focal Plane Control Loop

Figure 1.5: Schematic of focal plane wavefront control (FPWC). Abberations are
measured in the focal plane by the science camera, and corrected in real time by the
deformable mirror (DM). FPWC has several advantages: it is not limited by WFS
sensitivity or chromatic differences between the WFS and science camera, and allows
for the correction of NCPA not seen by the WFS. Since FPWC is implemented as
a secondary control loop on top of the main AO loop, corrections must be applied
as offsets to the convergence point of the primary loop (if corrections were applied
directly to the DM, it would be sensed as an aberration by the WFS and removed by
the main loop).

field response to each applied DM probe. Some control algorithms, such as electric field

conjugation (EFC) [12], require the full Jacobian matrix mapping DM actuator offsets

to per-pixel electric field response, while others, such as speckle nulling [13, 14], use

a Fourier-based approximation requiring only a simple calibration. In general, simpler

approaches sacrifice performance (in terms of achievable contrast) for robustness.

Speckle nulling at low framerates (< 1Hz) has been demonstrated on ground-based

systems; including in-lab tests at the Palomar and Keck Observatories [13], and an on-sky

test at Subaru Observatory [15].

1.2 Microwave Kinetic Inductance Detectors

An MKID is a cryogenically cooled superconducting resonator consisting of an induc-

tor/capacitor pair. The circuit gets its inductance primarily from the kinetic energy of

the Cooper pairs in the supercurrent (hence the term kinetic inductance). When a photon

8
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is absorbed by the inductor, some of the Cooper pairs are broken (creating free electrons

known as “quasiparticles”), changing the inductance and hence the resonant frequency

and quality factor of the circuit. The number of quasiparticles created is proportional to

the energy of the incident photon, which gives the MKID intrinsic energy resolution. To

read out the detector, the resonator is driven by a microwave probe signal tuned to its

resonant frequency and the probe signal is monitored for changes in its relative phase.

A photon detection event manifests as a pulse in phase with a steep rise (∼ 1 µs) and

an (approximately) exponential decay with (τ ≈ 15 µs). Our devices are designed to

operate in the linear regime, where δφ ∝ δf ∝ δE [16, 17].

One of the primary advantages of MKIDs over other superconducting detector tech-

nologies is the intrinsic frequency domain multiplexibility; the resonant frequency of each

pixel can be easily tuned in fabrication. This allows large numbers of resonators, each

tuned to a different frequency, to be placed in parallel on a single microwave channel.

This greatly simplifies the cryogenic wiring and electronics, shifting the complexity to

the room temperature readout system [18, 19, 20, 21].

MKIDs’ single photon sensitivity, intrinsic energy resolution, and microsecond-scale

time resolution make them ideally suited to the study of highly time-variable phenom-

ena such as pulsars [22] and compact binaries [23]. MKIDs are also suited to serve as

IFUs (integral field units) for exoplanet direct imaging, which requires high sensitivity

(due to the extremely low flux from companions), and benefits from high time resolution

(to resolve atmospheric effects). The first generation optical/IR MKID instrument, AR-

CONS (Array Camera for Optical to Near-IR Spectrophotometry, a 2 kilopixel IFU at

Palomar Observatory) [19], was built primarily for high time resolution astronomy, while

two second generation instruments, DARKNESS (DARK-speckle Near-infrared Energy-

resolving Superconducting Spectrophotometer, a 10 kilopixel IFU at Palomar)[20], and

MEC (MKID Exoplanet Camera, a 20 kilopixel IFU at Subaru Observatory)[21], were

9
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purpose-built for high contrast imaging. A third instrument, PICTURE-C, a 10 kilopixel

IFU for balloon-borne high contrast imaging, is currently under development [24].

1.2.1 Digital Readout for Large Arrays

The readout procedure for large format arrays generalizes the single pixel readout

described in section 1.2. A comb of probe tones, one at each resonator frequency, is

used to drive the MKIDs. Each resonator acts as a notch filter centered on its resonant

frequency, modifying the phase and amplitude of its probe tone while leaving other

tones comparatively untouched. After transmission through the array, the tones are

downconverted and digitized, and each tone is independently montitored for changes in

its relative phase.

A first generation readout for optical MKIDs was developed in 2011 for the ARCONS

instrument. This system is capable of reading out 256 channels in a 512 MHz band on

each readout board [25]. Eight boards were used simultaneously to readout the 2048

pixel ARCONS instrument. In order to feasibly scale up to the kilopixel arrays used by

the second generation of optical MKID instruments, we have developed a new readout

system capable of reading out up to 1024 channels per unit over 2 GHz of bandwidth. This

system largely retains the signal processing algorithm chain found in the first generation

readout, albeit with major changes to the hardware and firmware to accommodate the

higher bandwidth.

The second generation of MKID arrays are in the 10-20 kilopixel range, with pixels

split up into several microwave feedlines, each containing 2000 pixels inside the 4-8 GHz

band. We expect a maximum photon event rate of 2500 counts/pixel/second. Due to data

transmission and storage constraints, we require that each event be identified, analyzed,

and recorded in real time. Following these constraints, we define the following system

10
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requirements:

• Generation of a 2000 tone comb in a 4-8 GHz band, with arbitrary tone frequencies

and powers.

• Channelization: the ability to isolate a 200-500 kHz wide channel centered around

each tone

• Low noise: the noise floor of each channel must be lower than the device noise and

cryogenic amplifier noise

• Sample each channel at a rate of ∼ 1 µs

• Implement a filtering and triggering system that is capable of detecting photon

events in real time and accurately determining the associated phase pulse amplitude

In chapter 2, we describe the design, development, and testing of the second generation

readout system.

1.2.2 Frequency Comb Calibration

Calibrating the comb of probe tones used to drive the MKID array consists of the

following two stages: 1) identification of resonator frequencies; and 2) tuning the drive

power of each resonator probe tone. Due to imperfections in the array fabrication pro-

cess, resonator frequencies deviate significantly more (from their design values) than the

average resonator frequency spacing, and must be measured empirically. Additionally,

the photon detection SNR of each resonator is very sensitive to the power of its input

probe tone [26, 27]. This “ideal” drive power varies considerably across the array and

must be tuned individually for each resonator.

The calibration process requires significant manual intervention and can be pro-

hibitively time consuming; calibrating a single 2000 pixel feedline can take 4-6 hours.
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Because calibration is required to fully characterize an MKID array, this process can

present a significant bottleneck for testing new devices.

Machine learning has been shown to be a promising method for tuning resonator drive

power [28]. However, using machine learning to tune power alone (and not frequency)

suffers from a few pitfalls, and we find that manual tuning is still required to refine the

ML selected powers. Building on this earlier work, we developed a unified deep learning

framework for performing both frequency and power calibration steps simultaneously.

In chapter 3, we provide an overview of our algorithm and present the results of an

end-to-end performance test.

1.3 MKIDs for High Contrast Imaging

MKIDs’ single photon sensitivity, microsecond time resolution, and intrinsic energy

resolution in the near-IR (700-1400 nm) wavelength band make it an ideal detector

technology for both high-contrast science and for characterizing and removing the speckle

background. A number of speckle subtraction techniques utilizing MKIDs are being

explored, both in realtime and post-processing.

One such post-processing technique is stochastic speckle discrimination (SSD). SSD

exploits the fact that the temporal intensity distribution resulting from coherently inter-

fering speckles (e.g. “pinned” atmospheric speckles interfering with quasistatic speckles)

obeys a Modified-Riccian (MR) function, while the intensity from an incoherent source

(e.g. companion object) is Poisson distributed. MKIDs are ideally suited for SSD anal-

ysis, as observing the MR distribution requires exposures on similar timescales as atmo-

spheric speckle convergence times (∼ 10 ms). SSD has been implemented using both

MEC and DARKNESS data. Recently, SSD with MEC has aided in the detection of a

≈ 6 AU companion around HIP 109427 [29]. A bin-free version of SSD, which operates

12



Introduction Chapter 1

directly on the distribution of photon arrival times, is also being explored [30].

In realtime, both coherent differential imaging (CDI) based techniques and FPWC are

being explored. For CDI, the DM is modulated by a pre-defined probe pattern at a rate

faster than the atmospheric speckle coherence time. The interference pattern produced by

this modulation can be used to characterize (both atmospheric and quasistatic) speckles

and distinguish them from any incoherent source.

FPWC with MKIDs can enable faster, more efficient subtraction of quasistatic speck-

les (leaving more time for science observations), and could also potentially be used to

subtract fast-varying atmospheric speckles. In chapter 4, we describe an implementation

of the speckle nulling algorithm using MKIDs as a focal plane wavefront sensor.

1.3.1 DARKNESS

The Dark-speckle Near-IR Energy-resolved Superconducting Spectrophotometer (DARK-

NESS) is a 10,000 pixel MKID IFU (integral field unit), designed to interface with the

stellar double coronagraph (SDC) behind the PALM-3000 (P3K) AO system [9] at the

Palomar Observatory 200” Hale telescope. DARKNESS is tuned to near-IR (700-1400

nm) wavelengths, optimized for observing companions around low-mass K and M type

stars. SDC is a modular coronagraphy platform that is capable of using a variety of

coronagraph masks, including a vector vortex coronagraph (VVC) capable of achieving

inner working angles ∼ 1λ/D [31]. P3K utilizes a Shack-Hartman wavefront sensor, and

has two deformable mirrors (one with 3388 actuators and another with 241) for both

high and low order corrections. It can achieve control loop frequencies of up to 2 kHz.

[32].

My contributions to DARKNESS include readout integration and testing at Palomar,

developing calibration and control software, and device testing. I also performed on-sky
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Figure 1.6: Photograph of DARKNESS (left) mounted underneath P3K in the Palo-
mar Observatory AO lab.

observations and in-lab speckle nulling tests.

1.3.2 MEC

The MKID Exoplanet Camera (MEC) is a scaled up version of DARKNESS, with a

20,000 pixel MKID array. It serves as a science camera and focal-plane wavefront sensor

(FPWS) behind SCExAO (Subaru Coronagraphic Extreme Adaptive Optics) at the 8.2

meter Subaru telescope on Mauna Kea. SCExAO is a high contrast imaging instrument

with an integrated coronagraph and AO system, operating behind the Subaru telescope

AO188 facility AO system. It has a 2000 actuator deformable mirror (DM) and pyramid

wavefront sensor for high-order wavefront correction, complementing the low order facility

AO system. The system is capable of control loop frequencies of up to 3.5 kHz. With a

modified PIAA or vortex coronagraph, SCExAO can achieve a contrast of 10−6 at 1 λ/D

[33]. Unlike DARKNESS, MEC is permanently mounted to the backend of SCExAO

(along with several other science cameras), greatly increasing the availability and ease of
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Figure 1.7: SCExAO bench at the nasymth-IR platform at Subaru Observatory, with
MEC attached as a science camera. Figure reproduced from [21].

in-lab bench testing.

My contributions to MEC include device simulations and fabrication mask layout,

readout system testing/deployment, optical alignment at SCExAO, and software inte-

gration with the SCExAO realtime controller (RTC).

The SCExAO realtime control software was written using Compute And Control

for Adaptive Optics (CACAO) [34]. CACAO is a modular, hardware agnostic software

package that provides a framework for implementing complex control algorithms using

multiple sensor inputs and controller outputs (e.g. DM, tip tilt mirror). It provides a

unified shared memory format for realtime I/O, and has utilities for calibration, telemetry,

and process management.

1.4 Permissions and Attributions

1. The content of chapter 2 and appendices A, B, and C is the result of a collaboration

with Paschal Strader, Gustavo Cancelo, Ted Zmuda, Ken Treptow, Neal Wilcer,
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Chris Stoughton, Alex B. Walter, Nicholas Zobrist, Giulia Collura, Isabel Lipartito,

John I. Bailey III, and Benjamin A. Mazin, and was originally published in the AIP

Review of Scientific Instruments [35].

2. The content of chapter 3 is the result of a collaboration with Alex B. Walter, John I.

Bailey III, Rupert Dodkins, and Benjamin A. Mazin, and was originally published

in the Journal of Astronomical Telescopes, Instruments, and Systems [36].
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Chapter 2

Second Generation Digital Readout

2.1 System Overview

The full readout system consists of several readout units, each of which can read out

up to 1024 resonator channels in a 2 GHz band. Two such units can be placed in parallel

to read out a full 4 GHz feedline. Because the resonant frequency band lies outside the

range of readily available ADCs, we use an IQ modulation scheme to perform up/down

conversion between the digital room temperature electronics (-1 to 1 GHz) and the res-

onators (4 to 6 GHz or 6 to 8 GHz). Each readout unit has three major components:

1) CASPER (Collaboration for Astronomy Signal Processing and Electronics Research)

ROACH-2 (Reconfigurable Open Architecture Computing Hardware) board with a Xil-

inx Virtex-6 FPGA for channelization and pulse detection, 2) Custom ADC/DAC board

with dual 2 GSPS Analog Devices AD9625 ADCs and AD9136 DACs and Xilinx Virtex-7

FPGA for control, and 3) RF/IF board for IQ modulation.

The basic outline of the readout procedure (illustrated in figure 2.1) is as follows:

1. Tone generation in [-1 GHz, 1 GHz] (IF band) using dual 2 GSPS DACs.
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Figure 2.1: System block diagram showing a single 2 GHz, 1024 channel readout unit.
Reproduced with permission from Publ. Astron. Soc. Pac 130, 988 (2018). Copyright
2018 The Astronomical Society of the Pacific.

2. Upconversion to RF band via IQ mixing tones with local oscillator (LO) (figure

2.2).

3. Tones filtered through resonators, amplified by cryogenic HEMT (high electron

mobility transistor).

4. Output is downconverted by IQ mixer, then digitized by dual 2 GSPS ADCs.

5. ADC stream is sent to Virtex-6 FPGA for channelization, filtering, and photon

triggering.

6. Photon events (time and pixel tagged pulse height) are streamed over ethernet to

data server.

2.1.1 ADC/DAC Board

Due to the complexity of modern, high sample rate ADCs and DACs, we have devel-

oped a dedicated circuit board for signal routing and control of these components. The

board features dual 12-bit 2 GSPS ADCs (Analog Devices AD9625), and dual 16-bit

2 GSPS DACs (Analog Devices AD9136). Dual ADC/DACs are required for complex
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sampling; one unit is required for each of I and Q. The board also has an onboard Xilinx

Virtex-7 FPGA (XC7VX330T-2FFG1761C) for control of the ADCs and DACs, routing

of the ADC signal to the ROACH-2, and communication with the ROACH-2 and RF/IF

boards. A LMK04821 synthesizer is used to generate all clocks required by the ADCs,

DACs, and FPGAs on both the ROACH-2 and ADC/DAC boards, synchronized to an

external 10 MHz reference signal.

