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ABSTRACT

I calculate the noise in the measured correlation functions and spectra of digitized, noise-
like signals. In the spectral domain, the signals are drawn from a Gaussian distribution with
variance that depends on frequency. Nearly all astrophysical signals have noiselike statistics of
this type, many with important spectral variations. Observation and analysis of such signals at
millimeter and longer wavelengths typically involves sampling in the time domain, and digitizing
the sampled signal. (Quantum-mechanical effects, not discussed here, are important at infrared
and shorter wavelengths.) The digitized noise is then correlated to form a measured correlation
function, which is then Fourier transformed to produce a measured spectrum. When averaged
over many samples, the elements of the correlation function and of the spectrum, follow Gaussian
distributions. For each element, the mean of that distribution is the deterministic part of the
measurement. The standard deviation of the Gaussian is the noise. Here I calculate that noise,
as a function of the parameters of digitization. The noise of the correlation function is related to
the underlying spectrum, by constants that depend on the digitization parameters. Noise affects
variances of elements of the correlation function and covariances between them. In the spectral
domain, noise also produces variances and covariances. I show that noise is correlated between
spectral channels, for digitized spectra, and calculate the correlation. These statistics of noise are
important for understanding of signals sampled with very high signal-to-noise ratio, or signals
with rapidly-changing levels such as pulsars.

Subject headings: methods: data analysis – techniques

1. INTRODUCTION

1.1. Correlation Functions and Spectra

Electric fields from nearly all astrophysical sources are indistinguishable from Gaussian noise. Thus,
nearly all of the information in such signals lies in variances of and covariances between electric fields of
different polarizations, spatial locations, or frequencies. Spectra and cross-power spectra are estimates of
the variance or covariance of the electric field as a function of frequency. These spectra are the Fourier
transforms of auto- or cross-correlation functions. Such correlation functions are the averaged products of
pairs of elements drawn from the series, for a range of time offsets or “lags”. The elements are drawn from
separate series for cross-correlation, and from the same for autocorrelation. The resulting correlation, as a
function of lag, is commonly averaged over enough realizations to provide the desired signal-to-noise ratio.
The correlation function is then Fourier transformed to form the desired cross-power or autocorrelation
spectrum, as a function of frequency. In practice, correlation and averaging can take place before or after
the Fourier transform; this makes little difference to the result from the standpoint of this paper.
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Often, data are digitized before correlation. For bandwidths that are within the capability of digital
circuitry, processing is usually more accurate and economical for digital signals than for analog signals.
Digitization involves sampling, or averaging over time intervals; and quantization, or describing the signal
amplitude in each interval as one of a discrete set of values, rather than as a continuous variable. Quantization
is an intrinsically nonlinear operation that destroys information, unlike the linear operations of sampling and
Fourier transform. I find that quantization introduces effects similar to noise in the final result, as one might
perhaps expect.

Usually observers wish to minimize noise, while maintaining an invertible, deterministic relationship
between the mean correlation and the underlying covariance. Optimal parameters for quantization, and
errors from departures from those parameters, are topics of classic work in radio astronomy (see, for example,
Cooper (1970); Hagen & Farley (1973); Kulkarni & Heiles (1980); D’Addario et al. (1984) and references
therein). Calculation of the actual noise level can be important when signal strength varies rapidly, and
quantizer settings cannot remain optimal, as is sometimes the case for pulsars (Jenet & Anderson 1998); or
when the distribution of the intensity of the signal must be measured accurately (Gwinn et al. 2000). As
sensitivities of radiotelescopes improve, and as demands on the observed data increase, calculation of the
noise level from quantizer parameters can be expected to become more important.

Because correlation functions and spectra are averaged over many realizations, the Central Limit Theo-
rem implies that the resulting correlation function or spectrum has Gaussian statistics. Thus, the statistics
of the spectrum are fully described by each spectral channel’s mean and variance, and covariances between
channels. The mean of the spectrum is the deterministic part of the measurement; variances and covariances
are the random part, or noise. In principle, one seeks to minimize the noise, while preserving the relation-
ship between the mean and the underlying spectrum. In Gwinn (2004) (hereafter Paper 1), I discussed this
problem for “white” signals, which have zero correlation except for elements of the two series with zero lag.
Here I consider the more general case, where signals have arbitrary spectral character, so that covariance
can depend on lag. The effect of quantization on the statistics of such “colored” spectra, particularly their
noise, is the subject of this paper.

I calculate the noise in the quantized cross- and autocorrelation functions. The noise differs from that
for correlation of continuous data in additional terms, some of them constant and others proportional to the
autocorrelation function, and products of auto- and cross-correlation functions. I present this calculation
through second order in correlation.

I then Fourier transform these expressions to determine the mean spectrum and its variance. The mean
spectrum is simply the Fourier transform of the mean correlation function, while the noise in the spectrum is
a double Fourier transform of the noise in the correlation function. I find that in the spectral domain, a gain
factor, and white noise added in quadrature, approximately represent the effects of quantization in a single
channel. The added white noise is commonly known as “quantization noise”. Indeed, the gain factor and the
noise are identical to those previous workers found for the deterministic, mean spectrum (Cooper 1970; Jenet
& Anderson 1998). However, I also show that noise is correlated across spectral channels. This covariance
can reduce, or increase, the total noise in the spectrum, depending on the details of the quantization scheme
and the details of the spectrum. For “white” signals without spectral variation, the more general result
of this paper reduces to that found in Paper 1. In this case, the correlations or anti-correlations of noise
between channels can represent an effect of the same order as quantization noise, when integrated over all
channels of a spectrum.
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1.2. Organization of this Paper

I consider cross-correlation of two time series, x and y, and autocorrelation of x. In §2 I introduce these
underlying complex time series x` and y` and describe their assumed statistical properties. I calculate the
mean and variance of their correlation function and its Fourier transform. I show that covariance of noise in
different spectral channels is zero for correlation of the continuous (un-digitized) series.

