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We consider the dynamics of phase separation in lipid bilayer membranes, modeled as flat two-
dimensional liquid sheets within a bulk fluid, both in the creeping flow approximation. We present
scaling arguments that suggest asymptotic coarsening in these systems is characterized by a length
scale R(t) ∼ t1/2 for critical (bicontinuous) phase separation and R(t) ∼t1/3 for off-critical concen-
trations (droplet morphology). In this limit, the bulk fluid is the primary source of dissipation. We
also address these questions with continuum stochastic hydrodynamic simulations. We see evidence
of scaling violation in critical phase separation, where isolated circular domains coarsen slower than
elongated ones. However, we also find a region of apparent scaling where R(t) ∼ t1/2 is observed.
This appears to be due to the competition of thermal and hydrodynamic effects. We argue that
the diversity of scaling exponents measured in experiment and prior simulations can in part be at-
tributed to certain measurements lying outside the asymptotic long-length-scale regime, and provide
a framework to help understand these results. We also discuss a few simple generalizations to con-
fined membranes and membranes in which inertia is relevant. © 2011 American Institute of Physics.
[doi:10.1063/1.3662131]

I. INTRODUCTION

The dynamics of phase separation in binary (and effec-
tively binary) systems is a rich field of study.1–3 Coarsening
is often characterized by dynamical scaling laws,1, 4–6 which
predict physical properties that depend on time only through
a single emergent length scale, R(t). Systems obeying dynam-
ical scaling show self-similarity, in the sense that evolution in
time is statistically equivalent to a rescaling in space. Such
behavior has been well established in certain cases such as
alloys and the “diffusive growth” regime in binary fluids.1

In other systems, dynamical scaling is violated. For exam-
ple, two-dimensional (2D) binary fluids in the “viscous hy-
drodynamic regime” (characterized by low Reynolds number
“creeping” flow) violate the scaling hypothesis.7–9

We study phase separation in a multicomponent lipid bi-
layer membrane. A membrane is often described as a “quasi-
two-dimensional fluid”,10, 11 in which the fluid flow within the
two-dimensional membrane is coupled to the flow of a less
viscous three-dimensional (3D) fluid surrounding the mem-
brane. Many of the anomalies of two-dimensional fluid flow at
low Reynolds numbers are altered by the presence of the bulk
fluid. For instance, the diverging mobility of a particle in a 2D
fluid at zero Reynolds number (Stokes paradox) (Ref. 12) is
regulated by the outside fluid viscosity,10 and the slow ( ∼ t−1)
decay of velocity autocorrelations in 2D fluids13, 14 crosses
over to a t−3/2 behavior in membranes.15

Phase separation within membranes is of theoretical in-
terest because the quasi-2D geometry incorporates both 2D
and 3D fluid flow; the dynamics of interest are confined to
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a plane, while the viscous dissipation extends to 3D space.
Quasi-2D hydrodynamics is known to be relevant for the dif-
fusion of membrane-embedded objects, as proteins16 as well
as larger bodies within membranes17 have diffusion coeffi-
cients in agreement with quasi-2D hydrodynamic theory.10, 18

Beyond simple diffusion, the quasi-2D hydrodynamics also
affects the dynamics of hydrodynamic correlations of par-
ticles in a membrane,11 membrane domain fluctuations,19, 20

and the dynamics of critical fluctuations in membranes.21–23

This fluid geometry also has broader importance in the con-
text of lipid monolayers,24 colloidal particles at interfaces,25

and thin liquid crystal films.26

Equally strong motivation for the study of dynamics in
multicomponent lipid bilayers is biological/biophysical. An
interest in the biological activity of lipid rafts27, 28 has moti-
vated the experimental study of phase separation in multicom-
ponent “model membrane” systems,29, 30 including the mea-
surement of scaling exponents.31–33 Recent simulations have
also addressed these questions,34–37 demonstrating the impor-
tance of hydrodynamics in the coarsening process. However,
reported scaling exponents and even the presence of scaling
vary from paper to paper, and no framework exists for in-
terpreting these results. Comparison between these different
simulations is in part confounded by the limitations of each
approach. Dissipative particle dynamics simulations34, 35 may
have unphysically low membrane viscosities; in particular,
Ramachandran et al.35 note that their membrane viscosity is
of the order of their water viscosity. Binary fluid models allow
both membrane and outer fluid viscosity to be changed, but
lack molecular details; the simulations of Fan et al.,37 which
display scaling violation, do not include thermal fluctuations.
Though thermal fluctuations are believed to be asymptotically
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irrelevant in the coarsening of many systems, they play a role
in the coarsening of binary fluids by driving coalescence,1

which is the primary observed mechanism of phase sep-
aration in off-critical lipid membranes.29 To understand
coalescence dynamics and address the inconsistencies be-
tween earlier simulations, it is important to simulate systems
including thermal fluctuations.

Our simulation technique, first introduced in Ref. 36,
uses hydrodynamic equations with Langevin forces that obey
a fluctuation-dissipation theorem, reproducing known equi-
librium and dynamic behavior for membranes. This allows
us to explicitly look at coarsening dynamics for both critical
and off-critical systems, including the diffusion and coales-
cence mechanism. We also present simple scaling laws that
are consistent with observed scaling exponents where dynam-
ical scaling is present, and use these scaling laws to clarify
regimes where different coarsening mechanisms should dom-
inate. We also identify where scaling laws appear to be vio-
lated.

As is customary,1 we describe phase separation via a
composition phase field φ(r) (e.g., φ = χA − χB for a mixture
of A and B, where χ i are mole fractions) and a stan-
dard Landau-Ginsburg free energy for binary mixtures
H = ∫

d2r[− ε
2φ2 + u

4 φ4 + γ

2 |∇φ|2].1, 5 The field is confined
to a flat geometry, r = (x, y), and the parameters ε, u, and γ

are determined by the physical observables σ , the line tension
between coexisting phases, ξ , the interface width, and φ0, the
equilibrium composition of one phase. The field evolves via
overdamped model H (Refs. 1 and 5) dynamics,

(∂t + v · ∇)φ(r, t) = M∇2 δH

δφ(r, t)
+ θ (r, t)

vi(r, t) =
∫

d2r ′ T m
ij (r − r′)

×
[
δH

δφ
∇′

jφ(r′, t) + ζj (r′, t)
]

.

(1)

The transport coefficient M is related to the bulk concentra-
tion diffusion coefficient Dφ = 2Mε and the tensor T m

ij (r)
is the Green’s function for velocity response to an applied
point force in the membrane plane (see Eq. (2)). θ (r, t) and
ζ j(r, t) are Gaussian white random forces with variances cho-
sen to satisfy the fluctuation-dissipation theorem; the multi-
plicative noise inherent to Eq. (1) must be interpreted within
the Stratonovich convention (see Appendix). We will evolve
Eq. (1) numerically on an N × N lattice; N = 1024 for all sim-
ulations presented in this paper. The theoretical framework is
identical to that described in Ref. 36 and readers are referred
there for further details, especially concerning numerical so-
lution of the equations.