The DAC output is generated using lookup table (LUT) that contains the sum of all

of the resonator probe tones in the time domain. The LUT is generated in software and

stored in onboard DDR3 RAM. Two DACs are used to generate a complex output signal,

one for I and one for Q. A table size of 262144 values (for each of I and Q) imposes a tone

frequency quantization of 7.629 kHz. The LUT approach allows us to generate the DAC

output for an arbitrary list of resonator frequencies, and independently specify the drive

power for each resonator (required to optimize photon pulse SNR [27, 26]). To generate

the LUT, tones are first calculated and summed together in software according to their

IF band frequencies and relative powers. Tone phases are randomized to maximize DAC

dynamic range utilization. The full LUT is then scaled to fit the DAC dynamic range,

and the programmable output attenuators are adjusted to set the tones to the desired

power. Programmable attenuators in the RF output chain ensure full utilization of the

DAC dynamic range over a wide range of tone powers.

The IQ ADC/DAC inputs/outputs are connected to the RF/IF board via SMP con-

nectors. There are also several SPI interfaces to enable the Virtex-7 to program the

attenuators and local oscillator on the RF/IF board.

The raw ADC output is sent to the Virtex-6 FPGA on the ROACH-2 over a ZDOK

connector 16 samples (8 each from I and Q) per clock in a 192-bit parallel bus clocked

at 250 MHz.
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I
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RF
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Q
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To MKIDs

From MKIDs

Figure 2.2: Schematic of RF up/downconversion scheme. The frequency comb is
written explicitly as a sum over the probe tones, where fi ∈ [−1 GHz, 1 GHz] is
the IF band tone frequency, and fLO ∈ [4 GHz, 8 GHz] is the LO frequency. φi is
the probe tone phase in the DAC LUT. φi,in(t) = φi + φi,cable + δφi,res(t) is a time
dependent phase term that includes the DAC LUT phase, cable delay, and phase
change induced by the resonator. The same LO is used for both upconversion and
downconversion to suppress phase/frequency errors in the LO signal.

2.1.2 ROACH-2 Board

The ROACH-2 was developed by the CASPER collaboration at UC Berkeley [37,

38]. It was designed around the Xilinx Virtex-6 FPGA (XC6VSX475T-1FFG1759C). It

has a PowerPC CPU, DDR3 and QDR memory modules, and various communications

interfaces such as ethernet. All of the core digital signal processing for the readout system

(channelization, filtering, and pulse detection) is implemented on the Virtex-6 FPGA. We

chose the ROACH-2 platform because CASPER provides an extensive dedicated toolset

and programming interface for the FPGA. The CASPER toolflow contains blocks for

performing complex signal processing tasks (such as the polyphase filter bank), as well

as interfaces to much of the hardware on the ROACH-2. CASPER has also released

a series of python libraries for programming and communication with the FPGA over

ethernet.
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2.1.3 RF/IF Board

IQ Upconversion and Downconversion

The RF/IF board implements IQ modulation for analog up/downconversion between

the IF band (-1 – 1 GHz) and the RF band (4 – 6 GHz or 6 – 8 GHz). For the upconversion

process, the complex IF band frequency comb is mixed with a local oscillator (LO) tone

at the center of the RF band (i.e. a 4 – 6 GHz resonator band would use a 5 GHz

LO), which generates a real-valued output that is shifted into the resonator frequency

band. Downconversion is the reverse process, where the real valued RF output from the

cryostat is mixed with the same LO to generate a complex-valued IF band signal which

can be digitized by the ADCs. This process is illustrated schematically in figure 2. The

LO is generated on the board by a programmable phase locked loop (PLL) IC (Texas

Instruments TRF3765). The PLL is referenced to an external 10 MHz signal provided

by the ADC/DAC board. A frequency doubler is used on the output of the TRF3765 to

shift the frequency range into the resonator band (600 MHz – 9.6 GHz). Analog devices

HMC525LC4 I/Q mixers are used for upconversion and downconversion.

RF Output Chain

Two Peregrine Semiconductor PE43705 programmable step attenuators provide 0 to

63.5 dB (steps of 0.25 dB) of attenuation on the output frequency comb, which enables

full utilization of DAC dynamic range over a range of resonator readout powers. The

maximum output power of the full RF chain is -12.5 dBm.

RF Input Chain

In order to ensure full utilization of the ADC dynamic range over a wide range of

resonator drive powers, the RF/IF board has an amplifier/attenuator chain before the
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IQ mixer. Four Hittite HMC3587 provide 60 dB gain, and two programmable step

attenuators (63.5 dB total in steps of 0.25 dB) are used to optimize the input power at

the ADC and ensure that the amplifiers are kept away from saturation (see figure A.1 for

schematic). The optimal signal power at the end of the amplifier chain (IQ mixer input)

should be approximately -7 dBm; this implies an input power range of -64 dBm to -0.5

dBm 1. In practice, we find that in order to keep the noise from the room temperature

chain sufficiently low, the total programmable attenuation should not exceed ≈ 30 dB,

providing an actual input power range of -64 dBm to -34 dBm (see Appendix A for full

calculation).

2.1.4 Timing

The ROACH-2 firmware has a timing block that keeps track of the absolute (UTC)

time with microsecond precision. In order to ensure accurate absolute timing, this block

can be synchronized to an external reference using a pulse-per-second (PPS) input. In

our current implementation, the PPS input and the 10 MHz reference used to generate

the FPGA clocks are generated by a spectracom timing module that is synchronized to

a GPS satellite reference.

2.2 Firmware and Software

2.2.1 ADC/DAC (Virtex-7 FPGA)

The Virtex-7 firmware is responsible for controlling the ADCs, DACs, and pro-

grammable components on the RF/IF board, and for routing the ADC and DAC data

streams. Communication with the Virtex-7 is conducted over a UART interface to the

1There is a fixed 3 dB of attenuation in addition to the programmable attenuators, so the power at
the end of the chain is given by Pout = Pin + 60 dB −Aprog − 3 dB
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Figure 2.3: Cartridge containing an assembled readout unit. The ROACH-2 board is
connected to the ADC/DAC board by two ZDOK connectors. The RF/IF board is
mounted on the ADC/DAC board using SMP blind-mate connectors for signals and
GPIO pins for programming. Another readout unit is mounted to the underside of
this cartridge. Figure and Caption reproduced with permission from Paschal Strader,
”Digital Readout for Microwave Kinetic Inductance Detectors and Applications in
High Time Resolution Astronomy”, Ph.D. dissertation (University of California at
Santa Barbara, 2016).

ROACH-2 Virtex-6 FPGA, which can receive and forward commands from the con-

trol computer over ethernet. The low-level firmware and communications interfaces are

controlled using a Xilinx MicroBlaze soft processor. The MicroBlaze runs a C script

which initializes all major peripherals, then recieves and executes commands sent by the

ROACH-2 over the UART interface. These commands include programming the RF at-

tenuators and LO, receiving the DAC LUT and writing it to DDR3, and resetting the

ADCs and DACs. The firmware was developed primarily at Fermilab, and testing and

integration with the ROACH-2 were performed at both Fermilab and UCSB.
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Figure 2.4: ROACH-2 firmware block diagram. Data is streamed over the ZDOK over
a 16-sample bus (8 12-bit I/Q pairs) clocked at 250 MHz. The data is then copied and
processed by two parallel PFBs; one copy is delayed by 128 clocks (half of the complete
FFT cycle) to maintain a uniform sampling interval of each bin at 2 MHz [25]. After
the PFB stage, up to 1024 resonators are selected from the bins. Following channel
selection, DDC is performed on each channel to center the resonator tone within the
frequency bin. Channels are then low pass filtered (100 kHz on each of I and Q)
and converted to phase. The phase is filtered using a channel-specific “optimal” FIR.
Phase pulses meeting the trigger conditions are recorded and streamed to the data
server over 1 GBit ethernet. Figure adapted with permission from Paschal Strader,
”Digital Readout for Microwave Kinetic Inductance Detectors and Applications in
High Time Resolution Astronomy”, Ph.D. dissertation (University of California at
Santa Barbara, 2016).

2.2.2 ROACH-2 (Virtex-6 FPGA)

The Virtex-6 firmware is responsible for the bulk of the digital signal processing

performed by the system: conversion from the raw 2 GHz I/Q stream from the ADCs to

time and phase (or energy) tagged photons. This process can be divided into four stages:

channelization, phase conversion, optimal filtering, and photon event triggering. The

firmware was developed at UCSB using the MATLAB Simulink and ISE based CASPER

ROACH toolflow. All of the firmware blocks are clocked at 250 MHz using a clock

supplied by the ADC/DAC board over the ZDOK connectors.
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Channelization

Channelization is the process of converting the raw 2 GHz I/Q stream from the ADC

into a time-multiplexed series of frequency bins, each centered around a resonator probe

tone. We use the same two stage approach as the first generation readout, as described

in (Ref. [25]). The first stage is a dual 2048-sample (more specifically, 2048 branch,

4 tap) polyphase filter bank (PFB), which consists of a finite impulse response (FIR)

filter followed by a Fast Fourier Transform (FFT). The configuration is the exact same

as in (Ref. [25]), except for the total bandwidth/number of points (2048 samples over

2 GHz, instead of 512 samples over 512 MHz). As in (Ref. [25]), oversized 2 MHz bins

are used, so two parallel PFBs are required to Nyquist sample each bin. Oversized bins

ensure that there exists a bin with at least 500 kHz of bandwidth around every resonator,

no matter its resonant frequency. The output of the PFB+FFT is time multiplexed at

(2× FFT )× (8 bins/clock) = 16 bins/clock. The FPGA is clocked at 250 MHz, so the

sample rate of each bin is (250 clocks/s)× (16 bins/clock)/(2048 bins) ≈ 2 MHz.

After the FFT, the bins are sorted into 1024 resonator channels; for each resonator

frequency, the bin with the closest center frequency is selected. The allowed spacing

between resonators can be as low as 200 kHz, so there may be as many as 10 resonators

per bin. These channels are split into 4× 256-channel time-multiplexed “streams”, with

each resonator getting 2 samples per clock (one from each FFT). This maintains the 2

MHz channel sample rate: (250 MHz)× (2 samples)/(256 channels) ≈ 2 MHz. Digital

down conversion (DDC) is then performed on each channel to center it at 0 Hz: each

channel is multiplied by a (complex) sinusoid with f = fbin − fres. These sinusoids are

generated using a lookup table which is stored on the ROACH-2 QDR memory.
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Low Pass Filtering and Phase Conversion

After the channelization stage, each channel is low pass filtered to set the desired

channel bandwidth. This is done by separately convolving I and Q with a 20-tap Hanning-

windowed sinc function. The following considerations should be taken into account when

setting the channel bandwidth: 1) desired time resolution/response time of the detector

(1 µs); 2) photon event (phase pulse) SNR; 3) desired minimum resonator spacing. Ex-

oplanet imaging requires framerates of at most a few kHz (∼ 100 µs), so time resolution

was not a major consideration. We found that a channel bandwidth of 200 kHz (± 100

kHz around the tone center; which gives 100 kHz bandwidth after phase conversion)

provides good performance for considerations (2) and (3). This bandwidth preserves

the frequency content of a typical pulse (figure 2.5) while attenuating much of the high

frequency line noise present in many resonator channels (figure 2.7). It also allows us

to impose a minimum channel spacing of 200 kHz, reducing the number of frequency

collisions to ≈ 6% of identified resonators. After the low pass filter, the channels are

downsampled to 1 MHz, and the I/Q values are converted to phase using a CORDIC

algorithm that implements arctan(Q/I).

Optimal Filtering

After phase conversion, each channel is filtered using a 50-point FIR (finite impulse

response) filter. The filter coefficients are programmable and are unique to each channel.

This customizability is a key feature, as it allows us to tailor each filter to that channel’s

noise PSD and photon pulse shape. To generate these filters, we use the formalism

described in (Ref. [39]) and extended in (Ref. [40]). This “optimal filter” formalism uses

the noise covariance and a template of the photon pulse to produce a minimum variance

linear estimator of the photon pulse amplitude. The number of filter coefficients is well
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Figure 2.5: Top: representative phase pulse template, made by averaging together
phase collected on a single resonator channel, then fitting to a triple exponential
function. Bottom: power spectrum of the above pulse. Note that there is very little
power above 100 kHz.
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Figure 2.6: Example photon signal on a single resonator channel. (blue) is data
collected after the 100 kHz LPF and phase conversion steps; (orange) is the same
data stream after applying a 50 coefficient optimal FIR filter. Photon wavelength is
1050 nm. The sampling interval is 1.024 µs

matched to the characteristic pulse timescale (τ ≈ 15 µs), as indicated by the filtered

pulse being fairly symmetric (figure 2.6).

Photon Event Triggering and Streaming

The total phase data rate for a single readout unit is approximately 18 Gbps (1024

channels × 1 MHz per channel × 18 bits). This data rate is difficult to stream over

ethernet (a 20 kpix array would require 360 Gbps of bandwidth) and infeasible to save

for a full night of observing. To reduce the data rate, we use a firmware trigger to find

and record photon pulses. The trigger consists of two conditions:

1. Local minimum detection - pulse must be preceded by 9/10 points w/ negative

derivative, and immediately proceeded by two points w/ positive derivative.

2. Threshold - pulse amplitude must exceed a threshold value. This threshold is
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programmable and can be specified individually for each channel. Typically, we

use some multiple of the standard deviation of the phase value (3.5− 4σ).

If the trigger conditions are met, the pulse amplitude, arrival time, and channel ID are

recorded in a 64-bit data packet. Multiple such data packets are packed into UDP frames

(up to 100 packets per frame) and streamed to the data server over ethernet. This is

done using a dedicated 1 GBit ethernet interface connected directly to the FPGA, which

is different from the Power PC ethernet interface used for firmware configuration and

instrument control.

2.3 Performance

2.3.1 Phase Noise

A key system performance metric is the phase noise in each resonator channel (i.e.

the noise PSD of the phase timestream used for photon detection). The phase noise has

three major sources: 1) noise intrinsic to the device, 2) noise contributed by the cryogenic

amplification chain, 3) noise contributed by the readout system [27]. Ideally, phase noise

is dominated by sources (1) and (2); contributions from the readout system should be

negligible. To characterize this, we measure the readout system phase noise in loopback

(RF input connected directly to RF output), and compare this to the expected best case

performance of the device and cryogenic amplifier.