I introduce information-destroying quantization in §3. Under the assumption that the covariances are
small (except for the zero lag of the autocorrelation function, which must be 1), I calculate the mean and
the variance of the quantized correlation function for quantized data, and present analytic expressions for
them. I compare the analytical results with computer simulations and find excellent agreement.

In §4 I find the statistics of the cross-power and power spectra. The cross-power spectrum is the Fourier
transform of the cross-correlation function; and the power spectrum (sometimes called the autocorrelation
spectrum) is the Fourier transform of the autocorrelation function. I calculate the noise in the spectra
by a double Fourier transform of the noise in the correlation functions. I show that the noise in a single
spectral channel can be approximately represented by a gain factor and white “digitization noise” added
in quadrature with the original signal. However, I also show that noise is correlated (or, more commonly,
anti-correlated) across spectral channels. I present analytical results for autocorrelation functions, and
autocorrelation spectra, in §3.7 and 4.4. I summarize results in §6, and show that correlations of noise
between channels can represent an effect of the same order as quantization noise, when integrated over all
spectral channels.

2. CORRELATION FUNCTIONS AND SPECTRA OF CONTINUOUS SIGNALS

2.1. Time Series of Gaussian Noise

Consider time series x` and y`. These might be, for example, the electric fields recorded as analog signals
at two antennas. All elements of each are drawn from Gaussian distributions in the complex plane. The
distributions have zero mean. I further assume that the series are stationary, so that the properties of x`

and y` are independent of the time index `. Thus, the variance of each series is constant, and the covariances
between elements can depend only on their time separation and whether they belong to the same or different
series. The ensemble-average spectra, defined in §2.2.2 below, depend only on these variances and covariances.

For this paper, I assume that the series are statistically identical, in the sense that the exchange of x and
y leaves the statistical properties of the spectra unchanged. Instrumental effects often violate this assumption
in a mild fashion, as by variations in complex gain between two antennas. Sometimes the assumption is
violated in a more fundamental way, as in spatial variation of the spatial and spectral character of scintillating
sources (Desai et al. 1992; Jauncey et al. 2000; Dennett-Thorpe & de Bruyn 2002). This assumption can
easily be relaxed, by defining separate autocorrelation functions for the two series in the results below.

For convenience, I scale variances of real and imaginary parts of the series x` and y` to 1. (This is
in accord with much of the literature on quantization, which assumes real series with unit variance.) The
variances are then:

1
2 〈x` x∗` 〉 = 1

2 〈y` y∗` 〉 = 1. (1)

Here, the angular brackets 〈...〉 indicate a statistical average, over an ensemble of time series with identical
statistics.
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I assume that the time series have no particular intrinsic overall phase, so that the transformation

x` → x`e
iφ, y` → y`e

iφ (2)

leaves the variances and covariances unchanged. Consequently, products of factors with the same conjugation
average to zero:

〈x`ym〉 = 〈x`xm〉 = 〈y`ym〉 = 0, (3)

for any ` and m.

2.2. Mean Correlation Function and Spectrum: Continuous Data

2.2.1. Mean Correlation Function

The covariances between elements in the series x and y are given by the statistically-averaged cross-
correlation ρτ , and the statistically-averaged auto-correlation ατ :

ρτ = 1
2 〈x` y∗`+τ 〉 (4)

ατ = 1
2 〈x` x∗`+τ 〉 = 1

2 〈y` y∗`+τ 〉.

Note the conjugation symmetry of ατ :
ατ = α∗−τ . (5)

Eq. 1 gives α0 = 1.

Measurements seek to estimate the statistically-averaged correlation functions via the finite averages:

rτ =
1

2No

No∑
`=1

x` y∗`+τ (6)

aτ =
1

2No

No∑
`=1

x` x∗`+τ .

Here, No is the number of elements observed in each series.

I assume that the correlation functions “wrap,” in the sense that:

x(`) = x(`+No), y(`) = y(`+No) for all `. (7)

Then, the sums in Eq. 6 contain the same number of terms, for each τ . This simplifies counting arguments
below. Also, of course, rτ = rτ+No ; this simplifies discussion of the Fourier transform to spectra. Note that
in practice, many correlator do not “wrap” in this fashion. They zero-pad the data so that x` y∗`+τ = 0, if
either ` or ` + τ is greater than No or less than zero. The issue is moot if the number of lags correlated
is smaller than the span of data No, or for “FX” correlators, which correlate in the frequency domain.
Otherwise, it can affect the noise, through uneven sampling of α in Eq. 14 below. I will discuss the effect
heuristically in a separate paper, in comparison of theory with measurements.

With the definitions in Eq. 6,

〈rτ 〉 = ρτ (8)

〈aτ 〉 = ατ .

Note that Greek letters ρ and α denote the statistically-averaged quantities, whereas roman letters r and a

denote the observed, finite averages.
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2.2.2. Mean Spectrum

The statistically-averaged cross- and auto-correlation functions are related to the cross-power and au-
tocorrelation spectra by Fourier transforms:

ρ̃k =
N−1∑

τ=−N

ei 2π
2N kτρτ (9)

α̃k =
N−1∑

τ=−N

ei 2π
2N kτατ .

Here, 2N is the number of frequency channels. Note that α̃k is real, because of the conjugation symmetry
of ατ . Other conventions for the Fourier transform have been used in the past. The present convention has
the advantage that the spectrum α̃k has values that are independent of numbers of samples No or of spectral
channels 2N .

Similarly, I define the measured cross-power and autocorrelation spectra,

r̃k =
N−1∑

τ=−N

ei 2π
2N kτrτ (10)

ãk =
N−1∑

τ=−N

ei 2π
2N kτaτ .

So, by Eqs. 8 and 9,

〈r̃k〉 = ρ̃k (11)

〈ãk〉 = α̃k.

As a simple example, a “white” spectrum with a spectrally-uniform correlation ρw has α̃k = 1 and
ρ̃k = ρw. Then, only the zero lags of the statistically-averaged correlation functions will have nonzero values:
α0 = 1 and ρ0 = ρw. For all other lags τ , ατ = ρτ = 0.