We adopt the Saffman-Delbrück hydrodynamic model,10

treating the membrane as a thin 2D fluid, immersed within a
lower viscosity bulk fluid. This leads to a crossover in T m

ij (r)
whereby forces are transmitted via the membrane over short
distances and by the outside fluid at longer distances.24 This
behavior is most clearly apparent in the Fourier transform of

T m
ij (r), T m

ij (q) ≡ ∫
d2r T m

ij (r)e−iq·r,

T m
ij (q) = 1

ηm(q2 + q/Lsd )

(
δij − qiqj

q2

)
, (2)

where the Saffmann-Delbrück length scale Lsd = ηm/2ηf is
set by the ratio of the membrane surface viscosity ηm and the
outside fluid viscosity ηf. Equation (2) reduces to the purely
2D response Tm(r) ∼ ln (r) for r � Lsd, but behaves as Tm(r)
∼ 1/r, characteristic of 3D fluid response, when r � Lsd.
Although the dynamics contained within Eqs. (1) and (2) are
confined to a 2D plane, they are governed by implicit hydro-
dynamic flows in 3D and will be referred to as “quasi-2D”
henceforth. For convenience, we will refer to the two limit-
ing hydrodynamic regimes mentioned above as the “2D” and
“3D” limits of the quasi-2D model. Other parameters, such as
the transport coefficient M and the temperature will also affect
scaling behavior; we present the various regimes of the model
described by Eq. (1) in Table I.

II. SCALING THEORIES OF COARSENING IN A
QUASI-2D MEMBRANE

A. Dynamical scaling

The dynamical scaling hypothesis implies that the struc-
ture function S(q, t) = 〈φq(t)φ−q(t)〉 only depends on time
through a single, emergent length scale R(t),1, 4

S(q, t) = Rd (t) g (qR(t)) , (3)

where g(x) is a scaling function dependent only on x, and d
is the dimensionality of the space where φ(r, t) is specified
(d = 2 in our case). The dependence of R(t) on t is often
taken to be a simple power law, R(t) ∼ tα . Dynamical scal-
ing is well-established for binary alloys, and several regimes
of binary fluids, and in many cases the dynamical exponents α

can be extracted by simple scaling analysis.1 We extend these
classical results to phase separation in a simple model mem-
brane.

Assuming dynamical scaling holds, the only relevant
length scale is R(t) and it becomes possible to estimate the
various contributions to Eq. (1) in a scaling sense, e.g., ∇
∼ 1/R(t), d2r ∼ R2(t). The term δH/δφ has units of energy
per area; if the line tension σ is driving the coarsening, then
δH/δφ ∼ σ /R(t). The Oseen tensor has two characteristic
regimes, T m ∼ η−1

m ln R(t) for R � Lsd and Tm ∼ 1/ηfR(t) for
R � Lsd.

If we apply these scaling rules to the velocity part of
Eq. (1), we find R(t) ∼ t up to logarithmic corrections for
R � Lsd, the 2D viscous (2DV) regime, and R(t) ∼ t1/2 for R
� Lsd, the 3D viscous (3DV) regime. We see that the dy-
namics of systems below and above the Saffman-Delbrück
length are expected to be quantitatively and qualitatively dif-
ferent. Our scaling theory predicts α = 1 for R � Lsd (2DV).
This is also the scaling theory result for ordinary binary flu-
ids in the viscous limit, independent of dimension.1 How-
ever, numerical simulations are consistent with α = 1 in
three-dimensional simple binary fluids,38 but scaling is vio-
lated in two-dimensional binary fluids in the viscous limit,7, 9
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TABLE I. Summary of dynamical scaling properties. Theoretical predictions from scaling laws are presented as simple
fractions. Simulated exponents are extracted from fitting R1(t) as extracted from Eq. (5). In the viscous critical mixtures,
(†), scaling violation is observed for some parameters. Uncertainties given are a combination of systematic uncertainty
from varying n in Eq. (5) and the fitting range, and the statistical variation in α. Large systematic errors are observed for
coalescence regimes, but it is unclear if this is due to violation of scaling or limited simulation length. 〈φ〉 = −0.2 in all
off-critical simulations.

Critical mixture (〈φ〉 = 0)
Regime α (scaling theory) α (simulation)

R � Lsd (2D regime)
R(t) � √

Mηm 2D Cahn-Hilliard (2DCH) 1/3 0.34 ± 0.02

R(t) �
√

Mηm 2D viscous (2DV) 1 †

R(t) � Lsd (3D regime)
R(t) � Mηf 3D Cahn-Hilliard (3DCH) 1/3 0.35 ± 0.02
R(t) � Mηf 3D viscous (3DV) 1/2 †

Off-critical mixture (〈φ〉 �= 0)
R � Lsd (2D regime)

R(t) � ηmMσ /kBT 2D Ostwald ripening (2DO) 1/3 0.32 ± 0.02
R(t) � ηmMσ /kBT 2D coalescence (2DC) 1/2 0.47 ± 0.08

R(t) � Lsd (3D regime)
σMηf � kBT 3D Ostwald ripening (3DO) 1/3 0.32 ± 0.04
σMηf � kBT 3D coalescence (3DC) 1/3 0.30 ± 0.09

suggesting that our scaling analysis may be insufficient in the
limit R � Lsd.

There are several well-known complications to this basic
picture: these scaling laws are only expected to be relevant for
critical concentrations (〈φ〉 = 0),1 and temperature may play
a role.1, 39 We can address the relevance of these issues by
applying the renormalization group technique of Bray.1 We
coarse-grain the field φ by eliminating modes φk(t) with �/b
< k < �, where � ∼ 1/ξ is an ultraviolet cutoff. We rescale
the equations of motion (Eq. (1)) and look for fixed points,
which determine the asymptotic scaling of R(t). Bray notes
that though this elimination step of renormalization cannot be
carried out, the k → 0 singularity (due to the local conserva-
tion of material) cannot be changed by removing “hard” large-
k Fourier components φk(t), which allows the recursion rela-
tions for a scaling fixed point to be written down. This does
assume the existence of a scaling fixed point, and so may pro-
duce incorrect results in limits where the scaling hypothesis
breaks down.