The noise contributed by the device comes primarily in the form of a 1/f contribution

due to two-level system (TLS) noise [41, 42]. We ignore this contribution, and instead

use the cryogenic amplifier noise as a basis for comparison. This is because the TLS

noise varies significantly between devices and is difficult to estimate, and using cryogenic

amplifier noise alone provides a more stringent performance criterion than using the
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Figure 2.7: Phase noise spectrum of a single resonator channel. Measurement was
taken in loopback with a full 1024 tone comb in 4−6 GHz band. Aside from spurious
signals, the noise floor is approximately -93 dBc/Hz.

combination of TLS noise and cryogenic amplifier noise. For the cryogenic amplifier we

assume a 2.3 K HEMT (high electron mobility transistor), which is used in both MEC

[21] and DARKNESS [20]. We assume that it has 40 dB gain and contributes thermal

white noise at the device stage with a 2.3 K noise temperature (eqn. A.1). We report all

phase noise measurements in dBc/Hz, where dBc is the noise power relative to the probe

(carrier) tone in a single quadrature.

The noise contributed by the digital readout electronics is dominated by room tem-

perature thermal noise and amplifier noise in the input RF chain. The exact phase noise

contribution from the room temperature stage depends on the programmable attenuator

settings; we calculate that for typical values the contribution of room temperature noise

floor should be at least 6 dB lower than the HEMT noise contribution (see appendix

A for calculation). The measured phase noise floor (figure 2.8) is ≈ 3 dB higher than

expected, likely due to unaccounted for attenuation in the RF input chain.
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Figure 2.8: Loopback phase noise measurement for 1024 tone comb on a single readout
unit. The measured phase noise value for each channel was computed by fitting
the white noise component of the phase noise spectrum (example spectrum in figure
2.7). The equivalent phase noise floor after accounting for line noise is also plotted
(calculation in appendix B). The expected phase noise contributions from the HEMT
and room temperature chain were estimated using the measured tone power at the
RF input (see appendix A for calculation).
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To verify system performance, we performed a loopback measurement of the phase

noise of each tone in a full 1024 tone frequency comb. The tones were given frequencies in

4 – 6 GHz range and uniform output power in the DAC LUT. The output power of each

RF tone ranged from approximately -65 dBm to -70 dBm, where the variation results

from the nonuniform frequency response of the RF output chain (which we calibrate out

when reading out actual devices). The exact readout power (power at the MKID) that

this corresponds to depends on the array properties and experimental setup, but the

typical RF attenuation before the device is ≈ 35 dB, which corresponds to a readout

power of approximately −100 dBm to −105 dBm. Results are plotted in figure 2.8, along

with expected contributions from the room temperature amplifier chain and HEMTs.

The measured phase noise has significant line noise (figure 2.7). The line noise occurs

at multiples of 7.629 kHz, which is the quantization frequency of the DAC comb. So,

we suspect that the lines are generated as intermodulation products in the input RF

chain. In order to compare the line noise to the HEMT and room temperature noise, we

examine the effect each has on the variance of the measured photon pulse amplitude. We

do this by removing the spectral lines from the noise PSD, then scaling this “flattened”

PSD such that its corresponding pulse height estimator variance is equal to that of the

original PSD (see appendix B for full calculation).

There is a significant apparent difference between our phase noise measurements

(≈ −93 dBc/Hz), and the measured phase noise for the first generation system (−106

dBc/Hz, including HEMT noise [25]). This is because the first generation system mea-

surements were performed at −85 dBm [25] (significantly higher than used in practice

with ARCONS), and our measurements were performed at an expected readout power

of −100 dBm to −105 dBm (which is close to the −106 dBm readout power [27] of the

PtSi devices used in DARKNESS [20] and MEC [21]). So, we expect that any thermal

noise source (which includes both HEMT and room temperature amplifier noise) will
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contribute up to 20 dB higher phase noise (phase noise is inversely proportional to tone

power; see eqns. A.1, A.2, A.7) for readout tone powers characteristic of our system as

compared to the first generation system; this is reflected in our measurements in figures

2.7 and 2.8.

It is difficult to determine the effect of readout system noise on the ultimate resolving

power of the MKIDs, as this depends on detector sensitivity (i.e. pulse height as a

function of photon energy), quality factor, and device noise, which vary significantly

between pixels [21, 17]. However, the majority of channels are below the expected HEMT

noise floor, so these would obey the HEMT noise limits measured in (Ref. [27]). We also

note that the measurements in figures 2.7 and 2.8 are close to worst-case performance,

with RF input attenuators A1 = 14.25 dB and A2 = 14.5 dB (see figure A.1 for block

diagram of RF input chain). A more typical use case would have A1,2 < 10 dB, which

will reduce the phase noise floor by > 2.7 dB (eqn. A.8), making almost every channel

HEMT noise limited.

2.4 Sideband Suppression

Imperfections in IQ mixer performance lead to the presence of “sidebands”, or reflec-

tions across the LO frequency when the mixer is used to upconvert or downconvert RF

tones. For example, a 6.5 GHz tone generated using a 6 GHz LO will have a sideband

tone at 5.5 GHz (which may also show up at -500 MHz in the IF band after downconver-

sion). Ideally, these sidebands are > 30 dB down from the original tone. In our system,

we have observed sidebands with powers as high as 10− 15 dB below the original tone.

A sideband is problematic if it happens to be within 100 kHz of another tone, as it will

leak into that channel and cause its phase timestream to oscillate at f = ftone− fsideband,

degrading the performance of that pixel.
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Figure 2.9: Example sideband spectrum (taken using the ADC on loopback). Tones
on the right half (f > 0) are actual tones generated by the DAC, while tones on the
left half are undesirable sideband reflections of these generated tones. In the worst
case, sideband power is only 10-15 dB down from the tone power.

The input to the I/Q mixer can be adjusted to compensate for mixer errors and

suppress sidebands. This can be done for both upconversion and downconversion:

• Upconversion: adjust the relative phase/amplitude of the I and Q inputs to the

mixer. This effectively introduces sidebands in the IF input to cancel them out in

the output.

• Downconversion: introduce real RF sidebands to cancel out sidebands produced in

the downconverted I and Q.

Performing these adjustments separately for upconversion and downconversion is infeasi-

ble, as injecting RF sidebands after upconversion would require major design changes. So,

we instead adjust the output I and Q generated by the DAC to minimize total sideband

power remaining after both upconversion and downconversion.

For our system, we experimentally determined that the optimal phase and amplitude
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adjustments are sensitive to tone power and frequency and are not always smooth func-

tions of these. So, a global fitting approach would be suboptimal, and any adjustments

must be made on a per-tone basis in the DAC LUT. We have developed an algorithm

to perform this optimization for an arbitrary list of tone frequencies and powers. Our

algorithm minimizes total sideband power remaining after both RF upconversion and

downconversion (and everything else that might be in the RF chain, including resonators,

etc). The optimization problem for N tones can be written as:

max
∆φ1,rIQ,1...∆φN ,rIQ,N

∑
i

Pi − Psideband,i(∆φi, rIQ,i) (2.1)

where i indexes the tones, Pi is the tone power, and Psideband,i(∆φi, rIQ,i) is the sideband

power of tone i as a function of the phase offset ∆φIQ,i (from 90◦) between Ii and Qi and

rIQ,i = |Ii/Qi| (Ii and Qi are the DAC outputs for tone i). Sideband power is measured

in the input IF band by the ADCs, in units dBFS (dB relative to ADC full scale). To

simplify the problem, we have assumed that the tones are independent (i.e. adjusting the

phase or amplitude balance of one tone will not affect the sideband power of any other

tone); so the problem can be thought of as a series of N independent maximizations over

the two dimensional domain given by {∆φIQ × rIQ}.

The following procedure is used to evaluate the objective function for a specific set

of {(∆φIQ,1, rIQ,1), (∆φIQ,2, rIQ,2), . . . , (∆φIQ,N , rIQ,N)}:

1. Load DAC LUT containing these offsets

2. Take a 8,388,608-point snapshot (set by the amount of available memory) of the

ADC input

3. Take an FFT of the snapshot to find sideband powers

This evaluation process takes approximately one minute, so a brute force optimiza-
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Figure 2.10: Plot of sideband suppression of a single tone as a function of φ and rIQ.
Close to the optimal value, the sideband suppression decays approximately exponen-
tially, which is why an exponential fit is used in the search algorithm.

tion with the required range and precision (phase: [−20◦, 20◦], 1◦ increments; amplitude

ratio: [0.8, 1.2] in increments of 0.2) would take approximately 13 hours. Since the opti-

mization must be repeated for each new configuration of tones, the brute force approach

is infeasible and a more efficient algorithm is needed. We have developed the following

approach:

1. Sample the objective function at n randomly chosen sets of {(∆φIQ,1, rIQ,1), (∆φIQ,2, rIQ,2), . . . ,

(∆φIQ,N , rIQ,N)} (in addition to (∆φIQ,i, rIQ,i) = (0, 0) for all i)

2. For each tone, fit Pi − Psideband,i(∆φi, rIQ,i) to an exponential decay function (see

figure 2.10).

3. Randomly sample a new set of {(∆φIQ,1, rIQ,1), (∆φIQ,2, rIQ,2), . . . , (∆φIQ,N , rIQ,N)},

either close to the fit centers or uniformly over the domain (choose this with some

probability ε).
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Figure 2.11: Test of the sideband suppression algorithm on loopback using a 868
tone MEC array frequency comb. Top/middle: comparison of each tone’s power
with its corresponding sidedband power, before (top) and after (middle) running the
sideband suppression algorithm. Bottom: Magnitude of sideband suppression across
the frequency comb.
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4. Repeat (2) and (3) until all sidebands are sufficiently suppressed (typically Ptone−

Psideband > 30 dB), or the number of iterations has reached some threshold value.

Using this approach, we are able to suppress sidebands by at least 30 dB for almost

every tone, with a convergence time of 30 - 45 minutes. Results from a loopback test

using a MEC array frequency comb with 868 tones are shown in figure 2.11. It is difficult

to provide a general estimate of the improvements to energy resolution resulting from

suppressing sidebands to ≥ 30 dBc, as this depends on highly variable device character-

istics (including sensitivity, quality factor, device noise), as well as the location of of the

interfering sideband in the spectrum of a nearby resonator channel. We feel that the 30

dBc benchmark is appropriate, as it has an equivalent RMS phase > 3 dB below that of

a typical resonator channel (appendix C), and is the same benchmark used for the first

generation system [25].

2.5 Conclusion

We have developed a digital readout system which, for the first time, makes it fea-

sible to read out kilopixel-scale photon counting optical/IR MKID arrays. Our sys-

tem is actively being used by two MKID cameras; MEC at Subaru Observatory, and

DARKNESS at Palomar Observatory. All of our array calibration and control soft-

ware, as well as the Virtex-6 firmware, is open source and can be found at: https:

//github.com/MazinLab/MKIDReadout.
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Chapter 3

Deep Learning for Array Calibration

3.1 Resonator Identification and Tuning: Baseline

Methodology

The standard procedure for MKID array calibration treats frequency identification

and drive power tuning independently. We outline this procedure below, then explain

some of the issues that require manual tuning to address.

All calibration steps are performed using measurements of the complex frequency

response S21(f) = I(f) + iQ(f) of the MKID array in the resonator frequency band

(approximately 4-8 GHz for the current generation of instruments). When S21(f) is

plotted on the complex plane, resonators manifest as “loops” when driven at the correct

power (figure 3.1). Resonators absorb power close to resonance, so they also correspond

to local minima in |S21|. Frequency response data is taken over a wide range of drive

powers for the tuning stage.
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Figure 3.1: Resonators absorb power in a ≈ 200 kHz band around the resonant
frequency (hence a dip in |S21|; left), but leave tones outside this band relatively
unmodified. If S21(f) is plotted in the complex plane over this frequency band, the
resonator will trace out a “loop” (right).

3.1.1 Resonator Identification

Due to imperfections in the MKID array fabrication process, there is an ≈50 MHz

spread between the nominal resonator design frequency and the actual measured fre-

quency. Since pixels are designed to be separated by ≈2 MHz, this spread makes the

nominal design frequency essentially useless for identifying resonators. Instead, we mea-

sure the magnitude of the frequency response (|S21|) across the full 4-8 GHz bandwidth

of each microwave feedline (“widesweep”), where resonators appear as narrow 5-20 dB

deep “dips” in transmission (figure 3.1). These dips can be accurately flagged automat-

ically using a spatial bandpass filter (to select for the band corresponding to resonator

width in the |S21(f)| signal) followed by a peak-detection algorithm such as SciPy’s

signal.find peaks function [43].
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3.1.2 Resonator Drive Power Tuning

In order to maximize photon detection SNR, resonators should be driven at the high-

est possible power, as amplifier induced phase noise decreases linearly with drive power

[27, 35]. However, if a resonator is driven too hard, it can enter a bistable “bifurcation”

state, rendering it useless for photon detection [26]. So, we take the “ideal” resonator

drive power to be slightly (1-3 dB) below the bifurcation state. For most resonators,

the bifurcation state can easily be identified in the complex frequency response of the

resonator across its linewidth (≈ 200 kHz) (see figure 3.2), making it relatively straight-

forward for a human operator (or machine learning algorithm) to identify the correct

drive power.

To tune each resonator, we select a 450-750 kHz window around the frequency dip

identified in the previous step, and measure the complex (I and Q) frequency response

in this window at a variety of drive powers (typically a 31 dB range in steps of 1 dB).

We then feed this data into a neural net classifier that estimates the drive power [28].

To refine the estimate of optimal resonator drive frequency at a given power, we define

the quantity IQ-velocity (IQV), which is the magnitude of the derivative of S21 in the

complex plane wrt frequency:

IQV (fi) = |∆fS21(fi)| =
√

[I(fi+1)− I(fi)]2 + [Q(fi+1)−Q(fi)]2 (3.1)

where i indexes frequency, and all S21 measurements are performed at a single power.

The point along a resonator loop with maximum IQV is the ideal drive frequency, since

it is where the phase response of the resonator is most sensitive to changes in frequency.

This is often different from the |S21(f)| minimum (figure 3.3). So, after the optimal

drive power is estimated, the frequency identified in the previous stage (section 3.1.1) is

changed to the IQV maximum at the estimated power. This is typically done using a
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peak finding algorithm in conjuction with a boxcar smoothing filter.

After automated power and frequency determination, a human operator may look

through the data set to refine the neural network’s initial guesses.