2.3. Noise: Continuous Data

2.3.1. Noise for Correlation Function

The variance of the observed correlation function describes the noise. We therefore seek:

〈rτr∗υ〉 =
1

(2No)2

No∑
`=1

No∑
m=1

〈x`y
∗
`+τx∗mym+υ〉. (12)

The fourth moment of elements drawn from a Gaussian distribution is related to their second moments, so
that:

〈x`y
∗
`+τx∗mym+υ〉 = 〈x`y

∗
`+τ 〉〈x∗mym+υ〉+ 〈x`x

∗
m〉〈y∗`+τym+υ〉. (13)

A third product of second moments, 〈x`ym+υ〉〈y∗`+τx∗m〉, would ordinarily appear on the right-hand side of
Eq. 13, but vanishes here because of the assumption that x and y have no intrinsic phase (Eq. 3). Eq. 6
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gives the second moments, so that Eq. 12 becomes:

〈rτr∗υ〉 = ρτρυ +
1

No

No∑
n=1

αnα−n+(τ−υ). (14)

Here, I have used the “wrap” assumption for the correlation function (Eq. 7). The variance is thus:

〈rτr∗υ〉 − 〈rτ 〉〈r∗υ〉 =
1

No

No∑
n=1

αnα−n+(τ−υ). (15)

Three variances, or two principal axes and an angle, are required to fully describe the elliptical dis-
tribution of noise in the complex plane. Because rτr∗τ is always real, we require two more. A convenient
independent statistic is:

〈rτrυ〉 − 〈rτ 〉〈rυ〉 =
1

No

No∑
n=1

ρnρ−n+(τ−υ). (16)

This expression is, in general, complex and thus provides the needed additional two statistics. As an example,
one can easily recover the expressions given in Paper 1 for the noise of a “white” spectrum, for continuous-
valued data, from Eqs. 15 and 16.

2.3.2. Noise for Spectrum

The variances of the spectral channels give the noise. One can obtain the variance by Fourier trans-
forming Eq. 14:

〈r̃kr̃∗k〉 =
N−1∑

τ=−N

N−1∑
υ=−N

ei 2π
2N k(τ−υ)〈rτr∗υ〉 (17)

= ρ̃kρ̃∗k +
2N

No
α̃kα̃k.

This uses the fact that the Fourier transform of the autocorrelation function is the power spectrum (Eqs.
A4,A5). I assume here that all nonzero elements of the correlation functions ατ , ρτ lie within the range
that is transformed to a spectrum, −N < τ < N − 1. In other words, the spectral resolution is sufficient to
completely resolve all features of the spectrum. Also, I again use the wrap assumption, Eq. 7. Thus,

〈r̃kr̃∗k〉 − 〈r̃k〉〈r̃∗k〉 =
2N

No
α̃kα̃∗k. (18)

Analogously from Eq. 16 one finds:

〈r̃kr̃k〉 − 〈r̃k〉〈r̃k〉 =
2N

No
ρ̃kρ̃k. (19)

Together, Eq. 18 and 19 describe the noise of the cross-power spectrum. Note that the noise, measured
as the standard deviation, increases proportionately with the square root of the number of spectral channels√

2N , and decreases as the inverse square root of number of measurements
√

2No. Each of the No complex
terms in the correlation function involves measurement of two quantities, so that for counting arguments the
number of independent data is actually 2No.
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If we suppose that a particular element ρ̃k of the cross-power spectrum is real (or, equivalently, if we
rotate the phase of x until ρ̃k is real!), then Eqs. 18 and 19 show that:

〈Re[r̃k]〉 = ρ̃k (20)

〈Im[r̃k]〉 = 0

〈Re[r̃k]Re[r̃k]〉 − 〈Re[r̃k]〉〈Re[r̃k]〉 =
2N

2No
(|α̃k|2 + ρ̃2

k)

〈Im[r̃k]Im[r̃k]〉 =
2N

2No
(|α̃k|2 − ρ̃2

k)

〈Re[r̃k]Im[r̃k]〉 = 0.

These equations describe the error ellipses in the complex plane for spectral measurements. They are
consistent with the results of Paper 1 for a white spectrum (αk = 1, ρk = const), and are closely related to
“self-noise” (see Paper 1).

The noise in the measured autocorrelation spectrum ãk is identical to that in the cross-power spectrum
r̃k (Eq. 19 or 20), with substitution of α̃k for ρ̃k.

2.3.3. Noise is Uncorrelated Between Spectral Channels

The correlation of noise between spectral channels can be found from a generalization of Eq. 18:

〈r̃kr̃∗` 〉 =
N−1∑

τ,υ=−N

ei(kτ−`υ)〈rτr∗υ〉 (21)

= 〈r̃k〉〈r̃∗` 〉+
2N

2No

N−1∑
υ,µ=−N

No∑
m,n=1

ei(kµ+(k−`)υ)〈an−m〉〈a−(n−m)+µ〉

= 0, unless ` = m. (22)

Here, I have introduced µ = τ − υ. The summation over υ yields zero unless ` = m (in which case one
recovers Eq. 18). Thus, noise is uncorrelated between different channels, for the spectrum of a continuous
signal.