We apply this procedure in the 3D regime (Tm(r) ∼ 1/ηfr),
which gives renormalization equations,

M ′ = b
1
α
−3M,(

1

ηf

)′
= b

1
α
−2

(
1

ηf

)
,

T ′ = b−1T . (4)

These recursion relations show that in the 3D limit, the Cahn-
Hilliard (3DCH) fixed point, α = 1/3, is unstable to the in-
troduction of hydrodynamic interactions. Instead, asymptotic
scaling dynamics are controlled by the α = 1/2 viscous fixed
point (3DV), where bulk diffusion (as described by M) is ir-
relevant. This is consistent with our scaling estimates. These
results apply only to mixtures with 〈φ〉 = 0. For off-critical

concentrations, the bicontinuous morphology is replaced
by droplets and hydrodynamic effects are suppressed;1 the
α = 1/3 fixed point is expected to be restored asymptotically.

Thermal fluctuations complicate this analysis for off-
critical coarsening. The mechanism of the “diffusive”
regime is Ostwald ripening / Lifshitz-Slyozov-Wagner (LSW)
evaporation-condensation.1 Finite temperature causes domain
coalescence to compete with ripening. If there is only one
length scale R(t) in the problem, then R(t)2 ∼ Dt, where D
is the diffusion coefficient of a domain of size R. In a quasi-
2D fluid, D ∼ ln (Lsd/R) for R � Lsd and D ∼ 1/R for R
� Lsd.40, 41 This would suggest R(t) ∼ (kBT t/ηm)1/2 (α = 1/2)
in the 2D coalescence (2DC) regime, up to logarithmic correc-
tions, but R(t) ∼ (kBT t/ηf)1/3 (α = 1/3) in the 3D coalescence
(3DC) regime. These scaling results have also been noted by
earlier papers.37, 42 For the 3D limit, the scaling exponents for
diffusive growth and coalescence are identical, as in pure 3D
fluids. This results from T/ηf being a marginal variable at the
diffusive (α = 1/3) fixed point in the renormalization treat-
ment above.

To determine which regime a phase-separating system
is in, we apply our earlier scaling estimates to Eq. (1), and
determine the relative magnitude of the advective and diffu-
sive terms. The magnitude of the advective term is σTm(R)/R,
and the diffusive term is Mσ /R3, where Tm(R) is the order
of magnitude of the Oseen tensor: Tm(R) ∼ 1/(ηfR) for R
� Lsd (3D regime), and Tm(R) ∼ ln (R/Lsd)/ηm for R � Lsd

(2D regime). Therefore, we expect advection to be negligi-
ble when R � Mηf in the 3D regime, and when R � √

Mηm

in the 2D regime. We can calculate the relative importance
of coalescence and the LSW evaporation-condensation mech-
anism similarly, by comparing the length scales for coales-
cence with the evaporation-condensation length scale R(t)
∼ (Mσ t)1/3. These results are summarized in Table I.
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B. Caveats of scaling

The scaling approach begins with the assumption of
the dynamical scaling form, Eq. (3). We note that this
scaling form is only a hypothesis, primarily supported by
numerical simulation, and only established exactly for a few
one-dimensional systems.1 When would we expect the scal-
ing hypothesis to be true? We have assumed that the only rel-
evant length scale is the emergent length scale R(t), which
obviously requires that R(t) � ξ (ξ is the thermal correlation
length), as well as R(t) � Lsys. In addition, we would not ex-
pect scaling if R(t) is close to the Saffman-Delbrück length
Lsd, i.e., scaling is only likely if R(t) � Lsd or R(t) � Lsd.

Less obviously, other emergent length scales can appear
if bulk diffusion is slow relative to hydrodynamic flows, lead-
ing to systems where there are deviations from the equilib-
rium concentrations ±φ0 over large regions of space.43, 44 We
see this in our simulations in certain limits, in which the in-
terfaces become “smeared” over a large region, and as they
are not in local equilibrium, secondary phase separations44

can occur (see Fig. 2 at kBT = 0). Scaling will only be seen
if diffusion is fast enough to preserve the concentration pro-
file near the interface in local equilibrium;38 this is effectively
the “sharp interface” limit for phase-field simulations used to
simulate multiphase flow.45 Of course, if local diffusion is too
fast (large M), we will be close to the diffusion-dominated
(Cahn-Hilliard) regime, which may lead to inaccuracies; this
is the “residual diffusion” problem, which is well addressed
in Kendon et al.38 These issues are also important to the co-
alescence limit, but with an additional feature; even if we set
the viscosities ηm and ηf to be infinite, if M �= 0, the domain
will still diffuse due to the stochastic term in Eq. (1).

III. SIMULATION RESULTS

A. Importance of thermal fluctuations

Thermal fluctuations, though generally believed to be
irrelevant at long times in coarsening, can drive coalescence
in binary fluids. At the first, qualitative level, we compare
phase separation in membranes with and without thermal
fluctuations, using realistic parameters. We simulate phase
separation from an initially homogeneous state with 〈φ〉
= 0 by application of Eq. (1). We select parameters to model
experiments on ternary giant unilamellar vesicles; these
parameters are known to reproduce the experimental time
scale and morphology, and are consistent with measured
viscosities and line tensions.36 We also perform an analogous
simulation, but with thermal fluctuations turned off (Fig. 1).
For this simulation, we choose an initial state with 〈φ〉 = 0
with small Gaussian fluctuations, with a standard deviation
of 0.01; a perfectly homogeneous state has no gradients, and
is thus a steady state of Eq. (1) if kBT = 0.

Two features of phase separation at kBT = 0 are obvious
from Fig. 1: the coarsening process is slower than the
finite-temperature result (note the different time scales), and
there are more small domains at long times. The altered time
for coarsening is largely due to the initial time required to
form the bicontinuous structure, which is long due to the
small influence of bulk diffusion in this system (i.e.. the

FIG. 1. Thermal fluctuations are important to the dynamics of systems pa-
rameterized to model real experimental conditions. Both top and bottom
images are snapshots of the coarsening process in the model system de-
scribed in Ref. 36, based on DOPC/DPPC/cholesterol vesicles. The top im-
ages are from a simulation that includes the effect of thermal fluctuations with
T = 21 ◦C (kBT = 4.061 pN nm), while the bottom images are from a simula-
tion with no fluctuations, kBT = 0. Including thermal fluctuations speeds up
coarsening and provides an alternative route for isolated domains to coarsen,
leading to fewer domains at long times. For this simulation, ηm = 5 × 10−6

surface Poise (s.P. or Poise cm) ηf = 0, line tension σ = 0.1 pN, interface
width ξ = 40 nm, and system size of 30 μm × 30 μm. The concentration
diffusion coefficient Dφ = 2Mε = 6.5 × 10−10 cm2/s. Top: kBT = 4.061 pN
nm, �t = 20 μs. This simulation is an extended run of the one presented in
Ref. 36. Bottom: kBT = 0, �t = 50 μs.