If two resonators are separated by less than 200 kHz, we only read out one of them to

prevent their probe tones from interfering [35]. We choose the higher frequency resonator

to prevent undesirable resonator crosstalk during photon detection events 1. After the

identification and tuning process, the final resonator list is pruned according to this

criteria; we define the resulting list to be the set of “usable resonators”.
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Figure 3.2: Complex frequency response S21(f) (left) and corresponding IQV (right)
of a single resonator measured at four different powers. The resonator is clearly
bifurcated when driven at -60.75 dB, as indicated by the discontinuity in the resonator
loop. There is still some apparent discontinuity at -61.75 dB; -62.75 dB or -63.75 dB
would be reasonable drive powers for this resonator. Power is measured relative to
the DAC full scale output.

1Since the resonant frequency decreases during detection events, the higher frequency resonator might
enter the readout band of the lower frequency resonator, interfering with that resonator’s probe tone.
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3.1.3 Problems with the Baseline Methodology

We find that the automated steps of the above method are inadequate for providing an

accurate calibration solution; 15-20% of resonators may be miscalibrated. Most of these

calibration errors are related to choosing a frequency window around each identified

resonator (section 3.1.1) to feed into the neural network power classifier. We detail these

issues below, using an analysis of a single representative feedline from the MEC array

“Hypatia” (call this feedline “Hypatia6”).

Choosing a frequency window around each resonator is complicated by the following

factors: 1) Resonators often move significantly in frequency space as a function of power

(figure 3.2); and 2) The local minimum in |S21| that is used to identify the resonator

is often not aligned with the IQV maximum; this discrepancy can be larger than the

linewidth of the resonator (figure 3.3).

Issue (1) can be dealt with to some extent by re-centering the window around the

|S21| dip at each power. However, this is complicated by issue (2), since the |S21| dip

doesn’t always shift by the same amount as the actual resonator frequency.

Because of issue (2), we find that windows must be quite wide; e.g. for the Hypatia6

feedline, a 500 kHz window will only include ≈90% of the resonators 2. Using larger

windows however increases the chance that there will be multiple resonators within the

same window; which degrades the capability of the machine learning algorithm to tune

the resonator (figure 3.4).

We find that while the neural network power classifier generally has good performance

on standalone resonators, manual intervention is required when there are multiple res-

onators within the same window, or the resonator is too far from the frequency identified

in the previous stage and lies outside the window. For the Hypatia6 feedline, this com-

2The median resonator linewidth is 140 kHz, so to be included in a 500 kHz window, we assume that
the resonator frequency is ±180 kHz from the window center.
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Figure 3.3: Illustration of issue (2). a) Plot of |S21| and IQ velocity for a single
resonator, measured at its optimal drive power. For this resonator, the |S21| minimum
and IQ velocity maximum (taken to be the “actual” resonator frequency) are separated
by 170 kHz. b) Histograms of this discrepancy across Hypatia6. Initial |S21| (blue)
shows the difference between the actual resonator frequency and that flagged in the
identification step. Some of this is due to the resonator frequency changing with
power, and can be corrected for to some extent by re-centering the machine learning
window accordingly (orange).

prises 15-20% of resonators. It is difficult to determine a priori which resonators meet

these criteria (particularly when the resonator lies outside the initial window), so manual

inspection is required for all resonators in order to fully optimize array performance. This

is a time consuming process, requiring 4-6 hours per feedline. To address these issues, we

present an approach for doing both frequency identification and tuning in a single step

using the same convolutional neural network.

3This histogram includes only resonators satisfying the “usable resonator” criterion defined in section
3.1.2. However, we allow resonators that violate this criterion to count as nearest neighbors, since they
may still interfere with the tuning process even if they aren’t in the final resonator list.
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Figure 3.4: left: histogram of the frequency spacing between resonator and it’s nearest
neighbor in frequency space for Hypatia6 3. Approximately 8% of resonators contain
another resonator within a 500 kHz window; right: example of a window with multiple
resonators. In this case, the machine learning algorithm selected the correct power for
the higher frequency resonator (which was also the one flagged during the identification
stage), but selected the frequency of the lower frequency resonator (which is bifurcated
at this power).

3.2 End-to-end Machine Learning: System Overview

3.2.1 Overall Architecture

The full S21 dataset can be conceptualized as a 2D “image”, with a real (I) and imag-

inary (Q) value at each point in power× freq space. Each resonator at its optimal drive

power and resonant frequency is located at a single point in this image, and its influence

extends to a small region surrounding this point. Resonator identification/tuning can

then be posed as an object detection problem in power × freq space.

One of the simplest methods of implementing machine learning based object detection

is to use a sliding window classifier. In this scheme, we take a small window around each

point in the S21(p, f) image and feed it into a deep convolutional neural network (CNN)

[44], which assigns the window a set of scores representing the likelihood of it being a

member of each of the following classes:
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1. window is centered around a resonator at the correct power and frequency

2. window is centered around a bifurcated (saturated) resonator

3. window is centered around an underpowered resonator

4. there is no resonator inside the window

The output of the classification stage is four Npower ×Nfreq images, each containing

the classification score at each point for one of the above classes. To find resonators,

we use a relatively simple criteria to select N local maxima above some threshold of the

image representing the scores for class (1) (detailed in section 3.2.3).

Figure 3.5: Schematic of overall architecture. The input data set is a 3-color image
(one for each of I, Q, and IQV ) containing the frequency response of the MKID
feedline at multiple powers. A small window is generated around each (p, f) point,
and fed into a convolutional neural network to generate a set of classification scores
for that point. This results in a Npower×Nfreq output image with four colors, one for
each classification score.
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Figure 3.6: Example S21 images of I, Q, and IQV around a resonator. This is before
any normalization or other preprocessing, so units/scaling is arbitrary. The classifi-
cation score image assigned to this input data is plotted in figure 3.8.

3.2.2 Neural Network

Preprocessing

A typical S21 dataset will contain the full 4-8 GHz band, sampled at 7.7 kHz, and 31

powers sampled in 1 dB increments. For the sliding window classifier, we use a window

size of 30 points in frequency (≈ 230 kHz) by 7 points in power. In frequency space,

this provides good coverage across the full linewidth of most resonators, and in power

space, it allows the transition from saturation → underpowered to be fully sampled. In

addition to the S21 I and Q data, we include IQV as well since it is a useful visual aid

when manually inspecting resonators. I, Q, and IQV are implemented as separate “color

channels” in the neural network input 4.

We perform the following normalizations on each input window:

1. Normalize by S21 magnitude, independently at each power:

• Mp =
√

1
Nfreq

∑
i I

2
p,i +Q2

p,i, where p indexes power and i indexes frequency.

Nfreq is the window size along the frequency axis.

4“color channels” can be thought of as analogous to RGB channels in conventional images
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• Ip → Ip/Mp; Qp → Qp/Mp; IQVp → IQVp/Mp;

The value of Mp depends on how the MKID readout ADCs and DACs were config-

ured for the frequency sweep at that particular power p; this can change arbitrarily

with power and has no physical relevance. Normalizing separately at each p removes

this nonuniformity.

2. Center the data, also independently at each power: Ip → Ip − meani(Ip), Qp →

Qp −meani(Qp), IQVp → IQVp −meani(IQVp)

Normalizing by Mp before centering ensures that the relative loop size (i.e. the amount

it attenuates the probe tone on resonance) is preserved; this is an important metric of

resonator quality 5. If a window overlaps with the boundaries of the S21 image, it is

edge-padded to the correct size.

Network Architecture

The convolutional neural network is implemented using the TensorFlow [45] package

version 1.8. The network has three convolutional/pooling layers followed by a fully

connected output layer (figure 3.7). Each convolutional/pooling layer has three stages:

1) 2D convolution (generalized across input/output color channels) with filter coefficients

determined during training; 2) Rectilinear activation function, which applies RELU(x) =

max(0, x) to each pixel in the output of the convolution[46]; 3) max-pooling, which

downsamples the output of the previous stage by selecting the maximum value within

a n ×m window. The fully connected layer multiplies the flattened output of the final

convolutional/pooling layer by a matrix of trainable weights to arrive at the final four

element output vector. A softmax function is applied to this output to normalize the

5loop size is proportional to Q/Qc, where Q is the resonator quality factor and Qc is the coupling
quality factor; ideal resonators have Q ≈ Qc, hence a relative loop size close to 1
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vector of classification scores. During training, batch normalization is applied to the

output of each convolution to improve performance/convergence time [47], and dropout

is used to minimize overfitting [48].
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Figure 3.7: Schematic of neural network architecture, showing alternating convolu-
tional/pooling layers, followed by a fully connected output layer. The row axis in
each layer is along the power dimension, and the column axis is frequency. Batch
normalization and a RELU activation function are applied to the output of each
convolution. During training, dropout is applied to the output of each max-pool-
ing layer. Each of the four outputs represents the classification score for each of
the four possible classes. This figure was generated by adapting the code from
https://github.com/gwding/draw_convnet.

Training

The network is trained using human-reviewed resonator data from the “baseline

methodology” analysis pipeline described in the previous section. Sixteen training images

are made for each identified resonator (four per class):

1. Four copies centered around correct power/frequency (“good” class)

2. Four “bifurcated” resonators, from powers [pc + psat, pc + psat + 3]

3. Four “underpowered” resonators, from powers [pc − pup, pc − pup − 3]

4. Four “no resonator” images randomly selected from regions of S21 without res-

onators
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All of the above powers are in dB; pc is the correct power, and psat and pup represent

bifurcation/underpowered thresholds above/below the correct power, respectively. These

thresholds are arbitrary and can be tuned as hyperparameters. For the bifurcated training

images, a random offset within [0,−75 kHz× fres
4 GHz

] is added to the resonant frequency;

this was found to correct for resonant frequency movement with power, and prevent the

network from choosing frequencies away from the IQV peak during inference.

Training a neural network is the process of finding the set of convolutional filter

coefficients and fully connected layer weights that minimize a “loss function” that is

computed across all of the training data. We use a “cross-entropy” loss function given

by: L = −∑i

∑
c yi,clog(pi,c), where i indexes the training samples and c indexes classes.

yi,c represents the “true” class label for sample i; yi,c = 1 for the correct class c and 0

for all other c. pi,c is the score assigned by the neural network for image i and class c.

Because the final layer of the neural network is a softmax function, 0 < pi,c < 1. For the

training process, we use the Adam optimization algorithm, which is a modified version of

stochastic gradient descent [49], with a batch size of 50 training images and the learning

rate left as a tunable hyperparameter.

3.2.3 Resonator Identification

After running the full S21 inference dataset through the neural network, we obtain a

four-color Npower ×Nfreq output image containing the classification scores for each data

point in the input image (figure 3.5). For the purposes of inference, we only use the

first “color” of the output image, which corresponds to the likelihood of a resonator at

the correct drive power and frequency being centered on a given point (p, f). Correctly

driven resonators correspond to local maxima in this output layer above a certain thresh-

old (figure 3.8). We find that this threshold varies between datasets, so it is generally
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sufficient to pick the Nres highest local maxima, where Nres is the expected number of

resonators. In practice, we use both of these criteria to limit false positive detections (i.e.

we pick the Nres highest local maxima but require them to be above a certain threshold).

For a typical 4-6 GHz sweep, we use Nres = 1024, since this is the maximum number of

pixels supported by the readout system over this bandwidth [35]. It is also very close to

the target pixel count for both DARKNESS [20] (N = 1000) and MEC [21] (N = 1022).
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Figure 3.8: Output classification image for the “good resonator” class over a 500 kHz
band. Each of the three local maxima (outlined in red) corresponds to a resonator.
The input data corresponding to the rightmost resonator is plotted in figure 3.6.

One issue with this approach is that if a resonator’s frequency changes a significant

amount with power, the resonator may show up as multiple distinct local maxima. One

way to mitigate this is to use a slightly modified version of the notion of topographic

peak prominence 6 : for all adjacent (in frequency space) local maxima meeting the initial

threshold or Nres cut, we take the minimum value along the shallowest monotonic path

between the two maxima (see figure 3.9). If this value exceeds a certain threshold (tpr;

see table 3.1), we flag the larger of the two maxima as a resonator and discard the other

one.

6Peak prominence is a measure of how “well-separated” a peak is from its neighbors; two neighboring
resonators are more likely to manifest as distinctly separated peaks in the output classification than a
single resonator moving in frequency space.
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Figure 3.9: Output classification image for the “good resonator” class for a single
resonator. The resonator frequency changes significantly enough with power that
the resonator generates three distinct local maxima with high classification scores
(> 0.99), outlined in red. The shallowest paths between these maxima are shown by
the dashed lines. The minimum value along each of these paths is very high (> 0.98),
so these maxima are not “prominent” enough to indicate the presence of three separate
resonators. So, the algorithm will only flag the highest scoring peak as a resonator
and discard the other two.

3.3 Final Model Selection and Training

To develop, tune, and train our model, we used a dataset consisting of five feedlines

from the device “Hypatia” (8490 resonators), which is the device currently mounted in

the MEC instrument. For each feedline, the dataset spanned 4 GHz of bandwidth in

steps of 7.629 kHz, and 31 dB of power in steps of 1 dB. Resonators were identified

and tuned using the baseline methodology (section 3.1), and after the automated steps,

both resonant frequency and drive power were corrected by a manual operator. All

hyperparameter and model architecture tuning was performed within this dataset, with

all hyperparameters being manually selected (i.e. no grid search or similar algorithms

were used). Once we settled on a model architecture and hyperparameter set, we used

all five feedlines to train the final model for evaluation.

During training, 10% of the training data is held out for testing; accuracy and cross-

entropy are measured throughout the training process. We do this to ensure that the

neural network isn’t overfitting to the training examples. After the last training step,
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our model has approximately 97% accuracy on on both the training data and held-out

test data (figure 3.10), indicating good performance with minimal overfitting 7.

Preprocessing

psat 1 dB
pup 4 dB

Training

learning rate 10−4.5

training epochs 170
batch size 50

dropout probability 0.4

Identification

threshold score 0.9
Nres 1024
tpr 0.85

Table 3.1: Table of model hyperparameters used during data preprocessing, training,
and identification. Neural network hyperparameters can be found in figure 3.7.
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Figure 3.10: Mean cross entropy (left) and classification accuracy (right) for the train-
ing data and held out test images during the training process. Both of these indicators
track very closely, indiating minimal to no overfitting.

3.4 Performance Evaluation

To evaluate full system performance, we used our trained model to perform inference

on a “fresh” S21 test dataset, which we never used to train, develop, or tune our model.

This dataset consists of a single feedline (call this Elson0) from a different MEC array

7Note that this is not a test of end-to-end system performance, as it only indicates the classification
accuracy within a set of training images selected using the methods described in 3.2.2
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than the one we used in section 3.3, which should provide a good test of model general-

ization. The dataset has the same span and step size as the training data in both the

frequency and power dimensions. To provide a basis for comparison, we also performed

resonator identification and tuning using the “baseline methodology”, and had two dif-

ferent manual operators tune the drive power of each resonator. We evaluated our model

on three different performance criteria, which we detail below: resonator identification,

drive power tuning, and frequency placement.