3. CORRELATION FUNCTIONS OF QUANTIZED SIGNALS

3.1. Quantized Gaussian Noise

Suppose now that the time-series x` and y` are quantized, to produce the time series x̂` and ŷ`. Quan-
tization involves converting value of the continuous variables x` and y` to one of a discrete set of values via
a characteristic curve. Fig. 1 shows an example, for 4-level quantization. Such curves can be parametrized
by the locations of the steps, {vxi} and {vyi}, and the weights of each step, {ni}. I assume that the same
curve is used for the real and imaginary parts of both x` and y`, although the curve for x` may differ from
that for y`. I also assume that the characteristic curve is antisymmetric for both real and imaginary parts:
X̂(X) = −X̂(−X), where X is the real or imaginary part of x; and analogously for y. Paper 1 discusses ad-
ditional details of quantization, with references. Quantization will preserve some properties of the continuous
signals and their correlation functions and spectra, and change others, as this section investigates.
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3.2. Correlation Function for Quantized Data

From the quantized time series x` and y`, one can form the cross-correlation function r̂τ ,

r̂τ =
1

2No

No∑
`=1

x̂` ŷ∗`+τ , (23)

and the autocorrelation function of x̂:

âτ =
1

2No

No∑
`=1

x̂` x̂∗`+τ . (24)

Again I use the “wrap” assumption, Eq. 7. Note that â may differ for the series x and y because of differences
in characteristic curves, as well as for reasons noted above. One seeks to relate r̂τ and âτ as closely as possible
to the ensemble averages for continuous data, ρτ and ατ , via a simple deterministic relationship and with as
little noise as possible.

Among the classic treatments of correlation of quantized signals are the works of Cooper (1970) and
Jenet & Anderson (1998). In the notation of Paper 1 and the following sections, Cooper found that r̂(ρ)
is proportional to ρ, for small ρ, and determined the constant of proportionality. Jenet & Anderson (1998)
pointed out that this proportionality is quite accurate until ρ approaches 1 closely, where the departure
becomes significant. Most cross-correlations of astrophysical data yield small ρ, justifying the linear approx-
imation. However, for autocorrelation, the “zero lag” must yield unit correlation: α0 = 1 (see §2.2 above),
for which the linear approximation is poor. Jenet & Anderson concluded that the autocorrelation function
for quantized data is nearly proportional to the desired result ατ , with an additional spike at zero lag.

3.3. Simulations of Cross-Correlation

For comparison with analytical results, I simulated correlation of Gaussian noise. Figure 2 shows the
average spectra and correlation functions for one simulation, with 2N = 8 lags, used as an example in the
rest of the paper. The autocorrelation function is “white” with ατ = 1 for τ = 0, and ατ = 0 for τ 6= 0.
The cross-correlation function has only 2 nonzero lags, τ = 1, 2: ρ1 = ρ2 = 0.4. Note that this is somewhat
different from typical radioastronomical data, which typically contain a white background noise spectrum
(which appears as a spike in the autocorrelation function at τ = 0), with an admixture of spectrally-varying
noise, perhaps with varying correlation.

I formed the original noiselike data for Figure 2 by drawing elements from Gaussian distributions for each
spectral channel. This method reflects the underlying assumption that the spectrum consists of a number
of independent spectral components with different frequencies. For each spectral channel, the Gaussian
distribution had unit variance (as indicated by the flat autocorrelation spectrum αk = 1 in the upper panel
of Figure 2). However, correlations between the conjugates of xk and yk varied with spectral channel k, to
yield the spectral variation of ρk seen in the figure. Paper 1 (§ 4) describes formation of such a distribution.
For this work, the phase of one series was rotated, in each channel, to produce the phase desired for ρk. I
then Fourier transformed these frequency-domain data to the time domain, to produce the series x` and y`.
This yielded Gaussian noise with the desired correlations. I then quantized these series using a characteristic
curve as in Figure 1 with v0 = 1.5, n = 3 to form the series x̂`, ŷ`. After quantization, I correlated the
time series to produce the correlation function r̂τ . I discuss Fourier transform of r̂τ to form the quantized
spectrum in §4 below.
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The predictions of Cooper (1970) and Jenet & Anderson (1998) for the average correlation function,
re-derived in the following section, agree with the simulation to much better than the size of the points in
the figure. In the following sections, I calculate the expected noise in the correlation function, and compare
results with simulations of this spectrum.

3.4. Mean Cross-Correlation Function for Quantized Data

To introduce the analytical technique used to find the noise below, I re-derive the results of Cooper
(1970) and Jenet & Anderson (1998). Eq. 23 gives the ensemble-average autocorrelation function:

〈r̂τ 〉 =
1

2No

∑
`

〈x̂` ŷ`+τ 〉. (25)

The quantity 〈x̂`ŷ
∗
`+τ 〉 is of the form 〈ŵx̂∗〉, where ŵ and x̂ are quantized random variables. This average

can be expanded into products of pairs of real and imaginary parts of ŵ and x̂:

〈ŵx̂∗〉 =
(
〈Re[ŵ]Re[x̂]〉+ 〈Im[ŵ]Im[x̂]〉

)
+ i

(
〈Im[ŵ]Re[x̂]〉 − 〈Re[ŵ]Im[x̂]〉

)
. (26)

The various averages of the real quantized Gaussian variables on the right-hand side of this equation are
given in Table 1; in this case, by the first line: 〈Ŵ X̂〉 = BW BXρWX . Here, W and X are real (or
imaginary) variables drawn from the bivariate Gaussian distribution with covariance ρWX , and Ŵ and X̂

are their quantized counterparts. The statistical average 〈...〉 is an integral over the probability distribution
for W and X, times the characteristic curves for Ŵ (W ) and X̂(X). In § 3.2.1 of Paper 1, this expression
was expanded in powers of ρXY to yield the term in the second column of Table 1, times one-dimensional
Gaussian distributions of W and X and their characteristic curves. Integration over X and Y yields the
term in the third column in Table 1.

As Eq. 26 shows, several expressions of the form 〈Ŵ (W )X̂(X)〉 must be combined to find the complex
average 〈ŵx̂∗〉. The covariances of the various real and imaginary parts can be combined to form a complex
covariance, ρWX :

〈Re[w]Re[x]〉 = 〈Im[w]Im[x]〉 = Re[ρWX ] (27)

〈Im[w]Re[x]〉 = −〈Re[w]Im[x]〉 = Im[ρWX ].