Peclet number Pe = Lv/Dφ is large, where L and v are
characteristic length and velocity scales, and Dφ the diffusion
coefficient). The relatively large population of small domains
is unsurprising, as in two-dimensional binary fluids in the vis-
cous limit, isolated domains coarsen at a slower rate than the
bicontinuous structure.7 The absence of thermal fluctuations
removes a coalescence mechanism for the coarsening of these
isolated domains. We also note that the excess small domains
are not merely an artifact of the different time scales; there
are no additional domain mergers in the kBT = 0 simulation
up to at least 100 s (data not shown).

We also note that in the limit of kBT = 0, the order pa-
rameter does not take on its equilibrium values ±φ0, even
far away from the interface, until roughly ∼25 s, and there
are gradients in φ over length scales much larger than the
interface length. As noted in earlier sections, we would not
necessarily expect to see scaling if diffusion is much slower
than the hydrodynamics (large Peclet number), and this is one
case of this effect. If we reduce the membrane viscosity or
decrease the diffusion coefficient, we can exaggerate this vio-
lation of scaling (Fig. 2). This limit has been well-explored by
Vladimirova et al.43 for a two-dimensional binary fluid. How-
ever, this regime may not be physical; to obtain the extreme
behavior of Fig. 2, we have chosen a membrane viscosity two
orders of magnitude below those measured in Ref. 20, while
keeping the concentration diffusion coefficient far below the
expected order of magnitude of kBT/4πηm. This behavior is
also completely destroyed by including thermal fluctuations
(Fig. 2, top). Once again, we see that thermal fluctuations can
both accelerate the phase separation and destroy large-scale
gradients in φ(r, t).

B. Characterizing the length scale R(t )

The dynamical scaling hypothesis implies that the struc-
ture function S(q, t) = 〈φq(t)φ−q(t)〉 only depends on time
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FIG. 2. If bulk diffusion is slow compared to hydrodynamic effects, the ef-
fects of thermal fluctuations are more apparent; as in the system of Fig. 1,
fluctuations significantly speed up coarsening and prevent large-scale gra-
dients in φ(r, t) from forming, completely suppressing the morphology ob-
served at kBT = 0. ηm = 5 × 10−8 surface Poise (s.P., P-cm), ηf = 0.01 P,
line tension σ = 0.2 pN, interface width ξ = 20 nm, a system size of 20 μm
× 20 μm, and concentration diffusion coefficient Dφ = 2Mε = 1.3 × 10−10

cm2/s. Top: T = 21 ◦C, �t = 30 ns. Bottom: kBT = 0, �t = 100 μs.

through R(t) (Eq. (3)). The dynamic length scale R(t) may
be extracted from S(q, t) by taking moments of the circularly
averaged structure function, S(q, t),

Rn(t) ≡ 2π

(∫
dq qnS(q, t)∫
dqS(q, t)

)−1/n

∼ R(t). (5)

Different values of n in Eq. (5) are guaranteed to repro-
duce the same scaling exponent if Eq. (3) is obeyed. However,
in pure 2D fluids at low Reynolds number, different moments
yield different scaling exponents αn, showing a violation of
dynamic scaling.8 Because some of these moments may not
converge in general, we have applied the cutoff of Ref. 8, in-
tegrating Eq. (5) only up to 5qpeak, where qpeak is the location
of the structure function’s maximum. We average over three
independent runs, in addition to the angular average over each
run, to construct S(q, t).

C. Critical composition, R � Lsd (3D viscous / 3DV)

We first consider dynamics in the asymptotic long time
limit (R(t) � ξ , Lsd) for critical compositions (〈φ〉 = 0, lead-
ing to bicontinuous morphologies). This limit is difficult to
reach unambiguously using physical parameters and length
scales fully consistent with experimental measurements. In-
stead, we achieve the R(t) � Lsd 3D limit associated with the
final phases of coarsening by choosing ηf = 4 P (400 times
higher than water); this sets Lsd = 6 nm when we choose all
other parameters consistent with experimental values. Equa-
tion (1) was numerically solved on a 1024 × 1024 discrete
grid for an initial condition of φ = 0 everywhere; the results
are shown in Fig. 3 along with the full set of parameter val-
ues. These values have also been chosen to minimize residual
diffusion (15%), while still preserving local equilibrium, as in
Ref. 38.

For the R(t) � Lsd limit of Fig. 3, we find that Rn(t) ∼ tα

for integer and half-integer modes −3 ≤ n ≤ 3, with α = 0.51
± 0.03 (Fig. 4).

To ensure that the scaling hypothesis is valid, we can use
our scaling exponent to rescale either the concentration field
(as in Ref. 7) or the structure function (as in Ref. 46). For

FIG. 3. Apparent dynamic scaling in the “3D viscous hydrodynamic” limit.
Top: Evolution of concentration field. Bottom: Lower row images are ob-
tained by rescaling (i.e., zooming in) and cropping the upper row images
by a factor of (1.4s/t)1/2. These images show qualitative similarity in mor-
phology and length scale, suggesting the presence of dynamic scaling with
exponent 1/2 (see text). ηm = 5 × 10−6 surface Poise (s.P., P-cm), ηf = 4 P,
line tension σ = 0.8 pN, interface width ξ = 5 nm, and system size of 5 μm
× 5 μm, and time step 4 μs, and concentration diffusion coefficient Dφ

= 2Mε = 6.5 × 10−10 cm2/s.

each snapshot in the top row of Fig. 3, we rescale the image
by a factor (tend/t)1/2 ; if the dynamic scaling hypothesis is
satisfied with exponent α = 1/2, these images should be sta-
tistically similar, as they are. We can see the scaling of Eq. (3)
explicitly by collapsing onto the form g(qR) = S(q, t)/R2(t),
with R(t) = (σ t/ηf)1/2, the value predicted theoretically (see
Sec. II). This result is plotted in Fig. 5.

Though we see scaling at this particular set of parameters,
this is not a universal feature of the system. Scaling violations
have previously been shown to occur in the two-dimensional
limit of our model.7, 8 Recently, Fan et al. have also noted
that scaling is not seen in this system at zero temperature.37

Their model is, up to numerical implementation, the
kBT = 0 case of our simulations in this and an earlier paper.36

10
−3

10
−2

10
−1

10
0

10
110

−5

10
−4

t [seconds]

R
n(t

)

t1/2

FIG. 4. In the 3D viscous limit (3DV), we see that the scaling of Rn(t)
is consistent with Rn(t) ∼ tα with α = 0.5, with Rn(t) calculated from
Eq. (5). Rn(t) is extracted from the structure function S(q, t) evaluated from
three independent simulations with the parameters of Fig. 3, as described in
Sec. III B. The mean value of α is 0.51, with standard deviation 0.03. The
curves in this figure have been smoothed for clarity. Different curves corre-
spond to different values of n.
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FIG. 5. The structure function S(q, t) collapses onto the universal form g(x)
= S(q, t)/R(t)2 as a function of x = qR(t) for the parameters of Fig. 3. This
explicitly shows the scaling of Eq. (3) with R(t) = (σ t/ηf)1/2.

