

Disk Resonator Format for Kinetic Inductance Detectors

N. Zobrist, M. Daal, B. Mazin, B. Sadoulet UCSB, Broida 2015A, 805-893-3344, <u>nzobrist@physics.ucsb.edu</u>

Motivation

Design Equations

A disk resonator's resonant frequency depends on its size, disk separation and its surface inductance. High surface inductance materials and small disk separations are needed to bring the resonant frequency into a usable range. Resonator footprints of 500 x 500 μ m to 1000 x 1000 μ m can be realized in the 1 – 10 GHz range.

Resonant frequencies are related to Bessel function zeros. $j_{1,1}$ is the first zero of the first Bessel function.

Challenges and Ongoing Development

- Meshing is being explored as a way to reduce the resonator volume and vortex penetration.
- Nearby disk modes could interfere with reading out large numbers of resonators on the same feedline. Slits in the disk may suppress some of these modes.
- ~10 nm thick dielectrics are needed to reduce the resonator size. We've currently reached internal quality factors of ~40,000.
- See Grégoire Coiffard's talk (Thursday 12:45 O-65) for another example of a parallel plate resonator geometry that we are exploring.