One thus obtains the expression for 〈ŵx̂∗〉 given in the first line of Table 2, in the third column:

〈ŵx̂∗〉 = 2[BXBY ]ρWX . (28)

Note that this result is accurate through second order; as discussed in Paper 1, the next correction is
third-order. Substitution into Eq. 25 recovers the result of Cooper (1970), here with complex correlations:

〈r̂τ 〉 = BXBY ρτ . (29)

3.5. Mean Autocorrelation Function for Quantized Data

As Jenet & Anderson (1998) point out, the mean autocorrelation function must be treated differently
from cross-correlation. Eq. 24 gives the ensemble-average autocorrelation function:

〈âτ 〉 =
1

2No

∑
`

〈x̂` x̂`+τ 〉. (30)
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This involves products of different elements for τ 6= 0, and square moduli of elements for τ = 0. Thus, it
involves terms of both the form 〈ŵx̂∗〉, and of the form 〈ŵŵ∗〉. The first is the same as for cross-correlation;
the second requires a different, though analogous, calculation. The results in the first 2 lines in Table 2,
yield the expression of Jenet & Anderson (1998) for the statistically-averaged cross-power spectrum:

〈âτ 〉 =
{

AX2, if τ = 0;
B2

Xατ , if τ 6= 0.
(31)

Again, the constants AX2 and BX depend on the characteristic curve; Paper 1 presents expressions for
them. The result holds through second order in ατ . Figure 2 illustrates the resulting spike at zero lag, for
autocorrelation.

3.6. Noise of Cross-Correlation Functions for Quantized Signals

The variance of the correlation function measures the noise. The noise thus involves the fourth moment
of the quantized signals x̂` and ŷ`. Because the correlation function is complex, it is drawn from an elliptical
Gaussian distribution in the complex plane, and one must determine both 〈r̂r̂∗〉 and 〈r̂r̂〉 to characterize its
noise. Both of these expressions are sums of terms of the general form 〈ŵx̂∗ŷ∗ẑ〉, or 〈ŵx̂∗ŷẑ∗〉. Up to 2 of
the 4 quantities ŵx̂ŷẑ can be identical for the cross-power spectrum, and all of them can be identical for
the autocorrelation spectrum. The identical quantities result in special cases, for quantized data, as Jenet
& Anderson found.

Precisely along the lines of the discussion of the second moments in the preceding section, expansion of
the fourth moments into real and imaginary parts yields statistical averages of the form 〈Ŵ X̂Ŷ Ẑ〉, where W

X Y and Z are real quantities drawn from a multivariate Gaussian distribution. The first column of Table
1 lists the terms important for the correlation functions. I expand the multivariate Gaussian distribution
for W X Y and Z through second order in covariances ρWX , ρWY , and so on; this yields the terms in
the second column of Table 1, times 1D Gaussian distributions for each variable. Multiplication by the
quantizing functions Ŵ (W ) X̂(X) Ŷ (Y ) and Ẑ(Z) and integration over the distributions yields the averages
in the third column of Table 1. These averages of quantized real (or imaginary) quantities combine to yield
the averages of quantized complex quantities given in Table 2. I then combine these averages, using the
schemes summarized in Table 3 to find expressions for the variance of the cross-correlation function r̂.

3.6.1. 〈r̂r̂∗〉 − 〈r̂〉〈r̂∗〉

The noise in the modulus of the correlation function, 〈r̂r̂∗〉 − 〈r̂〉〈r̂∗〉, gives the average diameter of the
error ellipse for r̂. To find this, one must calculate

〈r̂τ r̂∗υ〉 =
1

(2No)2

No∑
`,m=1

〈x`y
∗
`+τx∗mym+υ〉. (32)

Again, I assume that covariances between terms are small, so that expansion through second order is suffi-
cient.

The calculation is straightforward when all 4 of the averaged elements are different: in other words,
when ` 6= m and ` + τ 6= m + υ. In this case, the average is proportional to that expected for continuous
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correlation, Eq. 13:

〈x̂`ŷ
∗
`+τ x̂∗mŷm+υ〉 =

[
4B2

XB2
Y

]
ρτρ∗υ +

[
4B2

XB2
Y

] (
αm−`α−(m−`)+(τ−υ)

)
. (33)

This is the average given by the term 〈ŵx̂∗ŷ∗ẑ〉 in Table 2, where it appears as “class” 1111+. The 1’s
indicate that one term of each variable appears once; the “+” indicate the symmetry of average under
multiplication of x by eiπ/2, or equivalently rotation by π/2 in the complex plane. This term also appears
in Table 3, with ID “Xcn.0”. In this identifier, the “X” indicates cross-correlation, the “c” indicates the
product of r̂ with its conjugate: r̂r̂∗, the “n” indicates that τ 6= υ, and the “0” indicates that the indices
`, m, ` + τ , and m + υ are distinct. As the table indicates under “Multiplicity,” this form of term appears
N2

o − 2No times in the sum.

If τ 6= υ, but ` = m, then one encounters the average

〈x̂`ŷ
∗
`+τ x̂∗` ŷ`+υ〉 =

[
2(CX2 −AX2)B2

Y

]
ρτρ∗υ +

[
4AX2B

2
Y

]
α(τ−υ). (34)

This term has the form 〈ŵx̂∗ŵ∗ŷ〉, and “Class” 211+ in Table 2. It appears as “Xcn.1” in Table 3, and
appears No times in the sum.

If τ 6= υ, but ` + τ = m + υ, one then encounters

〈x̂`ŷ
∗
`+τ x̂∗`+τ−υ ŷ`+τ 〉 =

[
2B2

X(CY 2 −AY 2)
]
ρτρ∗υ +

[
4B2

XAY 2

]
α(τ−υ) . (35)

This term also has the form 〈ŵx̂∗ŵ∗ŷ〉, and Class 211+ in Table 2. (Note however that the roles of x̂ and
ŷ are interchanged from those in Table 2). It appears as “Xcn.2” in Table 3, and appears No times in the
sum.