We also observe scaling violation at zero temperature, consis-
tent with the simulations of Fan et al.37 Scaling violation is
also apparent at nonzero temperatures, depending on the line
tension of the system (Fig. 6). Recent experiments observe
both the morphology of Figs. 3 and 6, even on identically
prepared vesicles.47 Line tensions are known to vary signif-
icantly from vesicle to vesicle, potentially due to composition
differences,48 which may explain the different morphologies
observed.

Why does the membrane system of Fig. 3 display dynam-
ical scaling while the system with larger line tension, Fig. 6,
does not? Scaling violation in an ordinary two-dimensional
binary fluid has been observed when isolated circular domains
coarsen at a different rate than continuous, elongated ones.7

In fact, Bray had earlier noted that the hydrodynamic term of
Eq. (1) should vanish for a single spherical droplet in the ab-
sence of noise.1 This basic fact implies that droplets will not
merge at a sufficiently fast rate to keep up with the bicontinu-
ous phase, leading to morphologies such that of Fig. 6.

In the system with lower line tension, Fig. 3, we observe
that these domains merge and coalesce, rather than remain-

FIG. 6. If the line tension is increased, reducing the influence of thermal
fluctuations, scaling violation may be observed in the “3D viscous hydrody-
namic limit,” as opposed to the apparent scaling of Fig. 3. Top: Evolution
of concentration field. Bottom: Rescaling with exponent 1/2 shows scaling
violation. ηm = 5 × 10−6 surface Poise (s.P., P-cm), ηf = 4 P, line tension
σ = 4 pN, interface width ξ = 5 nm, and system size of 5 μm × 5 μm,
and time step 2 μs, and concentration diffusion coefficient Dφ = 2Mε = 6.5
× 10−10 cm2/s. T = 21 ◦C (kBT = 4.061 pN nm).

FIG. 7. Scaling is violated in pure two-dimensional systems. Top: Evo-
lution of concentration field. Morphological changes show scaling viola-
tion. Bottom: Rescaling with α = 1 shows scaling is absent (see text). ηm

= 5 × 10−6 s.P., ηf = 0, line tension σ = 0.1 pN, interface width ξ = 40
nm, and system size of 30 μm × 30 μm, and time step 10 μs. The concentra-
tion diffusion coefficient Dφ = 2Mε = 6.5 × 10−10 cm2/s. T = 21 ◦C (kBT
= 4.061 pN nm).

ing isolated. We believe that this is related to the presence of
thermal fluctuations, as scaling is never observed in the zero-
temperature 3DV limit, either in our simulations or in those
of Fan et al.37 As discussed earlier, thermal coalescence pro-
vides an additional mechanism for the coarsening of isolated
domains. In addition, scaling violation is observed as the line
tension is increased. Making the line tension larger has two
immediate effects: it increases the speed of line tension driven
coarsening relative to coarsening due to thermal coalescence,
and it suppresses fluctuations of domain boundaries. Both ef-
fects reduce the importance of thermal noise. Our renormal-
ization group arguments suggest that temperature should be
irrelevant at long times, but our simulations show that ther-
mal noise may create very good apparent scaling.

D. Critical composition, R � Lsd (2D viscous / 2DV)

Lowering the bulk viscosity but maintaining critical con-
centrations leads to a violation of scaling, as for a pure 2D
fluid (Fig. 7). In these cases, the absence of scaling is clear,
as morphological changes between continuous structure and
isolated domains are observed. This is made evident by at-
tempting to rescale the concentration field by using the expo-
nent α1 ≈ 1 (Fig. 7, bottom). Similar morphological changes
are observed experimentally in phase-separating giant unil-
amellar vesicles.29 Fitting Rn(t) to the form tαn , we find αn to
vary between 0.8 and 1.2 for n = integers and half integers
from −3 to 3. This also provides supporting evidence for the
breakdown of dynamical scaling, as we would expect αn to
be independent of n if Eq. (3) holds. The variation in αn here
differs from the errors reported in Table I, which also include
statistical errors and systematic errors in α from changing the
fitting range.

E. Off-critical coalescence, R � Lsd
(3D coalescence / 3DC)

For an off-critical system, 〈φ〉 �= 0, at length scales above
the Saffman-Delbrück length (R(t) � Lsd) we expect that ther-
mally driven domain coalescence will drive coarsening if kBT
� σMηf. We simulate a system with ηf chosen to be large
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FIG. 8. Thermally driven coalescence leads to scaling with exponent 1/3
for R � Lsd. Top: Evolution of concentration field. Bottom: Rescaling with
α = 1/3 shows dynamical scaling for all but the shortest times. ηm = 5
× 10−6 s.P., ηf = 5 P, line tension σ = 0.4 pN, interface width ξ = 15
nm, and system size of 10 μm × 10 μm, and time step 25 μs. Dφ = 1.3
× 10−10 cm2/s. 〈φ〉 = −0.2. T = 21 ◦C (kBT = 4.061 pN nm).

enough that Lsd is small compared to the interface width. We
also ensure that kBT/σMηf ≈ 300 is large, placing us clearly
in the coalescence region (Table I). We can observe visually
that domain diffusion and coalescence is the primary source
of coarsening (Fig. 8). We also observe scaling with the pre-
dicted exponent of 1/3 (Figs. 8 and 9), though the uncertainty
on this exponent is large (Table I). We note that the predicted
theoretical exponent has been derived in the context of sharp-
interface theories, and if this limit is not appropriate to the
phase field simulations, other results may be possible.45

F. Off-critical coalescence, R � Lsd
(2D coalescence / 2DC)

Below the Saffman-Delbrück length (R(t) � Lsd), do-
main diffusion coefficients scale logarithmically with domain
size, and we expect domain coalescence to dominate for
length scales R(t) larger than ηmMσ /kBT. We simulate a sys-
tem in the pure two-dimensional limit, ηf = 0, with ηmMσ /kBT
= 0.5 nm, placing us in the 2D coalescence regime. Domain
diffusion and coalescence is the primary source of coarsening
(Fig. 10). The predicted exponent of 1/2 is observed (Figs. 10
and 11).

10
−1

10
0

10
1

10
2

10
310

−12

10
−10

10
−8

10
−6

q R(t)

S
(q

,t)
 / 

R
(t

)2

 

 

t = 15 s

t = 22.5 s

t = 30 s

t = 45 s

FIG. 9. Collapse plot of g(x) = S(q, t)/R(t)2 as a function of x = qR(t) ex-
plicitly shows the scaling of Eq. (3) with R(t) = (kBTt/ηf)1/3. Data correspond
to the same simulations as in Fig. 8.

