Preparation and T_c Control of Reactively Sputtered Sub-stoichiometric TiN$_x$ Thin Films for Microwave Kinetic Inductance Detectors

Gerhard Ulbricht1, Benjamin A. Mazin1, Bruce Bumble2, Shinobu Ohya1, Ben Chiaro1

1: Department of Physics, University of California, Santa Barbara, CA 93106, USA, 2: NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91125, USA

Microwave Kinetic Inductance Detectors (MKIDs):

- photon breaks cooper pairs, increases kinetic inductance
- superconductor part of LC circuit \rightarrow change in total inductance shifts resonance frequency and resonance phase \rightarrow signal
- gives photon arrival time (μS accuracy) and photon energy
- frequency domain multiplexing: many MKIDs with different f, can be measured using one pair of contacts

TiN$_x$ general properties:

- very hard conductive ceramic
- stable at room temperature over a wide range of Ti:N ratio \rightarrow sub-stoichiometric deposition possible
- superconductor with T_c around 5 K (Ti: T_c = 0.4 K)
- high kinetic inductance $L = \frac{\mu_0 \lambda^2}{t}$
- λ: penetration depth: Al: 50 nm Nb: 75 nm TiN: 1 μm

TiN$_x$ preparation:

- DC sputtering of a high purity Ti target in Ar / N$_2$ mixture
- varying Ar:N$_2$ ratio allows to control the Ti:N ratio
- we use a dedicated UHV system ($p_{\text{base}} = 2 \times 10^{-10}$ Torr) to get high quality films
- optimized sputter conditions: $p = 7$ mTorr
 - 1.65 sccm Ar + 15.72 sccm N$_2$ \rightarrow gives about 11 Å/S
- high impact energy of sputtered Ti atoms on the substrate necessary for high quality films
- to structure TiN: ICP etching: SF$_6$: etch rate too low
- Cl$_2$: etch rate too non-uniform for thicker films
- BC$_3$ + Cl$_2$ (2:1) works best but still uniformity issues

Stoichiometric TiN:

- point of stoichiometry can be determined by minimum in room temperature sheet resistivity
- Ti:N ratio dependent on N$_2$ flow rate
- LC circuit low power Q$_i$ up to 3×10^6, dependent on film stress
- film stress can be optimized by varying the sputter pressure

Sub-stoichiometric TiN$_x$:

- when sputtered at 7 mTorr, stress shows no substantial dependence on Ar flow
- variation in x allows control of T_c
- we aim for a T_c between 0.8 K and 1.0 K

- T_c shows a sharp transition \rightarrow careful control of all sputter parameters necessary
- reproducibility is good, visible data scatter mainly caused by lateral variations
- main challenge of TiN$_x$: film uniformity. At the moment we see a huge variation of T_c over a 4” wafer. We expect to reduce that by further optimized deposition conditions.
- we achieve low power Q$_i$ of up to 5×10^5

first results:

- we use TiN$_x$ in optical and in x-ray MKIDs
- optical MKIDs will be presented in a talk by Ben Mazin on Tuesday
- first results on x-ray MKIDs will be shown on Wednesday by Gerhard Ulbricht

This work was supported by NASA grants NNX10AF58G and NNX13AH34G