From Eqs. 33 through 35, I evaluate the sum, Eq. 32 (for τ 6= υ):

〈r̂τ r̂∗υ〉 =
1

(2No)2

{
N2

o

[
4B2

xB2
y

]
ρτρ∗υ + No

No∑
n=1

[
4B2

xB2
y

]
α−nαn+(τ−υ) (36)

− 2×No

{[
4B2

xB2
y

]
ρτρ∗υ +

[
4B2

xB2
y

]
α0α(τ−υ)

}
+ No

([
2(CX2 −AX2)B2

Y

]
ρτρ∗υ +

[
4AX2B

2
Y

]
α(τ−υ)

)
+ No

([
2B2

X(CY 2 −AY 2)
]
ρτρ∗υ +

[
4B2

XAY 2

]
α(τ−υ)

)}
.

Note that the first 2 terms on the right side of this equation give the contribution for all unlike wxyz, Eq.
33, with multiplicity 2No greater than correct. The second 2 terms subtract off the extras for the special
cases ` = m and ` + τ = m + υ, with multiplicity of No each; and the last 4 terms add back in the correct
contributions for these 2 special cases (Eqs. 34 and 35), with multiplicity No each. Eq. 36 simplifies to:

〈r̂τ r̂∗υ〉 − 〈r̂τ 〉〈r̂∗υ〉 =
1

2No

No∑
n=1

[
2B2

XB2
Y

]
αn+(τ−υ)α−n (37)

+
1

2No

[
(CX2 −AX2)B2

Y + B2
X(CY 2 −AY 2)− 4B2

XB2
Y

]
ρτρ∗υ

+
1

2No

[
2AX2B

2
Y + 2B2

XAY 2 − 4B2
XB2

Y

]
α(τ−υ).
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Similarly, when τ = υ, the contributing terms are given under Xce in Table 3. The case ` = m again
presents a special situation; for τ = υ this case is identical to ` + τ = m + υ. With this special case ` = m

again included incorrectly, subtracted back off, and then added in correctly, one finds:

〈r̂τ r̂∗τ 〉 − 〈r̂τ 〉〈r̂∗τ 〉 =
1

2No

No∑
n=1

[
2B2

XB2
Y

]
αnα−n (38)

+
1

2No

[
1
2 (CX2 −AX2)(CY 2 −AY 2)− 2B2

XB2
Y

]
ρτρ∗τ

+
1

2No

[
2AX2AY 2 − 2B2

XB2
Y

]

3.6.2. 〈r̂r̂〉 − 〈r̂〉〈r̂〉

The variance of the correlation function, given by 〈r̂r̂〉 − 〈r̂〉〈r̂〉, measures the departure of the error
ellipse for r̂ from circularity. As in the previous section, the averages for which 2 or more of the elements
of the sum are identical must be calculated separately. For τ 6= υ, the terms appear under Xrn in Table 3.
This yields:

〈r̂τ r̂υ〉 − 〈r̂τ 〉〈r̂υ〉 =
1

2No

No∑
n=1

[
2B2

XB2
Y

]
ρn+(τ+ν)ρ−n (39)

+
1

2No

[
(CX2 −AX2)B2

Y + B2
X(CY 2 −AY 2)− 4B2

XB2
Y

]
ρτρυ .

Similarly for τ = υ, for which the terms appear under Xre in Table 3:

〈r̂τ r̂τ 〉 − 〈r̂τ 〉〈r̂τ 〉 =
1

2No

No∑
n=1

[
2B2

XB2
Y

]
ρn+(2τ)ρ−n (40)

+
1

2No

[
( 1
2 (CX2 −AX2) + B2

X)( 1
2 (CY 2 −AY 2) + B2

Y )− 4B2
XB2

Y

]
ρτρτ

+
1

2No

[
( 1
2 (CX2 −AX2)−B2

X)( 1
2 (CY 2 −AY 2)−B2

Y )
]
ρ∗τρ∗τ .

3.6.3. Simulation of Cross-Correlation Function

Figure 3 shows statistics, in the lag domain, for the simple correlation function shown in Figure 2. Plots
on the left show 〈r̂τ r̂∗υ〉−〈r̂τ 〉〈r̂∗υ〉, and on the right 〈r̂τ r̂υ〉−〈r̂τ 〉〈r̂υ〉 . The upper plot shows the arrangement
of nonzero terms, and the lower plot gives their values.

The diagonal terms are the squared standard deviations of the amplitude of r̂τ , as given by Eq. 38. The
off-diagonal terms give the covariances of the noise between lags, as given by Eq. 37.

The right panels show the moments 〈r̂τ r̂τ 〉 − 〈r̂τ 〉〈r̂τ 〉. For a real cross-correlation function (like that
used here), the diagonal terms are the differences of the standard deviations of real and imaginary parts of
r̂τ , as given by Eq. 40. They thus measure the departure of the noise from isotropy in phase. These terms
are proportional to squares or products of the cross-correlation function ρ. For this test data, ρ2 = 0.16, and
so these terms are smaller than the largest terms in the left panels. This indicates that the error ellipses for
the correlation function are approximately circular.
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3.7. Autocorrelation Functions

Autocorrelation correlation functions and spectra present many special cases. On the other hand, for
the autocorrelations the “zero lags” τ = 0 and υ = 0 yield unit correlation, and thus play a special role; this
is unlike the cross-correlations, where the quantities being correlated are distinct at any lag. Fortunately,
one needs only one of 〈âτ â∗υ〉 and 〈âτ âυ〉 because 〈âτ âυ〉 = 〈âτ â∗−υ〉. Furthermore, X and Y are the same,
so I simplify the notation by dropping the subscripts from the integrals A, B, C.

For the case τ 6= υ, we have the the general case where neither τ nor υ is 0, as well as the special
sub-cases τ = 0 and υ = 0. Table 4 summarizes these various cases, with identifiers Antu, An0u and Ant0.
In these identifiers, “A” indicates autocorrelation, “n” indicates τ 6= υ, and “0u” indicates τ = 0 whereas
“t0” indicates υ = 0. Within these cases we have the same special cases as for the cross-correlation function
` = m and ` + τ = m + υ, plus the special cases ` + τ = m and ` = m + υ, which are special cases for
autocorrelation (although not for cross-correlation). These are listed as Antu.1, Antu.2, etc. Some of these
special cases become degenerate when τ = 0 or υ = 0.