FIG. 10. Thermally driven coalescence leads to scaling with exponent 1/2 for
R � Lsd. Top: Evolution of concentration field in 2D coalescence limit. Bot-
tom: Rescaling with α = 1/2 shows dynamical scaling for all but the shortest
times. ηm = 5 × 10−6 s.P., ηf = 0, line tension σ = 0.1 pN, interface width ξ

= 40 nm, and system size of 10 μm × 10 μm, and timestep 5 μs. Dφ = 6.5
× 10−10 cm2/s. T = 21◦C (kBT = 4.061 pN nm). 〈φ〉 = −0.2.

G. Barely off-critical systems

In a system barely off the critical 50% area fraction, an
initial bicontinuous structure will form, but this pattern is un-
stable, and will break down into isolated domains (Fig. 12).
This is a particularly relevant issue for experiments, as dif-
ferent vesicles prepared identically may have compositions
differing by a few percent.29, 48

IV. RELATION TO EXPERIMENTS AND OTHER
SIMULATIONS

Coarsening has been directly measured in off-critical
multicomponent lipid vesicles,31, 32 with results for the coars-
ening exponent varying between R ∼ t0.15 and R ∼ t2/3. We
argue that these experiments may not be probing a single scal-
ing regime. We first determine the likely regimes of these ex-
periments. In real membranes, M and ηm are coupled, as Dφ

= 2Mε ≈ kBT/(4πηm). Applying this result and determining
ε from typical line tensions (σ ∼ 0.1 pN) interface widths
(ξ ∼ 10 nm) and compositions (φ0 ≈ 0.4) as in Ref. 36,
sets

√
Mηm,Mηf < 10 nm, suggesting that experiments fall

well outside the Cahn-Hilliard regime. This is consistent with
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FIG. 11. Collapse plot of g(x) = S(q, t)/R(t)2 as a function of x = qR(t) ex-
plicitly shows the scaling of Eq. (3) with R(t) = (kBTt/ηm)1/2. Data correspond
to the same simulations as in Fig. 10.
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FIG. 12. If the composition is not precisely at the critical area fraction, the
bicontinous structure is unstable to the formation of domains. ηm = 5 × 10−6

surface Poise (s.P., P-cm), ηf = 4 P, line tension σ = 4 pN, interface width
ξ = 5 nm, and system size of 5 μm × 5 μm, and time step 2 μs, and con-
centration diffusion coefficient Dφ = 2Mε = 6.5 × 10−10 cm2/s. T = 21 ◦C
(kBT = 4.061 pN nm). 〈φ〉 = −0.05, corresponding to a 56-44 mix.

experimental results that report coalescence, not ripening.29, 32

In standard model membranes, ηm lies in the range of 0.1
× 10−6 − 10 × 10−6 surface poise (P-cm, or g/s),17, 49, 50

corresponding to Lsd ∼ 0.1 − 10 μm. Micron-scale domains
measured in Refs. 31 and 32 are likely to be intermediate be-
tween the regimes of 2D and 3D coalescence, and these ex-
periments may not measure a common scaling exponent.

We emphasize that without characterization of (at the
least) membrane viscosity, coarsening measurements on
membranes are not readily interpreted; apparent values of α

from our simulations when outside of a clear scaling limit
have ranged from 0.2 to 1.2. The 3D regime (Lsd � R(t)
� Rvesicle) may be enlarged by increasing solution viscosity,
thereby decreasing Lsd, or by increasing vesicle radii. This
would ensure that experimental measurements are observing
a single well-defined regime.

Experiments measuring coarsening in supported mem-
branes report an off-critical-mixture exponent of α = 0.31.33

Our scaling results are readily generalized to such a case. For
membranes separated from a wall by a thin layer of fluid of
size h � Lsd, Tm(r) ∼ 1/r2 for large r,24, 51 and scaling theory
gives α = 1/3 for both diffusive and hydrodynamic coarsen-
ing, but α = 1/4 for the coalescence mechanism (this is dis-
cussed in greater detail below).

Previous simulations using dissipative particle dynamics
have also reported R(t) ∼ t1/2 for critical mixtures, R(t) ∼ t1/3

for off-critical;34 other dissipative particle dynamics simula-
tions report t1/3 for both critical and off-critical scaling.35 Our
theory explains the inconsistency between these two results
as a result of the two simulations being in different regimes
(Table I). Both models have similar line tensions (∼10 pN)
and explore the range R � Lsd, but the model of Ramachan-
dran et al.35 represents lipids as single particles, while the
model of Laradji and Kumar34 includes a more realistic repre-
sentation of lipid structure, and likely has an increased mem-
brane viscosity and decreased mobility M relative to that of
Ref. 35. In our simulations, decreasing M by a factor of 20 can
change the scaling exponent from α ∼ 1/3 (3D Cahn-Hilliard
regime) to α ∼ 1/2 (3D viscous regime).

V. SIMPLE GENERALIZATIONS

Our simulation and scaling theory both admit some very
simple generalizations. The hydrodynamics of a supported
lipid membrane are well-understood, and lead to versions of
the membrane Oseen tensor (Eq. (2)) that have long-distance

dependence of r−1 or r−2, depending on the distance between
the membrane and the substrate.51 In the “free far” region
where the Oseen tensor has an r−1 dependence, the coarsen-
ing kinetics should be essentially the same as our 3D viscous
regime. However, in the “adsorbed” and “supported hovering”
limits, where T(r) ∼ r−2, our dimensional analysis arguments
give α = 1/3 for both diffusive (LSW) and hydrodynamic
coarsening (i.e., the viscosity of the bulk fluid is a marginal
variable). Diffusion coefficients D(R) ∼ R−2 for objects in a
supported membrane in this limit;51, 52 setting D(R)t ∼ R(t)2

gives α = 1/4 for the coalescence mechanism. These results
are identical to those for coarsening in a Hele-Shaw cell,1 as
the supported membrane Oseen tensor naturally reduces to the
Hele-Shaw result when the drag from the substrate is large.