3.4.1 Resonator Identification

For both the baseline methodology and end-to-end ML pipeline, we evaluated the

number of true positive, false positive, and false negative identifications. To determine

the true and false positive values, we had a manual operator screen all of the resonators

identified by each method and flag all false identifications. Since we don’t have a “ground

truth” list of all of the resonators in Elson0, we estimate the number of false negatives of

each method by comparing against the other method; i.e. if a resonator is found by the

baseline method but not by the end-to-end ML method, it is considered a false negative of

end-to-end ML. To correlate resonators across methods for this analysis, we matched each

resonator from the baseline method frequency list to its unique nearest neighbor within

200 kHz in the end-to-end ML method frequency list. Unmatched resonators remaining

in each list after this matching process were labeled as false negative identifications for

the other method. The results of this analysis are detailed in table 3.2. The end-to-end

ML and baseline methods have similar performance on this metric, although the ML

algorithm appears to be slightly more sensitive.
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Baseline Method End-to-end ML
True Positive 1840 1857
False Positive 11 14

False Negative 62 45

Table 3.2: Resonator identification performance on Elson0. The dataset spans 4 Ghz
of bandwidth over a single feedline, so in the absence of fabrication errors we expect
at most 2044 resonators. All resonators included in this table satisfy the “usable
resonator” criteria defined in section 3.1.2.

3.4.2 Drive Power Tuning

There is some uncertainty in the manual selection of resonator drive powers; since it is

done heuristically by-eye [28], different operators can assign the same resonator different

drive powers and each might be considered “correct”. This uncertainty is reflected in

the training data, and will fundamentally limit the performance of our pipeline. To

quantify this uncertainty and provide a benchmark for model performance, we had two

different human operators (call these human1 and human2) tune the drive power of each

resonator in the test dataset. In figure 3.11a, we histogram the difference in selected

drive power for each resonator between the two manual operators. We find that human1

on average assigns a power approximately 1 dB higher than human2, with σ = 1.4

dB. In light of this uncertainty, we expect a well performing ML algorithm to behave

as a third human operator; i.e. the distributions of power differences between it and

each of the human operators should be comparable to figure 3.11a. We histogram these

distributions in figure 3.11b. We find these three distributions to be broadly similar;

each has a systematic offset (i.e. median) ≤ 1 dB, and a similar spread, with ≈90% of

resonators falling within 1 dB of the median drive power difference.

We can also perform an analysis similar to the one in (Ref. [28]). For this analysis,

we define a “ground truth” power for each resonator by averaging together the powers

assigned to it by each human operator. We then define a per-resonator binary accuracy
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Figure 3.11: Histograms of the per-resonator difference in selected resonator drive
power between different tuning methods for the Elson0 dataset. a) Difference between
the two human operators; b) Difference between the end-to-end ML method and each
human operator. For these comparisons, resonators were correlated between frequency
lists using the same method as in section 3.4.1. Power differences are quantized to 1
dB (as per the dataset), which sets the histogram bin spacing

metric: a resonator was assigned the correct drive power by the ML algorithm if and only

if |PML − Pt| ≤ 1, where PML and Pt are the ML assigned and “ground truth” powers

in dB, respectively. By this metric, our pipeline accurately classifies 93% of the Elson0

resonators (figure 3.12). This is comparable to the 90% accuracy achieved by the ML

algorithm (and manual operators!) in (Ref. [28]); both are likely limited by training data

nonuniformity.

3.4.3 Frequency Placement

Since the resonator frequency shifts significantly with power, the ideal frequency

placement depends on resonator drive power. So, we cannot simply compare the ML

selected frequency with the baseline solutions. Instead, we had a human operator check

through the end-to-end ML solutions and correct any misplaced resonator frequencies.
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Figure 3.12: Histogram of the per-resonator difference in selected drive power be-
tween end-to-end ML and the average human-selected drive power for Elson0. The
end-to-end ML method assigns 93% of the resonators a drive power within 1 dB of
the human average.

These results are plotted in figure 3.13. 97.8% of resonators were assigned a frequency

within 7.629 kHz of the correct value; this represents an error of less than 10% of the

typical resonator linewidth, so the impact on performance is likely negligible.

3.4.4 Computational Performance

Using three desktop CPU cores (Intel Core i5), along with an NVIDIA RTX-2080

GPU, our pipeline takes approximately 12 minutes to calibrate a full feedline. Image

generation and normalization forms the bulk of this time.

3.5 Conclusion

We have developed a deep learning based analysis pipeline, which, for the first time

allows us to completely automate the calibration of optical/IR MKID array frequency
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Figure 3.13: Histogram of difference between ML selected frequency and any hu-
man correction (performed by a single human operator). Frequency differences are
quantized to 7.629 kHz, which sets the histogram bin spacing. 90.4% of resonators
required no correction, and 97.8% of resonators were within one quantization step of
the corrected frequency.

combs. Our pipeline is in active use, reducing the 40+ hour manual tuning process

for the MEC instrument array to less than two hours of computational time. This

has signficantly streamlined the array characterization process, and reduced instrument

downtime in the event of a warm-up to room temperature (which often causes resonators

to shift in frequency). It is also a crucial step towards feasibly scaling up MKID array

pixel counts.

When calibrated using our method, MEC has a demonstrated energy resolution R =

3.8 and 75% pixel yield on working feedlines (R = 4.8 and the yield is 82% on the

well-filled “sweet spot” of the array)[21]. See (Ref. [21]) for more details; all array

performance metrics provided were obtained using an array calibrated by our pipeline.

The precision of the calibration solutions (particularly resonator drive power) is in-

herently limited by the lack of consistency of the human-generated training data. Future

work will aim to address this; potential solutions involve using analytical fitting methods
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to generate or refine training data.

Our pipeline is open source and can be found here: https://github.com/MazinLab/

MKIDReadout.
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Chapter 4

Speckle Control

For FPWC with DARKNESS and MEC, we chose the speckle nulling algorithm for

its simplicity: the algorithm doesn’t require an optical propagation model, and instead

assumes a Fourier-series mapping between the DM pupil and focal plane science camera.

The speckle nulling controller operates independently on single Fourier modes, which

correspond to sine waves on the DM and point sources (speckles) in the focal plane

image. In addition to being relatively straightforward to implement, this simplicity also

affords some degree of robustness to changing on-sky conditions [13].

4.1 Fourier-based Optical Propagation Model

Following ([13]) and ([14]), we described the Fourier based model below. The unaber-

rated pupil plane electric field from an on-axis point source is given by:

E(~ρ) = P (~ρ)A0 (4.1)
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where ~ρ is the position in the pupil plane, A0 is the time averaged electric field amplitude,

and P (~ρ) is the pupil transmission function, which is generally defined as:

P (~ρ) =


1 |~ρ| ≤ rp

0 |~ρ| > rp

(4.2)

where rp is the radius of the pupil. If we add a sinusoidal phase aberration in the pupil

plane, the electric field becomes:

E(~ρ) = P (~ρ)A0e
iapcos(~k·~ρ+φ) (4.3)

Assuming the amplitude of the aberration is small (ap << 1), we obtain:

E(~ρ) ≈ P (~ρ)A0[1 + iapcos(~k · ~ρ+ φ)] (4.4)

Similarly, we can describe a sinusoidal amplitude aberration using:

E(~ρ) = P (~ρ)[1 + aacos(~k · ~ρ+ φ)]A0 (4.5)

We can combine eqns. 4.4 and 4.5 into a single complex sinusoidal aberration:

E(~ρ) = P (~ρ)[1 + (aa + iap)cos(~k · ~ρ+ φ)]A0 (4.6)

where we have discarded the product term since aaap << aa,p. The corresponding focal

plane speckle complex amplitude can be determined by taking the 2D Fourier transform
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of eqn. 4.6 as follows:

Ê(~r) ≡ F [E(~ρ)] =

∫
P (~ρ)[1 + (aa + iap)cos(~k · ~ρ+ φ)]A0e

2π~r·~ρ/λsd~ρ (4.7)

where ~r is the position in the focal plane, in units of camera pixel coordinates, λ is the

optical wavelength, and s is the platescale of the camera; i.e. the number of pixels per

angular coordinate (radians) in the focal plane. Using the convolution theorem:

Ê(~r) = A0P̂ (~r) + A0P̂ (~r) ∗
∫

(aa + iap)cos(~k · ~ρ+ φ)]e2π~r·~ρ/λsd~ρ (4.8)

= A0P̂ (~r) +
1

2
A0(aa + iap)P̂ (~r) ∗

[
eiφδ

(
~r +

~kλs

2π

)
+ e−iφδ

(
~r −

~kλs

2π

)]
(4.9)

= A0P̂ (~r) +
1

2
A0(aa + iap)

[
eiφP̂

(
~r +

~kλs

2π

)
+ e−iφP̂

(
~r −

~kλs

2π

)]
(4.10)

The first term of eqn. 4.10 describes the diffraction pattern of the unaberrated on-axis

point source, while the second term describes the aberration pattern. For a circular

aperture, P̂ (~r) is given by:

P̂ (~r) =
2J1(4πrp|~r|/λs)

4πrp|~r|/λs
(4.11)

where J1 is the Bessel function of the first kind, order one. The intensity profile |P̂ (~r)|2 is

given by an Airy disk profile, and in general is known as the point spread function (PSF)

of the imaging system. From the second term of eqn. 4.10, we can see that the sinusoidal

aberration creates two copies of the PSF (i.e. “speckles”), centered at ~r = ±~kλs
2π

. The

relative phase of the speckles is given by the relative magnitudes of aa and ap; for a

pure phase aberration, the electric field phase is given by ei(π/2±φ), and for an amplitude

aberration it is e±iφ. The full intensity profile is given by:
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I(~r) = |Ê(~r)|2 (4.12)

= A2
0|P̂ (~r)|2 +

1

4
A2

0(a2
a + a2

p)

∣∣∣∣∣P̂
(
~r +

~kλs

2π

)∣∣∣∣∣
2

+

∣∣∣∣∣P̂
(
~r −

~kλs

2π

)∣∣∣∣∣
2
 (4.13)

where we assume
~kλs
2π

is sufficiently large such that the cross terms P̂ (~r)P̂ (~r ± ~kλs
2π

) are

negligible.

4.2 Speckle Nulling Algorithm

The speckle nulling controller is designed to identify and measure the strongest Fourier

mode aberrations (i.e. brightest speckles), and use the DM to apply speckles of oppo-

site electric field phase to destructively interfere with (“null”) these aberrations. Our

implementation broadly follows [13], with a few modifications to optimize for the high-

framerate regime.

The DM can apply pupil plane phase aberrations of the following form:

ϕDM(~ρ) = apcos(~k · ~ρ+ φDM) (4.14)

=
2πaDM
λ

cos(~k · ~ρ+ φDM) (4.15)

where 2π/λ describes the conversion factor between the optical phase ap in radians, and

the physical DM stroke aDM .

To determine the value of λs/2π (i.e. the relationship between pupil plane spatial

frequency ~k and speckle position ~r in the focal plane), we use a calibration script that

applies DM modes of a specified amplitude and frequency and measures the position of

the resulting speckles relative to the PSF center. In practice, the relationship between
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the modal amplitude (aDM) and focal plane intensity is difficult to calculate and so is also

calibrated in the same manner. Denote these calibration constants α and β, respectively.

Then, plugging in α and β into eqn. 4.10, the focal plane electric field corresponding to

the DM mode in eqn 4.15 is given by:

ÊDM(~r) =
βaDM√
Iap

[
ei(π/2+φDM )P̂

(
~r +

~k

α

)
+ ei(π/2−φDM )P̂

(
~r −

~k

α

)]
(4.16)

with corresponding intensity:

IDM(~r) =
(βaDM)2

Iap

∣∣∣∣∣P̂
(
~r +

~k

α

)∣∣∣∣∣
2

+

∣∣∣∣∣P̂
(
~r −

~k

α

)∣∣∣∣∣
2
 (4.17)

where (βaDM)2 is the measured speckle intensity inside of some aperture centered around

the speckle (usually with angular size ≈ λ
D

), and Iap is a constant describing the rela-

tionship between the peak intensity of the Airy disk and the total intensity inside of the

speckle aperture:

Iap ≡
∫
ap

∣∣∣P̂ (~r − ~rs)
∣∣∣2 d2~r (4.18)

where the integral is over a fixed-radius circular aperture centered around ~rs.

In light of the calibrations defined above, we can rewrite the intensity of a general

sinusiodal aberration (eqn. 4.13) in terms of measurable quantities:

I(~r) =
I0

Iap
|P̂ (~r)|2 +

Is
Iap

(
|P̂ (~r + ~rs)|2 + |P̂ (~r − ~rs)|2

)
(4.19)

where I0 is the intensity of the unocculted PSF, Is is the unocculted speckle intensity, and

±~rs are the measured speckle centroids in the focal plane image. This has corresponding
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electric field:

E(~r) =

√
I0

Iap
P̂ (~r) +

√
Is
Iap

[
ei(φ0+φ)P̂ (~r + ~rs) + ei(φ0−φ)P̂ (~r − ~rs)

]
(4.20)

where we’ve re-introduced the pupil plane phase φ. φ0 is determined by the relative

magnitudes of the phase and amplitude aberrations (i.e. φ0 = arctan ap/as).

If we sum eqns 4.16 and 4.20, we can determine the DM amplitude aDM , phase φDM ,

and spatial freqency kDM required to null the original speckle. By inspection, we can

immediately determine:

aDM =

√
Is
β

(4.21)

kDM = α~rs (4.22)

For the speckle phase, we can only null both speckles at ±~rs if φ0 = π/2; i.e. the speckles

result from a pure phase-type aberration. This is intuitively clear, since the DM can only

control the electric field phase1. So, in general we choose a region on a single side of the

PSF (know as the “control region”) over which to null speckles. Then, the DM phase is

given by:

π/2± φDM = φ0 ± φ+ π (4.23)

±φDM = φ0 ± φ+ π/2 (4.24)

φDM = φ± (φ0 + π/2) (4.25)

where the + or − depends on which speckle in the pair we are choosing to null.

Focal plane images measure intensity, so we cannot directly measure φ (or φ0). We

1This is true for both P3K and SCExAO, but some high contrast imaging testbeds have conjugate
DMs to correct both phase and amplitude
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instead use the DM to apply “probe” speckles of known phase (with amplitude and

spatial frequency given by eqns. 4.21 and 4.22) to interfere coherently with the speckle

we are trying to correct. With enough probe measurements we can solve for the electric

field phase (and more robustly estimate the amplitude). We describe the probing process

and the calculation of nulling solutions in the following subsections.