I adopt the previous strategy of subtracting off, and then adding back in, contributions for the special
cases. For autocorrelations with τ 6= υ, and both τ 6= 0 and υ 6= 0, this requires the “Antu” terms in Table
4. The sum simplifies to:

〈âτ â∗υ〉 − 〈âτ 〉〈â∗υ〉 =
1

2No
[2B4]

No∑
n=1

αnα−n+(τ−υ) (41)

+
1

2No
[4(C −A)B2 − 8B4]ατα−υ +

1
2No

[4AB2 − 4B4]ατ−υ.

Here I have defined n = `−m. Note that `−m takes on different values in the sub-cases Antu.3 or Antu.4,
as compared with Antu.1 or Antu.2, so that the correction terms are different. This equation is analogous
to, but different from, Eq. 37, with which it should be compared.

In the case υ = 0, τ 6= υ (Ant0 in Table 4), one obtains:

〈âτ â0〉 − 〈âτ 〉〈â0〉 =
1

2No
[(C −A)B2]

No∑
n=1

(α(n+τ)α−n) (42)

+
1

2No
[2B3B − 2CB2]ατ .

Note here that B =
∫

dX Xe−
1
2 X2

X̂(X), whereas B3 =
∫

dX Xe−
1
2 X2

(X̂(X))3. (See Paper 1.)

One obtains the analogous expression in the case τ = 0, τ 6= υ (An0u in Table 4).

In the case τ = υ, τ 6= 0 (Aet in Table 4), one obtains:

〈âτ â∗τ 〉 − 〈âτ 〉〈â∗τ 〉 =
1

2No
[2B4]

∑
n

(αnα−n) (43)

+
1

2No
[2A2 − 2B4] +

1
2No

[( 1
2 )((C −A) + 2B2)2 − 8B4](ατα∗τ ).

This equation is analogous to Eq. 38. Finally, in the case τ = υ = 0 (Ae0 in Table 4), one obtains:

〈â0â
∗
0〉 − 〈â0〉〈â∗0〉 =

1
2No

[ 12 (C −A)2]
∑

n

(αnα−n) (44)

+
1

2No
[A4 − 2A2 − 1

2 (C −A)2].
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Note here that A =
∫

dX Xe−
1
2 X2

(X̂(X))2, whereas A4 =
∫

dX Xe−
1
2 X2

(X̂(X))4.

4. SPECTRA OF QUANTIZED SIGNALS

The measured spectrum is the Fourier transform of the measured correlation function. Thus, for quan-
tized data, the cross-power spectrum r̆ and the autocorrelation spectrum ă are:

r̆k =
N−1∑

τ=−N

ei 2π
2N kτ r̂τ . (45)

ăk =
N−1∑

τ=−N

ei 2π
2N kτ âτ .

Jenet & Anderson (1998) show that the proportionality factor found by Cooper (1970) relates the average
of the quantized cross-power spectrum 〈r̆〉 to the true cross-power spectrum ρ̃; and the same factor, with an
offset resulting from the spike at zero lag, relates 〈ă〉 to α̃.

Noise in the spectrum is related to noise in the autocorrelation function by a double Fourier transform.
I use this fact to find the noise in the spectrum, through second order in α and ρ, in this section. I find
that many of the terms for noise in the correlation functions are diluted over the channels of the spectrum.
They can be neglected, in many cases, for spectra containing many channels. I find that the dominant terms
for noise in individual channels of the spectra are analogous to results for continuous spectra, given by Eqs.
18 and 19. I also find that the noise is correlated between channels. This is opposite the conclusion for
continuous data (§2.3.3).

4.1. Mean Spectra for Quantized Signals

The Fourier transform of the proportionality Eq. 29 yields the ensemble-averaged spectrum:

〈r̆k〉 = BXBY ρ̃k, (46)

where both sides of the expression are complex.

The ensemble average of the Fourier transform of the quantized autocorrelation function is:

〈ãk〉 =
N−1∑

τ=−N

ei 2π
2N kτ âτ . (47)

This sum contains 2N − 1 terms involving âτ = B2
Xατ , and one involving â0 = AX2. I adopt the approach,

as in calculations of noise, of including an incorrect zero-lag term will all others in the sum, subtracting that
incorrect term, and then adding the correct term:

〈ãk〉 =
( N−1∑

τ=−N

ei 2π
2N kτB2

Xατ

)
−

(
B2

Xα0

)
+

(
AX2

)
. (48)

= B2
X

(
α̃k +

(
AX2

B2
X

− 1
))

.
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This recovers the results of Jenet & Anderson (1998), who showed that the mean spectrum for quantized
data is equal to the statistically-averaged spectrum for continuous data, plus an offset, times the gain factor
B2

X .

4.2. Spectral Noise for Quantized Signals

4.2.1. Variances: 〈r̆kr̆∗k〉

Calculation of the noise in the spectrum involves the Fourier transform of the variance-covariance matrix.
The Appendix summarizes facts useful for this transform. The approach is analogous to that taken in §2.3.2,
via a double Fourier transform. I use the facts in the Appendix, together with Eqs. 37 and 38 to find:

〈r̆kr̆∗k〉 − 〈r̆k〉〈r̆∗k〉 =
(2N)
2No

[
2(AX2 + B2

X(α̃k − 1))(AY 2 + B2
Y (α̃k − 1))

]
(49)

+
1

2No

[
1
2 (CX2 −AX2)B2

Y + B2
X

1
2 (CY 2 −AY 2)− 2B2

XB2
Y

]
ρ̃kρ̃∗k

− 1
2No

[
2( 1

2 (CX2 −AX2)− 1
2B2

X)( 1
2 (CY 2 −AY 2)− 1

2B2
Y )− 1

2B2
XB2

Y

] N−1∑
`=−N

1
(2N)

ρ̃`ρ̃
∗
` .

Note that the first term on the right-hand side is of order 2N ; the second is of order 1; and the third is of
order 1/2N .