While dynamical scaling breaks down in two-
dimensional fluids in the viscous limit, it is restored in
the inertial limit.8, 9 Though the Reynolds number of flows
in membranes is generally small,10 and thus we generally
expect inertial effects to be negligible, it may be interesting
to explore phase separation in this limit. We can derive a
generalized, frequency-dependent Oseen tensor that includes
the effects of inertia,15

T
ij

inertial(k, ω) = δij − kikj /k2

iωρm + ηmk2 + 2ηf k
√

1 + iω/ωf (k)
,

(6)
where ρm is the two-dimensional membrane mass density, ρ f

the bulk fluid density, and ωf(k) = ηfk2/ρ f. The equation of
motion for the membrane velocity is then

vi(k, ω) = T
ij

inertial(k, ω)fj (k, ω), (7)

where f is the force applied to the membrane,
f(r, t) = δH

δφ
∇φ + ζ . Our convention is f(k, ω)

= ∫
d2rdte−i(k · r + ωt)f(r, t). We can apply our scaling

estimates to these equations, with k ∼ 1/R(t), ω ∼ 1/t.
We also note that v(k, ω) ∼ (R(t)2t) v(r, t) ∼ R(t)3. If
the dominant contribution to the Oseen tensor is from the
two-dimensional membrane density ρm, we find that R(t)
∼ t2/3, which is just the usual two-dimensional inertial
scaling.1, 8 However, if the dominant contribution is from the
three-dimensional mass density ρ f, we find R(t) ∼ t1/2. We
expect this to be the dominant asymptotic scaling if inertia
is relevant; we note that at long times, momentum transport
through the outside fluid dominates the velocity autocorrela-
tion function.15 Inertial simulations using Eq. (6) as a basis
may also be possible. However, if the velocity of the outside
fluid is a true dynamical variable, eliminating it from our
description will cause the dynamics to be non-Markovian,14

and full three-dimensional hydrodynamic simulations may be
more appropriate.

VI. CONCLUSIONS

We have applied simple scaling theories to predict the be-
havior of phase-separating multicomponent membranes, and
compared these results to continuum hydrodynamic simula-
tions. Theory and simulation show that both the morphol-
ogy and the scaling exponent will depend on the relative
importance of diffusion, hydrodynamics, and thermal



225106-9 Dynamics of phase separation in membranes J. Chem. Phys. 135, 225106 (2011)

fluctuations. We present different scaling regimes where
each of these effects dominate. One feature unique to
the membrane system is the appearance of an additional
hydrodynamic length scale, the Saffman-Delbrück length
Lsd; domains will coarsen with different morphologies and
exponents depending on whether they are smaller or larger
than Lsd (the “2D” and “3D” limits, respectively). Scal-
ing theories correctly describe the dynamical scaling ex-
ponents in the regions of parameter space where the
phase separation mechanism is bulk diffusion, evaporation-
condensation, and thermal coalescence, but fail to pre-
dict the observed scaling violation in the critical (〈φ〉
= 0) viscous limits. In addition to the violation of scaling for
bicontinuous phase separation both in the 2D and 3D limits
we observe a region of apparent scaling in the 3D regime, with
scaling exponent 1/2; this scaling is connected to the presence
of thermal fluctuations, and can be suppressed by increasing
the line tension. We apply our scaling results to analyze exper-
iments and other simulations that attempt to measure the scal-
ing exponent, and suggest that the measurement of the mem-
brane viscosity is a necessary prerequisite for understanding
these results. We also apply our scaling theory to predict how
the scaling exponent will change if the experimental condi-
tions are modified, such as treating a supported membrane.
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APPENDIX: FLUCTUATION-DISSIPATION
AND THE NONINERTIAL LIMIT

Our model describes composition dynamics via a non-
linear Langevin equation, Eq. (1). We chose this model by
analogy with the noninertial limit of model H dynamics for
a binary fluid.53 This limit has been applied to analytic stud-
ies of phase separation,1, 54 and has been numerically evalu-
ated at kBT = 0,46 but a subtle issue appears in the numeri-
cal evolution of our Langevin equation at finite temperature.
Equations (1) and (2) has a multiplicative noise term, which
admits multiple interpretations.55 We show in this section that
the Stratonovich interpretation of our equations of motion is
necessary in order to obey fluctuation-dissipation, and have
the Boltzmann distribution as the steady state distribution.

1. Preliminaries

Our equations of motion for both the lipid composition
φ(r, t) consist of nonlinear Langevin equations with multi-
plicative noise. This sort of equation can be written in the
form

∂zi(t)

∂t
= Ai(z) + Bij (z)Rj (t), (A1)

where we have assumed the Einstein summation convention;
we will assume this convention throughout for Latin indices,
but will explicitly note sums over momenta (q, p, etc.). Here,
Rj(t) is a Gaussian Langevin noise with zero mean and vari-
ance,

〈Ri(t)Rj (t ′)〉 = δij δ(t − t ′). (A2)

However, if Bij depends on z, Eq. (A1) is susceptible
to different interpretations and needs to be supplemented
with additional information.55 There are two distinct inter-
pretations: Ito and Stratonovich, which are most easily dis-
tinguished by the Fokker-Planck equation corresponding to
Eq. (A1). In the Ito convention, the Fokker-Planck equation
for Eq. (A1) is

∂P

∂t
= − ∂

∂zi

[AiP ]

+ 1

2

∂

∂zi

∂

∂zj

[Bik(z)Bjk(z)P ] (Ito), (A3)

where P is the conditional probability density P = P(z, t|z0,
t0). By contrast, in the Stratonovich interpretation, Eq. (A1) is
equivalent to

∂P

∂t
= − ∂

∂zi

[AiP ] + 1

2

∂

∂zi

×
{
Bik(z)

∂

∂zj

[Bjk(z)P ]

}
(Stratonovich). (A4)

From this, we can see that the Stratonovich interpretation of
Eq. (A1) is equivalent to an Ito equation with a modified drift
term,

AIto
i = AStrat

i + 1

2
Bjk

∂

∂zj

Bik. (A5)

One particularly useful special case of the general
Langevin equation Eq. (A1) is one where the drift term is de-
rived from an energy H,

∂zi(t)

∂t
= −Mij (z)

∂H

∂zj

+ Bij (z)Rj (t). (A6)

The well-known “Brownian dynamics with hydrody-
namic interactions” algorithm56 takes on a version of this
form, and we will see that our membrane composition sim-
ulation does as well. If we choose the Stratonovich interpre-
tation, the Fokker-Planck equation corresponding to Eq. (A6)
is

∂P

∂t
= ∂

∂zi

[(
Mij (z)

∂H

∂zj

− 1

2
Bjk

∂

∂zj

Bik

)
P

]

+ 1

2

∂

∂zi

∂

∂zj

[
Bik(z)Bjk(z)P

]
(Stratonovich). (A7)

If the fluctuation-dissipation relationship BikBjk

= 2kBTMij holds, and Bjk
∂

∂zj
Bik = kBT

∂Mij

∂zj
, it is simple to

see that the equilibrium distribution P ∼ exp (− H/kBT) will
be a steady state of Eq. (A7).
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If we choose the Ito interpretation, the Fokker-Planck
equation corresponding to Eq. (A6) is

∂P

∂t
= ∂

∂zi

[(
Mij (z)

∂H

∂zj

)
P

]

+ 1

2

∂

∂zi

∂

∂zj

[
Bik(z)Bjk(z)P

]
(Ito). (A8)

In the Ito case, the Boltzmann distribution will be the
steady state of Eq. (A8) if the fluctuation-dissipation relation-
ship BikBjk = 2kBTMij holds, and kBT

∂Mij

∂zj
= 0.