4.2.1 Probing

For each identified speckle at position ~rs with intensity Is, generate DM probes of

the form ϕp(~ρ) =
√
Is
β
cos(α~rs · ~ρ + φp). These probes will coherently interfere with the

identified speckle, allowing us to infer the speckle phase. The amplitude of the applied

probe was chosen to match the expected amplitude of the identified speckle, which is

important for maximizing SNR [13]. In our implementation, we use four probe phases

φp = [0, π
2
, π, 3π

2
]. After each probe is applied, we measure the resulting speckle intensity

over some predetermined aperture; denote these measurments [I1, I2, I3, I4]. The focal

plane electric field for each probe measurement is given by:

Êp(~r) =

√
Is
Iap

ei(φ0−φ)P̂ (~r − ~rs) +
βaDM√
Iap

ei(π/2−φp)P̂ (~r − ~rs) (4.26)

where we’ve picked the speckle at +~rs. The corresponding intensity is:

Îp(~r) =
1

Iap

[
Is + (βaDM)2

+βaDM
√
Is
(
ei(−φ0+φ+π/2−φp) + ei(φ0−φ−π/2+φp)

)] ∣∣∣P̂ (~r − ~rs)
∣∣∣2 (4.27)
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Îp(~r) =
1

Iap

[
Is + (βaDM)2 + 2βaDM

√
Is cos (φ− φ0 + π/2− φp)

] ∣∣∣P̂ (~r − ~rs)
∣∣∣2 (4.28)

=
1

Iap

[
Is + (βaDM)2 + 2βaDM

√
Is cos (φs − φp)

] ∣∣∣P̂ (~r − ~rs)
∣∣∣2 (4.29)

where we set φs ≡ φ − φ0 + π/2 for clarity. Since our intensity measurements I1..4 are

defined over the speckle aperture (eqn. 4.18), we have:

Ip ≡
∫
ap

Îp(~r)d
2~r (4.30)

= Is + (βaDM)2 + 2βaDM
√
Is cos (φs − φp) (4.31)

Then, plugging in each of the four probes defined above we have:

I1 = Is + (βaDM)2 + 2βaDM
√
Is cos (φs) (4.32)

I2 = Is + (βaDM)2 + 2βaDM
√
Is cos (φs − π/2) (4.33)

I3 = Is + (βaDM)2 + 2βaDM
√
Is cos (φs − π) (4.34)

I4 = Is + (βaDM)2 + 2βaDM
√
Is cos (φs − 3π/2) (4.35)

4.2.2 Calculation of Nulling Solution

Combining the above measurements, we have:

I1 − I3 = 2βaDM
√
Is [cos(φs)− cos(φs − π)] (4.36)

= 4βaDM
√
Is cos(φs) (4.37)

I2 − I4 = 2βaDM
√
Is [cos(φs − π/2)− cos(φs + π/2)] (4.38)

= 4βaDM
√
Is sin(φs) (4.39)
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Re

Probe speckle phase: 0 Probe speckle phase: 𝜋/2

Probe speckle phase: 𝜋

Re

Probe speckle phase: 3𝜋/2

𝜙𝑠

𝐼𝑠

Im

Re

Im

𝜙𝑠 + 𝜋

𝐼𝑠

Figure 4.1: Schematic of probing process. Speckle with amplitude
√
Is and phase φs

(top left) is measured using four DM probes (bottom four plots). The orange and
dashed green lines show the complex amplitude of the original and probe speckles,
respectively. The amplitude of the resulting speckle produced by the interference of
these speckles are indicated by the solid black line, the intensity of which (i.e. length
of the arrow squared) is measured in the focal plane. The top right plot shows the
nulling solution.
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By combining eqns. 4.37 and 4.39, we obtain:

φs = arctan
I1 − I3

I2 − I4

(4.40)

A potentially more robust estimate of the speckle amplitude
√
Is can also be obtained

from the probe measurements:

(I1 − I3)2 + (I2 − I4)2 = 16βa2
DMIs

[
cos2(φs) + sin2(φs)

]
(4.41)

Is =
(I1 − I3)2 + (I2 − I4)2

16βa2
DM

(4.42)

This method will reject any incoherent sources/background, since these will show up as

equal additive terms in all four probe measurements. Depending on the strength of the

modulation, this method may also improve SNR in the photon noise limited regime.

It is often useful to write down the measured phase and amplitude as a single complex

number:

As ≡
√
Ise

iφs (4.43)

=
√
Is cosφs + i

√
Is sinφs (4.44)

=
(I1 − I3) + i(I2 − I4)

4βaDM
(4.45)

Eqn. 4.45 is linear in the probe measurements, making it straightforward to combine mul-

tiple measurements, propagate errors, and apply temporal filtering schemes (e.g. Kalman

filtering).

It is important to determine the SNR of the estimated speckle complex amplitude,

especially in the high-framerate regime, where the probe measurements are often photon-

starved. If the estimate has insufficient SNR, using it to apply a correction actually in-
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crease the intensity inside the control region, worsening the image quality. In this regime,

our measurements are Poisson noise limited (σ2
I = I). Propagating this error through

eqn. 4.45, we can determine the uncertainties on the real and imaginary components of

As:

σ2
Re[As] =

I1 + I3

16β2a2
DM

(4.46)

σ2
Im[As] =

I2 + I4

16β2a2
DM

(4.47)

The associated SNR of each component is:

SNRRe[As] =
|I1 − I3|√
I1 + I3

(4.48)

SNRIm[As] =
|I2 − I4|√
I2 + I4

(4.49)

4.3 Realtime Data Pipeline

The raw MKID data is formatted as a list of photon detection events, each tagged

with the time of detection, pulse amplitude, and pixel coordinates. These photon lists

can then be calibrated and binned into images with a user-defined exposure time and

wavelength range for analysis in realtime or post-processing. In this section, we describe

a realtime data pipeline for generating wavelength calibrated images on-demand using

the raw photon list data streaming from the readout FPGAs. The raw photon lists are

also saved to disk, so the pipeline has no effect on the analysis steps in post-processing.

Our pipeline is a key component of the MKID speckle control codebase and is also used

in the realtime observing display.
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4.3.1 Raw Data Format

The readout FPGAs encode each photon event as a 64-bit word, and pack these

words into UDP frames for transmission to the data server. Each UDP frame contains a

global “header” word, containing the current time (as a UNIX timestamp) to the nearest

500 µs and a serial number identifying the readout unit (figure 4.2a). Each photon word

contains the detection time in microseconds relative to the header word timestamp, pulse

amplitude, pixel coordinates, and baseline filter value (figure 4.2b). To ensure that all

photon words in a UDP frame occur within 500 µs after the header timestamp, frames

are sent at least every 500 µs. We also impose an upper limit of 100 photon words per

frame, so frames can be sent more often if necessary.

Pixel coordinates are matched to resonator readout channels using a calibration pro-

cess known as “beammapping” [50, 51]; this mapping is loaded into the firmware prior

to taking any observational data.

4.3.2 Packetmaster

Packetmaster is the primary application used for receiving, parsing, and saving photon

data. It is primarily written in C, but can be fully configured and run using a Python

API (written in Cython). Packetmaster can be configured to have up to three threads:

Reader, for receiving UDP packets; Writer, for dumping the contents of these packets

to disk for later analysis; and SharedImageWriter, for generating calibrated realtime

images. Multithreading, sharing memory, and process synchronization are implemented

using standard POSIX tools.
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0

timestamp (uint 36)

36

frame no. (uint 12)

48
roach no. (uint 8)

56

64
start (0xFF)

(a) header word

0

baseline (fix 17 14)

17

pulse height (fix 18 15)

35
timestamp (uint 9)

44

y-coordinate (uint 10)

54

64

x-coordinate (uint 10)

(b) photon word

Figure 4.2: Data format descriptions of the header (left) and photon (right) words.
The MSB of the header word is set to 0xFF (i.e. 8 ones in binary) in firmware to
distinguish it from the photon words and indicate the start of a new UDP frame.
These data structures are implemented in Packetmaster as packed bitfield C structs.

Reader

The “Reader” thread listens for UDP frames on a specified port and dumps their

contents to a shared memory buffer that is accessible to the “Writer” and “SharedIm-

ageWriter” threads. For receiving packets, we find that it is important to increase the size

of the system ethernet buffer to 512 MB to prevent overflow. The shared memory buffer is

implemented as a read-only ring buffer (figure 4.3). This provides a safe, straightforward

way to share resources while allowing each thread to control how and when it accesses

the raw photon data. The ring buffer is implemented as a C struct containing a pointer

to the data, and indices specifying the current write location in the buffer (denote this

ip where p indicates that this is the index of the “producer” thread) and the number of

total write cycles (i.e. the number of times the reader thread has reached the end of the

buffer and looped back to the beginning; denote this np). Each thread reading data (i.e.
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buf[N-1]

buf[N-2]

buf[0]

buf[1]

buf[2]

buf[N-3]

buf[3]

Reader (producer)  ic = N-2

Writer (consumer)

 ip = N-1

Shared Image Writer 
(consumer)

...

ic = 3

Figure 4.3: Schematic of the ring buffer data structure. Each cell (buf[i]) represents a
photon or header word. Reader is the “producer” thread which continuously writes to
the buffer as it receives UDP frames. Once it reaches the end of the buffer (buf[N-1]),
Reader will return to the buffer start (buf[0]) and continue writing, overwriting
existing data. So, in the diagram above, the oldest word is at (buf[N-1]), and the most
recent is being written to buf[N-2]. The “consumer” threads read data sequentially
from the buffer as needed. It is important to make the buffer large enough such that
data isn’t overwritten by Reader before they can be read by the consumer thread(s).

“consumer”) from the ring buffer has a pointer to the current read location (ic) and a

counter tracking the number of total read cycles (nc). Each time the buffer is read from,

the consumer thread will compare its own read and total cycle pointers with those of the

Reader thread, to ensure continuity of the data stream (e.g. if ip > ic and np > nc, we

know that the producer thread has overwritten the data between ic and ip before it was

read by the consumer).
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Writer

The “Writer” thread simply reads the raw data from the ring buffer and saves it to

disk for later analysis. A shared memory interface is used by the master process (e.g.

Python program that spawned the Packetmaster instance) to specify the write path and

command Writer to start/stop saving to disk. Data is saved in files labeled by the current

UNIX timestamp in seconds (as measured by the data server system clock). A new file is

started every second. These filename timestamps are not guaranteed to line up with the

photon/header timestamps in the raw data, since there may be misalignments between

the data server system clock and PPS signal used to synchronize the readout FPGAs.

SharedImageWriter

The “SharedImageWriter” thread parses the raw data and bins photon events into

(optionally) wavelength calibrated images as specified by the shared memory interface.

In this section, we focus on the packet parsing aspects of SharedImageWriter; the shared

memory API and its interfacing with SharedImageWriter is covered in section 4.3.3.

Both the system ethernet buffer and the Reader provided ring buffer don’t distinguish

between header words and photon words; data is simply extracted from the raw UDP

frames and stored sequentially in memory with no reference to the frame boundaries. It is

however guaranteed that data from a single UDP frame will occupy a contiguous location

in memory (modulo any wrapping at the ring buffer boundaries). So, when parsing raw

data we must first check each 64-bit word to determine whether it is a header or photon

word. If it is a header word, we know that all subsequent photon words between it and

the next header word belong to the same UDP frame, and thus share a common header

timestamp. To distinguish between header and photon words, we can simply check the

most significant byte; for header words, this is set to 0xFF by the firmware. This will
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never occur in a photon word, since it would require the x-coordinate to be ≥ 1020, which

is well outside the boundaries of current generation MKID arrays.

Once a header word is identified, subsequent photon words can be parsed to determine

the full UTC timestamp, pulse amplitude, and coordinates of each photon event. In

general, parsing header/photon words is done simply by typecasting it into the proper C

struct and examining the relevant fields. Before parsing, the byte order of each word must

be swapped, since the UDP frames use big-endian (network) byte order, while the x86

systems running Packetmaster are little-endian 2. Once photon events are fully parsed,

they may be calibrated and/or binned into images as specified by the shared memory

interface. SharedImageWriter will continuously parse out the raw data stream in this

manner; decisions about whether/how to add a photon to an image are made based

on the current state of the shared memory interface. Photon events are immediately

discarded after being parsed (and possibly added to an image); SharedImageWriter has

no “memory” of previous photons.

To convert phase pulse height to wavelength, we use a function of the form:

E = aφ2 + bφ+ c (4.50)

where E = hc/λ is the photon energy and φ is the pulse height in radians. The coef-

ficients a, b, and c are unique to each pixel, and are determined using calibration data

taken at known monochromatic wavelengths [21]. To bin shared memory images accord-

ing to wavelength, we provide Packetmaster with a buffer containing these coefficients;

SharedImageWriter can then calculate the wavelength of every parsed photon.

2“Endianness” refers to the ordering of bytes within numerical data types; “big-endian” systems have
the most significant byte at the lowest memory address, while “little-endian” systems start with the
least significant byte. The format descriptions in figure 4.3.1 assume little-endian byte ordering
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4.3.3 Shared Memory Interface

The MKID shared memory interface provides an API for requesting on-demand im-

ages from Packetmaster with relatively low latency (∼ 1 ms). The API allows a client

program (e.g. speckle nulling controller) to specify the start time, integration time, and

optionally a set of wavelength bins. It has hooks written in both C and Python.

The start time and integration time can be specified to 0.5 ms precision (corresponding

to the UDP header timestamps), and can be changed on the fly for each new image. The

wavelength range can also be set dynamically, but the number of wavelength bins must

be specified when creating the image buffer.

The interface is implemented as a system-wide shared memory buffer containing the

image data (call this image buffer), and metadata (call this image metadata) param-

eters that can be set by the client program. A set of C functions is used to interface

with this buffer; the client program can optionally use a dedicated Python API instead.