2. Membrane composition dynamics

Our overdamped model H for simulations of phase sepa-
ration in a model membrane is given by

(∂t + v · ∇)φ(r, t) = M∇2 δH

δφ(r, t)
+ θ (r, t), (A9)

vi(r, t) =
∫

d2r ′ T m
ij (r − r′)

[
δH

δφ(r′, t)
∇′

jφ(r′, t)+ζj (r′, t)
]

.

(A10)

where the continuum Fourier transform of T m
ij is11, 24

T m
ij (q) =

∫
d2r T m

ij (r)e−iq·r

= 1

ηm(q2 + q/Lsd )

(
δij − qiqj

q2

)
, (A11)

where the integral is over all space. We note that qiT
m
ij (q) = 0

as a result of the incompressibility constraint ∇ · vm = 0 on
the membrane. We will use T

ij

k as a shorthand for T m
ij (k).

In Fourier space, these equations are

∂tφq(t) +{v · ∇φ(r, t)}q = −Mq2

{
δH

δφ(r, t)

}
q
+ θq, (A12)

vq,i(t) = T m
ij (q)

{
δH

δφ(r, t)
∇jφ(r, t) + ζj

}
q
, (A13)

where {f(r)}q is the Fourier component of f(r). The Fourier
conventions we use are φq = ∫

Ld2r φ(r)e−iq · r, and φ(r)
= L−2 ∑

q φqe
iq·r. The variances of the Langevin forces are

〈θq(t)θq′(t ′)〉 = 2kBT Mq2L2δq,−q′δ(t − t ′), (A14)

〈ζq,i(t)ζq′,j (t ′)〉 = 2kBTL2ηm(q2 + q/Lsd )δij δq,−q′δ(t − t ′).

(A15)

We want to show that the Langevin equations, Eqs.
(A12)–(A15), drive the system to the Boltzmann distribution,
∼ e−H/kBT . The difficult term in this calculation is the veloc-
ity term, which has multiplicative noise. For simplicity, we
take M = 0, ignoring the bulk diffusion term for now. Then

our Langevin equations become, writing out the Fourier trans-
form of v · ∇φ explicitly as a convolution,

∂tφq(t) = − 1

L2

∑
k

vi
k

√−1(q − k)iφq−k, (A16)

where vi
k = T

ij

k f
comp
j (k), and f

comp
j (k) = { δH

δφ(r,t)∇jφ(r, t)

+ ζj }k. We note that in our convention, { δH
δφ(r) }k = L2 ∂H

∂φ−k
. In

Eq. (A16) and below, upper indices refer to the vector or ten-
sor component; no exponentiation is implied. This force can
be written explicitly in Fourier space by using the convolution
theorem,

f
comp
j (k) =

∑
p

[
∂H

∂φ−p

√−1(k − p)jφk−p

]
+ rkRj (k),

(A17)
where rk = [

2kBTL2ηm(k2 + k/Lsd )
]1/2

and Rj(k) is a
Langevin force with 〈Ri(k, t)Rj (k′, t ′)〉 = δij δk,−k′δ(t − t ′).

Our Langevin equation, Eq. (A16), is now in the form

∂tφq = −
∑

p

M(q, p)
∂H

∂φp
+

∑
p

B(q, p)R(p), (A18)

where

M(q, p) = − 1

L2

∑
k

(q − k)iφq−kT
ij

k (k + p)jφk+p,

(A19)

B(q, p) = − 1

L2

√−1(q − p)iφq−pT
ij

p rp. (A20)

We have suppressed a vector index on B(q, {p, j}) and Rj(p)
for simplicity; the sum over j is implied. The Langevin equa-
tion. Eq. (A18) is in the form of Eq. (A6), though we have
written out the sum over p explicitly.

The Fokker-Planck equation corresponding to our
Langevin equation, Eq. (A18), is (in the Stratonovich inter-
pretation)

∂P

∂t
=

∑
q,p

∂

∂φq

×
⎡
⎣

⎛
⎝M(q, p)

∂H

∂φp
− 1

2

∑
k,p

B(p,−k)
∂

∂φp
B(q, k)

⎞
⎠P

⎤
⎦

+1

2

∑
q,p

∂

∂φq

∂

∂φp

(∑
k

B(q, k)B(p,−k)P

)
.

The slight difference between this result and that of Eq. (A4)
is a result of the minor change in convention in the corre-
lation of Ri(k).57 We now show that the Stratonovich inter-
pretation of this equation has the Boltzmann distribution as
a steady state; this requires us to demonstrate that

∑
kB(q,

k)B(p, −k) = 2kBTM(q, p) and that kBT
∑

p
∂

∂φp
M(q, p)

= 1/2
∑

k,p B(p,−k) ∂
∂φp

B(q, k).

We can evaluate
∑

kB(q, k)B(p, −k),∑
k

B(q, k)B(p,−k) = − 1

L4

∑
k

(q − k)iφq−k(p + k)l

×φp+kT
ij

k T
jl

k r2
k , (A21)
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where we have used T
ij

k = T
ji

k , T
ij

−k = T
ij

k . We note that

T
ij

k is just proportional to the transverse projector ℘
ij

⊥ (k)
= (δij − kikj /k2), and that ℘2

⊥ = ℘⊥, so we find T
ij

k T
jl

k r2
k

= 2kBTL2T il
k . Therefore,∑

k

B(q, k)B(p,−k)

= −2kBT

L2

∑
k

(q − k)iφq−k(p + k)lφp+kT
il

k

= 2kBT M(q, p), (A22)

To check the second requirement, we note
that as

∑
kB(q, k)B(p, −k) = 2kBTM(q, p), then

kBT ∂
∂φp

M(q, p) = 1
2

∑
k,p B(p,−k) ∂

∂φp
B(q, k) only if∑

k,p B(q, k) ∂
∂φp

B(p,−k) = 0. We can calculate this term
simply,∑

k,p

B(q, k)
∂

∂φp
B(p,−k)

= −2kBT

L2

∑
k,p

(q − k)iφq−k(p + k)l
∂φp+k

∂φp
T il

k

= −2kBT

L2
qiφqT

il
0

∑
p

pl, (A23)

which is obviously seen to be zero by taking p → −p. The
k = 0 zero mode of the Oseen tensor is, in principle, infinite,
but in fact is limited by the finite extent of the system, as in
Ref. 58; in our simulations we only sum over k �= 0, as in
Ref. 59.

This derivation shows that the Stratonovich interpretation
of our dynamical equations will lead to the correct Boltz-
mann distribution as the steady state. We can also immedi-
ately see that the Ito interpretation is not correct. If Eq. (A18)
were interpreted in the Ito sense, we would require that∑

p
∂

∂φp
M(q, p) = 0 in order to have the correct steady state,

and this is not the case.
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