Synchronization of the client program with the SharedImageWriter thread is done us-

ing POSIX semaphores (which are named in the shared metadata). A semaphore is a

data structure used for sharing resources between processes. In its simplest form, it

is a counter indicating the number of a certain resource that is currently available. A

process requiring the resource can perform a wait operation on the semaphore, pausing

execution (hence access to the resource) until the value of the semaphore is greater than

zero. A process using the resource will post the semaphore when it is finished, indicat-

ing that the resource has freed up. Our interface uses two semaphores: one to trigger

SharedImageWriter to start taking an exposure (call this take image), and another for

SharedImageWriter to indicate that the exposure is complete (call this done image). The

communication protocol for taking a single exposure is detailed below (and outlined in

figure 4.4):
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image_metadata

image_buffer

Shared memory space

Client Program SharedImageWriter

• Read any existing image

• Write image_metadata
parameters for next 
image

• Post take_image when 
ready for new exposure

• Continuously parse out 
ringbuffer

• Wait for take_image

take_image

done_image

Client Program 
posts take_image

image_metadata

image_buffer

Shared memory space

Client Program SharedImageWriter

• Wait for done_image • Continuously parse out 
ringbuffer

• Populate image with photons 
according to the parameters 
in image_metadata

• Post done_image when 
finished (current UDP header 
timestamp for all roaches >  
start + exposure time)

take_image

done_image

SharedImageWriter
posts done_image

Taking image state

Idle state

Figure 4.4: State machine diagram of shared memory interface. In the idle state
(top), no image data is being written to image buffer, and the client program is
free to read from it and write metadata parameters for subsequent exposures. To
trigger a new exposure, the client program will post take image. In the taking image
state (bottom), SharedImageWriter will overwrite image buffer with data from a
new exposure. Posting done image will transition back to the idle state.
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1. Client program sets the desired image parameters, then posts (take image). It

then waits on done image before reading from the image buffer.

2. When take image is posted, SharedImageWriter reads the image parameters from

the shared memory buffer, clears the content of image buffer, and begins pop-

ulating image buffer with photons within the start time, integration time, and

wavelength range specified by the client program. If the specified start time is 0,

SharedImageWriter will set it to the header timestamp of the most recently parsed

UDP frame.

3. SharedImageWriter will continue to populate the image until all ROACH header

timestamps exceed the start time plus the integration time. It will then post

done image, at which point the client program is free to read image buffer.

4.4 MKID Speckle Nulling Code

Our implementation of the speckle nulling algorithm largely follows [13, 14], but we

made a few modifications to improve performance in the high framerate, photon noise

limited regime, as well as to account for the relatively low pixel yield of the MEC and

DARKNESS arrays. These changes are described in the following subsections; a full

account of the algorithm is given below in algorithm 1.

4.4.1 Speckle Detection

The speckle detection step finds the brightest speckles within the control region, and

measures the speckle position and intensity for the purposes of calculating the DM probe

to apply (eqns. 4.21 and 4.22).
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Algorithm 1: Speckle Nulling Loop

input: num iters, snr thresh, int time, exclusion radius, max n speckles
1 phases = [0, π/2, π, 3π/2] // list of probe phases

2 speckles = [] // list of speckles being probed/nulled

3 for n← 1 to num iters do
4 image ← new exposure(int time)
5 new speckles ← detect speckles(image)
6 /* detect speckles returns a list of speckles (up to max n speckles), and

measures the position and intensity of each speckle according to

sections 4.4.1 and 4.4.2, respectively */

7 delete any speckle in new speckles with a focal plane position that is within
exclusion radius of any speckle in speckles

8 append the brightest m speckles in new speckles to speckles, where
m = max n speckles− len(speckles)

9 /* probe measurements: */

10 for i← 1 to 4 do
11 φp ← phases [i]
12 for speckle in speckles do

13 apply speckle probe aDM cos (~kDM · ~ρ+ φp) to DM
14 /* ~k and aDM are calculated from the measured speckle intensity and

position as specified in eqns. 4.21 and 4.22 */

15 end
16 image ← new exposure(int time)
17 for speckle in speckles do
18 speckle.add probe measurement(image)
19 /* add probe measurement measures the speckle aperture intensity and

σ according to eqns. 4.53 and 4.54, and combines with any

previous measurements (section 4.4.3) */

20 end
21 remove all speckle probes from DM

22 end
23 /* caclulate nulling solutions: */

24 for speckle in speckles do
25 calculate speckle complex amplitude As according to eqn. 4.45
26 calculate speckle signal to noise (snr) according to eqn. 4.61
27 if snr > snr thresh then

28 apply nulling solution: |As| cos (~kDM · ρ+ arg {As}) to DM
29 delete speckle from speckles

30 end

31 end

32 end
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To help fill in missing pixels, we first apply a normalized Gaussian blur filter of the

following form:

Filt [I(~r)] ≡ I(~r) ∗ g(~r)

GPM(~r) ∗ g(~r)
(4.51)

where I(~r) is the image of the control region, ∗ denotes the convolution operator, and

GPM(~r) is the “good pixel mask”, such that GPM(~r) = 1 if the pixel at ~r is usable,

and GPM(~r) = 0 if not. The exact usability criteria depend on the configuration of the

system; e.g. if we are specifying a wavelength range, we require that all usable pixels be

wavelength calibrated. If not, we usually only require that they be photosensitive. g(~r)

is a normalized Gaussian kernel, with σ = 0.42 × 2π/α (this value was chosen to best

approximate the core of the Airy function profile). Intuitively, this filter normalizes the

output of an ordinary Gaussian blur by the expected output given uniform illumination.

We also find that upsampling I(~r) before applying the filter improves speckle centroiding

precision; we typically upsample by a factor of 2. After upsampling and filtering, we

identify the speckle locations simply by picking the N brightest local maxima. Speckle

intensity is measured using the procedure described in section 4.4.2.

4.4.2 Aperture Intensity Measurement

To measure the speckle intensity, we first define a circular aperture mask centered

around the identified speckle location. The size of the aperture is left as a tunable

parameter, but we generally define it to be close to the resolution limit (λ/D, which is

≈ 3 pixels in diameter). Within the aperture, we define the good pixel fraction:

GPF =
ΣapGPM(~r)

Npix

(4.52)
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where Npix is the total number of pixels in the aperture. We then perform the following

correction to the raw intensity measurement:

Imeas =
Iap
GPF

(4.53)

where Iap is the raw intensity inside the aperture. This has associated variance:

σ2
meas =

Iap
GPF 2

(4.54)

This method of measuring intensity and variance is used for both the initial intensity

measurement and the probe measurements.

4.4.3 Multiple Probe Iterations

In the high framerate, photon noise limited regime, a single iteration of probe mea-

surements might not provide enough signal-to-noise to accurately measure the speckle

phase and amplitude. So, we integrate signal over multiple probe iterations, and only

apply the correction once the speckle SNR has exceeded some threshold value. The

resulting probe intensity is simply an average over all of the probe cycles:

Ii =
1

N

N∑
n=1

Ii,n (4.55)

where i indexes the probe speckle phase, and n indexes the probe iterations. The resulting

variance is given by:

σ2
i =

1

N2

N∑
n=1

σ2
i,n (4.56)
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Plugging eqn. 4.55 into eqn. 4.45, the measured speckle complex amplitude is:

As =

∑N
n=1 [(I1,n − I3,n) + i(I2,n − I4,n)]

4NβaDM
(4.57)

To calculate the SNR of As, define

σ2
As,avg =

1

2

(
σ2
Re[As] + σ2

Im[As]

)
(4.58)

asdf =
σ2

1 + σ2
2 + σ2

3 + σ2
4

32β2a2
DM

(4.59)

where we’ve combined eqns. 4.46 and 4.47, and replaced the raw intensities with the

combined variances defined in eqn. 4.56. If we make the approximation that σ2
Re[As]

≈

σ2
Im[As]

, and set σ2
Re[As]

= σ2
As,avg

and σ2
Im[As]

= σ2
As,avg

, the SNR of the speckle focal plane

amplitude (|As|) is given by:

SNR|As| =
|As|
σAs,avg

asdfasddddfasd (4.60)

asdfasddddd =

√
2 [(I1 − I3)2 + (I2 − I4)2]

σ2
1 + σ2

2 + σ2
3 + σ2

4

(4.61)

4.4.4 Codebase

The speckle nulling code was written in C++ for performance, and for efficient in-

terfacing with the various hardware modules (e.g. the MKID realtime pipeline). There

is also a Python API for accessing high-level functionality, such as starting the control

loop, gathering telemetry, and configuring parameters.

Most of the core functionality is implemented as C++ classes. The control loop

itself (described in algorithm 1) is implemented as a state machine (inside a class), with
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hooks for updating it with new images, advancing the control iteration, and updating the

DM. Each identified speckle is also implemented as a state machine object, with hooks

for updating the speckle with new images and retrieving DM probe/null maps. These

objects have attributes to store the speckle position, intensity and probe measurements,

and internal methods for measuring the intensity within the aperture, calculating SNR,

etc. The code has interchangeable, modular interfaces to the CACAO and P3K DM

controllers, abstracting away most hardware differences.

We also include a simple simulator with hooks that are identical to those of the MKID

realtime pipeline and CACAO DM interface, making any control code interchangeable

between hardware and simulation.

The codebase is open source and can be found at: https://github.com/MazinLab/

MKIDSpeckleControl.

4.5 In-lab Testing

4.5.1 DARKNESS

We performed in-lab speckle nulling tests with DARKNESS at Palomar Observatory,

behind the Stellar Double Coronagraph (SDC), and PALM-3000 (P3K) adaptive optics

system. We used the P3K internal white-light source to provide the PSF. The speckle

nulling code was run on the DARKNESS data server. The MKID data stream was

provided over a 10 Gbit fiber link. Commands to the P3K controller (DM actuator

maps, etc.) were sent over TCP via a LAN connection.

Actuator maps can be applied to the DM either directly, or as a wavefront sensor

convergence point offset (figure 1.5). For the latter method, the response of the wave-

front sensor to the actuator map is calculated (usually with a matrix multiplication);
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𝜆

𝐷
:

Before After

Counts

Figure 4.5: DARKNESS focal plane images before (left) and after (right) running the
speckle nulling controller. The control region is outlined in red, and the black circle
marks the approximate position of the coronagraph.
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Figure 4.6: Light curve inside the control region over the duration of the speckle
nulling loop, corresponding to the DARKNESS test in figure 4.5

this is then added to the current wavefront sensor convergence point (which generally

corresponds to a flat wavefront). This will result in the control loop converging to the

applied actuator map. It is necessary to apply actuator maps as wavefront sensor offsets

while the main AO control loop is running; if a map is simply written directly to the

DM, the WFS will measure it as an aberration and the AO loop will remove it. P3K

uses a Shack-Hartmann wavefront sensor, so wavefront sensor measurements are encoded

as positional “centroid offsets”; i.e. the displacement of each imaged lenslet spot away

from its nominal center position [13]. Actuator maps are converted to centroid offsets

via matrix multiplication by the system response matrix (which encodes the per actuator

response of the wavefront sensor to the DM).

For our tests, we configured SDC with a Lyot coronagraph, and applied a J-band

filter in the DARKNESS optical stack. We used a detection/probing exposure time
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of 0.1 seconds, for a nominal control bandwidth of 2 Hz (1x detection followed by 4x

probe frames gives 0.5 s per iteration). We experimented with faster framerates, but

found that this did not improve final contrast achieved or convergence time. The speckle

background for our tests was purely quasistatic, resulting from optical aberrations within

the instrument. Results are shown in figures 4.5 and 4.6, demonstrating a factor of ∼ 2.5

reduction in flux over a ≈ 150 second convergence time.

Tests at Palomar were performed with an older version of the speckle nulling codebase,

which can be found at: https://github.com/neelay893/DarknessSpeckleSuppression.

4.5.2 MEC

In lab speckle nulling tests with MEC were performed behind SCExAO at Subaru

Observatory. Unlike at Palomar, the speckle nulling controller was run directly on the

SCExAO realtime controller (RTC), for easy interfacing with the main AO control loop.

The raw MKID datastream was forwarded by the MEC data server to the RTC over a

10 Gbit SFP+ link.

Actuator maps can be applied to the SCExAO DM using a CACAO provided shared

memory interface; one simply writes the map to the shared memory buffer, then posts

a semaphore to trigger a write to the DM. CACAO provides ten such shared memory

buffers to accommodate multiple control processes. As with P3K, actuator maps can be

written either directly or as wavefront sensor convergence point offsets. This happens

entirely within CACAO; one simply toggles an option to convert a particular DM shared

memory channel into a convergence point offset.

For these tests, we used a Lyot coronagraph with a 113 mas focal plane mask. Tests

were performed using both broadband and narrowband (900 ± 40 nm) internal source

configurations. The energy resolution of MEC is currently not high enough to mean-
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Figure 4.7: MEC focal plane images before (left) and after (right) a quasistatic
speckle nulling test using the SCExAO internal white light source. Intensity is in
counts/second. For this test, we applied a narrowband filter (900± 40 nm), and used
5 ms frames, for a nominal feedback rate of 40 Hz.
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Figure 4.8: Light curve inside the control region corresponding to the test in figure
4.7. The loop was started at t = 1 s. The loop fully converged after approximately
1 second, though significant suppression was achieved in ≈ 0.5 s. The controller was
turned off at t ≈ 4.3 s; the drop in intensity occurs because the DM is no longer being
modulated by probe speckles.
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Figure 4.9: Before/after images for a speckle nulling test within a small (≈ 2.5 res-
olution element) aperture (outlined in red). The aperture was chosen to be small
enough to only contain a single speckle, but large enough to provide the algorithm
with a nontrivial speckle centroiding/measurement task. These images correspond to
the (blue) light curve in figure 4.10; intensity was suppressed by a factor of 2 within
50 ms using 5 ms exposures. As in figure 4.7, these tests use the SCexAO internal
source with a narrowband filter applied
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Figure 4.10: Light curves corresponding to three different speckle nulling tests within
the aperture (and test configuration) defined in figure 4.9. The black lines mark the
start of each test. All three curves show suppression by approximately a factor of two,
but differ in convergence time: (blue) shows convergence time t ≤ 50 ms, (orange)
shows 50 < t < 100 ms, and (green) shows t ≈ 200 ms.
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ingfully discriminate within this wavelength band, so we imposed a wavelength range of

< 1200 nm for all MEC images. We experimented with a variety of exposure timescales,

but most tests were done using ≈ 5 ms exposures for both speckle detection and probing

(for a nominal control bandwidth of 40 Hz). No apparent performance gains (in terms

of convergence time and final contrast) were found by using exposures shorter than this.

In figures 4.7 and 4.8, we show results from a narrowband test over a relatively

large (55x39-pixel, or 27x20 resolution element) control region, using 5 ms exposures and

controlling up to 10 speckles simultaneously. The algorithm reduced total speckle flux

in the control region by approximately 1/3 after 0.5 s, and 1/2 after 1 s. In this test,

25% of the control loop runtime is used for computations and data transmission/parsing

(≈ 1.2 ms per 5 ms probe frame), so the actual control bandwidth is closer to 30 Hz. For

an isolated speckle (figure 4.9), the algorithm will converge in 50-200 ms (figure 4.10).

This discrepancy in convergence times can be largely attributed to errors in the initial

speckle amplitude and position measurement.

In the broadband regime (figures 4.11 and 4.12), performance is degraded significantly,

likely because the speckle chromaticity causes them to appear diffuse and elongated. An

MKID array with higher energy resolution (R ≈ 10) will likely mitigate these effects

by allowing us to impose more stringent wavelength cuts and/or correct for the speckle

position based on measured photon wavelength.

4.6 On-sky Test

We performed an on-sky test using MEC+SCExAO, on the target HD148112. HD148112

is an A-type star with an apparent magnitude of 4.56 in J-band [52]. For our test, we

used wavelengths shorter than J-band (950 nm - 1100 nm). As with our in-lab tests,

we imposed a wavelength cut of < 1200 nm on all MEC images. We ran the speckle
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Figure 4.11: Before/after images for an in-lab speckle nulling test in the broadband
regime. Speckles appear to extend outward from the PSF center due to chromaticity.
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Figure 4.12: Light curve corresponding to the test in figure 4.11. The speckle nulling
loop starts at ≈ 1.75 s and ends at 5 s. 5 ms exposures were used for control.

nulling control loop concurrently with the SCExAO wavefront sensor loop, so our DM

commands were applied as WFS convergence point offsets. We expermented with both

fast feedback rates (exposures ≈ 5 ms), as well as slower feedback rates more suited to

quasistatic speckle nulling (exposures ≥ 0.5 s).

In figures 4.13, 4.14, and 4.15, we show results from a 5-iteration test of quasistatic

speckle nulling using 0.5 second frames, for a nominal feedback rate of 0.4 Hz. The overall

quasistatic speckle background was suppressed by ≈ 25% within the control region (figure

4.15).

Unfortunately, the algorithm did not converge when using fast feedback rates (i.e.

exposure times ≈ 5 ms). This is likely because the speckle background was fluctuating

too quickly to allow the speckle phase/amplitude to be measured with sufficient SNR

for correction. The fast framerate would also makes it more difficult to average down
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Figure 4.13: MEC focal plane images before (left) and after (right) quasistatic on-sky
speckle nulling. Each image is a 0.5 second exposure (taken immediately before/after
running the control loop); the intensity is given in counts/second. The control region
is outlined in red, and the black circle marks out the approximate location of the
coronagraph.
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Figure 4.14: Long (10 second) exposure limit of figure 4.13. The control region is
outlined in red, and the black circle marks out the approximate location of the coro-
nagraph.
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Figure 4.15: Light curve of control region during the speckle nulling loop, made using
0.1 second exposures. The dips in intensity occuring every ≈ 2.5 seconds correspond
to detection frames, while the peaks correspond to probes. The loop stops running at
t = 10 s
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fluctuations that are too fast to correct (the way one can in the quasistatic long-exposure

limit). Future work is needed to develop more efficient methods for accurately measuring

the speckle complex amplitude in the high-framerate limit.

4.7 Preliminary Tests of Expectation Maximization

(EM) Algorithm for Calibration

In order to improve the accuracy of speckle probe measurements, we experimented

with a calibration method to determine the per-pixel (rather than per aperture) complex

amplitude response to the DM speckle modes. This could also allow for more precise

speckle localization during the probing stage.

We first discretize the space of speckle modes to match the pixel grid; i.e. we define a

DM mode control vector ~u such that each element corresponds to the real or imaginary

amplitude of a speckle centered around a pixel in the control region. This allows us to

specify a list of speckles to apply to the DM in a single control vector. For a vector with

M total control modes, we have:

ϕDM(~ρ) =
M∑
i=1

uicos(~ki · ρ) + ui+Msin(~ki · ρ) (4.62)

where i indexes speckle modes, and the first M elements of ~u specify the real amplitudes,

and the subsequent M elements specify imaginary amplitudes. We then define the matrix

G, which specifies the per-pixel response in the focal plane to ~u. As with ~u, for an N

pixel control region, the first N rows of G specify real amplitudes, and the next N are

imaginary. The per-pixel complex electric field in the focal plane is given by ~x; such that

the intensity of pixel i is given by I =
√
x2
i + x2

i+N . So, if our calibration matrix G has

perfect accuracy then applying a control vector ~u would result in ~x = G~u.
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Above we have defined G such that it is analogous to the Jacobian control matrix in

EFC (electric field conjugation) or CDI (coherent differential imaging) control schemes.

This allows us to utilize the expectation maximization (EM) algorithm described in Ref.

[53] to refine our estimate of G.

We first take a calibration dataset consisting of a series of random control vectors ~uc,n,

each followed by a probe sequence of randomly selected speckle modes. We use the same

set of probe phases φ = [0, π/2, π, 3π/2] as speckle nulling. We can define the per-pixel

probe measurement vector ~z, such that for pixel i, zi = Ii,1 − Ii,3 and zi+N = Ii,2 − Ii,4.

Here Ii,j corresponds to the intensity measured at pixel i and probe phase j. These are

analogous to the real and imaginary speckle amplitudes defined in 4.45; we can estimate

xi,i+N from these measurements using:

xi =
zi

4Gi~uRe

(4.63)

xi+N =
zi+N

4Gi+N~uIm
(4.64)

where ~uRe is the speckle mode vector corresponding to the positive real probe (φ = 0), and

~uIm is the speckle mode vector corresponding to the positive imaginary probe (φ = π/2).

Probes of opposite phase are found by negating these probe vectors; e.g. the probe vector

for φ = π corresponds to −~uRe.

Following [53], we use a Kalman filter to track the focal plane amplitude estimate ~xn

across each of the iterations n in our calibration dataset. We can then fit the elements of

G to minimize the per-iteration Kalman filter measurement and control residuals using

a gradient descent algorithm. Our definitions of the Kalman filter and the loss function

used to optimize G are identical to those in Ref. [53], substituting in our alternative

definitions of the calibration matrix and DM control vector. This optimization process

is performed iteratively, alternating between application of the Kalman filter to estimate
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~xn and running 100-500 gradient descent steps to optimize G.

To test this approach, we took an in-lab calibration dataset using MEC+SCExAO.

We used a narrowband configuration (900 ± 40 nm), and 0.1 second exposures over

1000 probe+control cycles. For the fitting procedure, we inititalized G using the stan-

dard speckle nulling calibration procedure, estimating the per-pixel response to adjacent

speckle modes using a Gaussian function of appropriate width. We ran the optimization

algorithm on a per-pixel basis, using approximately 500 iterations per pixel. The results

of the optimization for a single pixel are shown in figure 4.16. For this pixel, the algo-

rithm has appeared to have “found” a one-pixel offset error in the initial calibration, as

well as the first Airy ring around each speckle (corresponding to the “dips” below zero

surrounding each peak). Over the full control region, the optimization algorithm appears

to have reduced the per-pixel measurement residual by a factor of 2-5 (figure 4.18), indi-

cating a significant improvement in the overall accuracy of the system calibration. Work

is ongoing to integrate this calibration scheme into the speckle nulling controller.
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Figure 4.16: G-matrix elements for a single pixel before (blue) and after (orange)
running the EM algorithm. Each index along the x-axis corresponds to a different
mode in the speckle grid. The grid is flattened in row-major order; horizontally-adja-
cent modes occur at consecutive indices, while vertically-adjacent modes correspond
to adjacent clusters in the above plot.
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Figure 4.17: Expected and actual probe measurement (zi,n) for a single pixel’s imag-
inary probe quadrature, before (left) and after (right) the optimization procedure.
We use the same pixel as in figure 4.16. (blue) corresponds to the actual probe mea-
surement, while (orange) shows the expected zi, given the focal plane electric field
estimate xi,n, calibration matrix G, and applied probe(s) ~uIm,n. Expected and actual
probe measurements appear to agree much more closely after the calibration proce-
dure, indicating an improvement in the ability of G to predict the focal plane response
to the DM probes.
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Figure 4.18: Image showing the ratio ropt/rinitial of the mean squared probe mea-
surement residual before (rinitial) and after (ropt) the optimization procedure. For
each pixel, r is calculated by averaging the squared difference between the actual and
expected probe measurements over the full calibration dataset.
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Appendix A

Room Temperature Phase Noise

Calculation

The single-sided phase noise spectral density Sδφ due to Johnson noise from the HEMT

is given by [54]:

Sδφ,HEMT =
kB

Pdevice
(Tdevice + THEMT ) (A.1)

To facilitate comparison with loopback data taken at room temperature, we can

instead use the tone power at the readout system RF input; PRF = GHEMTPdevice, where

GHEMT is the HEMT amplifier gain. So,

Sδφ,HEMT =
kBGHEMT

PRF
(Tdevice + THEMT ) (A.2)

The noise from the readout system is dominated by the room temperature amplifier

chain immediately following the RF input of the RF/IF board. This chain consists of four

HMC3587, each with a noise temperature of 438 K and two programmable attenuators

(figure A.1). The total single sided noise spectral density at the end of this chain (IQ
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Figure A.1: Schematic of room temperature amplifier/attenuator chain. An RF power
splitter is used to send the full 4 − 8 GHz output comb to both the 4 − 6 GHz and
6− 8 GHz readout units. The amplifier gain G is 15 dB and 0 ≤ A1,2 ≤ 31.75 dB. In
practice, we require A1,2 ≤ 15 dB.

mixer input) is given by:

Smixer = G

{
G

2

(
G

A2

[
G

A1

(SRT + Samp) + SRT + Samp

]
+ SRT + Samp

)
+ SRT + Samp

}
(A.3)

=

(
G4

2A1A2

+
G3

2A2

+
G2

2
+G

)
(SRT + Samp) (A.4)

where SRT,amp = 2kbTRT,amp is the Johnson noise PSD at room temperature and from

the amplifier, respectively, G is the room temperature amplifier gain, A1,2 are the pro-

grammable attenuator values, and TRT,amp are noise temperatures at room temperature

(290 K) and of the amplifiers (438 K).

The tone power at the end of the amplifier chain is given by:

Pmixer =
G4

5A1A2

PRF (A.5)

To obtain the single quadrature phase noise spectral density, we have:
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Sδφ,RT =
Smixer
2Pmixer

(A.6)

=
kB
PRF

(
5

2
+

5A1

2G
+

5A1A2

2G2
+

5A1A2

G3

)
(TRT + Tamp) (A.7)

Comparing the HEMT and room temperature terms:

Sδφ,RT
Sδφ,HEMT

=

(
5

2
+

5A1

2G
+

5A1A2

2G2
+

5A1A2

G3

)
TRT + Tamp

GHEMT (Tdevice + THEMT )
(A.8)

In normal operation we require A1,2 ≤ G. So we can set A1,2 = G to determine an

upper bound on Sδφ,RT :

Sδφ,RT
Sδφ,HEMT

≤
(

15

2
+

5

G

)
TRT + Tamp

GHEMT (Tdevice + THEMT )
(A.9)

For TRT = 290 K, Tamp = 438 K, Tdevice = 0.1 K, THEMT = 2.3 K, GHEMT = 40 dB,

and G = 15 dB,
Sδφ,RT

Sδφ,HEMT
≤ −6.3 dB.
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Correcting for Line Noise

According to the optimal filtering formalism, the pulse amplitude estimator variance is

given by [55]:

σ2 =

(∑
k

|ŝ(fk)|2|
J(fk)

∆f

)−1

(B.1)

where k indexes frequency, ∆f is the frequency spacing, ŝ(fk) is the DFT (discrete Fourier

transform) of the pulse template, and J(fk) is the noise PSD.

Consider some J(fk) with significant spectral lines. We can remove these lines –

denote this J ′(fk) – then compute a new pulse height variance σ2[J ′(fk)], where we’ve

written σ2 as a function of J(fk). Define:

C =
σ2[J(fk)]

σ2[J ′(fk)]
(B.2)

Since σ2 scales proportionally with J(fk),

σ2[J(fk)] = Cσ2[J ′(fk)] = σ2[CJ ′(fk)] (B.3)

CJ ′(fk) is a “clean” spectrum with the same σ2 as J(fk), so we define the noise floor of
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CJ ′(fk) as the “true” channel noise floor after accounting for spectral lines. Since J ′(fk)

has the same noise floor as J(fk), we can perform this correction by scaling the fitted

noise floor of J(fk) by C.

To compute J ′(fk), we set all spectral lines that are 3 dB above the fitted noise floor

to the local spectral floor. This correction is performed over 500 Hz to 300 kHz band;

it does not account for the 1/f “knee” present in some channels. The IQ low pass filter

rolls off transmission significantly past 300 kHz, so it is not necessary to remove lines in

this region.

In order to keep this calculation consistent with the optimal filtering scheme used

in firmware, we calculate σ2 directly from the optimal filter and pulse template. In the

frequency domain, the optimal filter is given by:

φ̂(fk) =
ŝ∗(fk)

J(fk)
(B.4)

Substituting eqn. B.4 into B.1, we have:

σ2 =

(∑
k

φ̂(fk)ŝ(fk)∆f

)−1

(B.5)

We can convert this to the time domain using the convolution theorem (up to a

normalization constant, since we are only interested in the ratio σ2[J(fk)]/σ
2[J ′(fk)]):

σ2 =

(∑
k

φ̂(fk)ŝ(fk)e
ifkt∆f

)−1
∣∣∣∣∣∣
t=0

(B.6)

= iFFT [φ̂(fk)ŝ(fk)](t)
∣∣∣
t=0

(B.7)

= [φ ∗ s](t)|t=0 (B.8)

(B.9)
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where ∗ denotes the convolution operator. We use equation B.9 to compute all σ2, using

a 50 coefficient optimal filter and representative pulse template (figure 2.5). To avoid

potential periodicity artifacts inherent to DFT, optimal filters are computed in the time

domain [40].
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Appendix C

Noise Contributed by Sideband

Tones

Consider a sideband reflection falling within 100 kHz (inside the channel bandwidth) of

some resonator tone. The power contributed by the sideband reflection to the resonator

tone phase power spectrum (in units dBc) is given by:

PSB,δφ =
1

2

PSB
Ptone

(C.1)

where Ptone resonator tone power and PSB is the sideband reflection power. The corre-

sponding RMS amplitude (in radians) is given by:

ASB,δφ =
√
PSB,δφ =

√
PSB

2Ptone
(C.2)

For PSB
Ptone

= −30 dB, ASB,δφ = 1.3◦. This is below the RMS phase noise for a typical

resonator channel; the channel in figure 2.7 has Aδφ,RMS ≈ 2◦. Depending on the location

of the sideband reflection relative to the in-band tone, this can likely be further reduced
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by optimal filtering.
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