4.2.2. Variances: 〈r̆kr̆k〉

Using the expressions in the Appendix together with Eqs. 39 and 40, I find:

〈r̆kr̆k〉 − 〈r̆k〉〈r̆k〉 = +
(2N)
(2No)

[
2B2

XB2
Y

]
ρ̃kρ̃k (50)

+
1

(2No)
[
(CX2 −AX2)B2

Y + B2
X(CY 2 −AY 2)− 4B2

XB2
Y

]
ρ̃kρ̃k

+
1

(2No)
[
( 1
2 (CX2 −AX2)−B2

X)( 1
2 (CY 2 −AY 2)−B2

Y )
] 1
(2N)

(
C̃ρ(k) + C̃∗

ρ(−k)
)

.

Again, the first term on the right-hand side is of order 2N , the second of order 1, and the third of order
1/2N .

4.3. Correlation of Noise Across Spectral Channels

For quantized data, noise in different spectral channels can be correlated. The correlation of noise
between channels involves 〈r̆kr̆∗` 〉, with k 6= `. These covariances can be calculated by the double Fourier
transform of Eqs. 37 and 38.
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4.3.1. Covariances: 〈r̆kr̆∗` 〉

For calculation of covariances between channels, classification of the terms in Eq. 37 and 38 is helpful.
In Eq. 37, the first term on the right-hand side is proportional to the autocorrelation function α convolved
with itself, the second is proportional to the square of the cross-correlation function ρ, and the third is
proportional to α. Of these, only the second will contribute to the covariance between channels. None of
the 3 terms on the right-hand side of Eq. 38 contribute either, for k 6= `. Thus, only the second term on the
right-hand side of Eq. 37 contributes, and it contributes in a simple way:

N−1∑
τ=−N

N−1∑
υ=−N

ei 2π
2N (kτ−`υ)ρτρ∗υ = ρ̃kρ̃∗` , (51)

so that

〈r̆kr̆∗` 〉 − 〈r̆k〉〈r̆∗` 〉 =
1

2No

[
(CX2 −AX2)B2

Y + B2
X(CY 2 −AY 2)− 4B2

XB2
Y

]
ρ̃kρ̃∗` , for k 6= `. (52)

The combination of constants
[
(CX2−AX2)B2

Y +B2
X(CY 2−AY 2)−4B2

XB2
Y

]
is always less than 0 for n = 3

(although it can be positive for other values of n), so the covariance is negative in that case. In other words,
when noise increases the height of one spectral peak, noise will tend to reduce the heights of other spectral
peaks. Note that the contribution of ρ̃kρ̃∗k to the variance appears in the covariance as well: this contribution
to the noise is perfectly correlated between spectral channels.

4.3.2. Covariances: 〈r̆kr̆`〉

The covariances 〈r̆kr̆`〉 can be found from Eqs. 39 and 40. As in the preceding section, classification of
the terms in Eqs. 39 and 40 is helpful. In both expressions, the first term is proportional to the convolution
of the cross-power spectrum with itself; it does not contribute to the covariance. The other terms in Eq. 40
also contribute nothing. We thus obtain:

〈r̆kr̆`〉 − 〈r̆k〉〈r̆`〉 =
1

2No

[
(CX2 −AX2)B2

Y + B2
X(CY 2 −AY 2)− 4B2

XB2
Y

]
ρ̃kρ̃`, k 6= `. (53)

The covariances have the same coefficient for variances 〈r̆kr̆∗` 〉 and 〈r̆kr̆`〉 .

4.3.3. Simulation of Cross-Power Spectrum

I Fourier transformed each of the simulated correlation functions from the simulation and form spectra.
The statistical properties of these spectra are in good agreement with the results of §4.2. Figure 4 shows an
example spectrum as a phasor plot. This is the spectrum corresponding to the correlation function of Figures
2 and 3, plotted in phasor form. The prediction is plotted as a solid line, using Fourier interpolation. The
mean measurements in the discrete channels are plotted as points, and surrounded by error ellipses that give
the spread. The error ellipses for each point have major axes that point toward the origin of the complex
plane; this is a consequence of the fact that, for this choice of parameters, the first term on the right-hand
side of Eq. 50 dominates the other 2, and it is proportional to ρ2

k. This term defines the major axis.

Figure 5 shows a spectrum and the standard deviations plotted in more traditional form. Again, I use
Fourier interpolation to show the model as a continuous function of the channel index, k.
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4.3.4. Spectrally-Correlated Noise: Simulation

Figure 6 shows an example of correlated noise in two spectral channels. For this simulation I used a
different initial spectrum and correlator parameters, more suited to showing the covariance. Both channels
have strong signals, with zero phase, as the spectrum in the upper panel shows. The lower panel shows results
of simulations of correlation of quantized data. The mean values Re[〈r̆k] and Re[r̆`〉] locate the centroid of
the ellipse. Noise gives the ellipse extension. The covariance of noise tilts the ellipse: when r̆k is smaller
than its mean, r̆` tends to be larger; and vice versa. This demonstrates the correlation of noise between two
channels.

Comparison of Eqs. 52 and 53 shows that the correlated noise is in phase with the underlying signals: in
other words, if both r̆k and r̆` are real, then the noise between real parts is correlated, but the imaginary parts
are uncorrelated. Thus, the figure corresponding to 6 for imaginary parts would show an ellipse centered at
the origin, with principal axes aligned with the coordinate axes.

4.4. Autocorrelation Spectra

For the autocorrelation function, the special cases of τ = 0, or υ = 0, or both, described by Eqs. 42 and
44, lead to additional correction terms that must be included in the sums.

It is useful to classify the terms in Eqs. 42 and 44. Some involve a factor of the autocorrelation of the
autocorrelation function ατ ,

∑No

n=1 αn+τα−n . Others involve a simple factor of ατ , or the product ατα−υ.
Finally, some terms in the special case τ = υ = 0 do not involve α at all: they are constants. These 3 types
of terms Fourier transform in different ways. The additional correction terms also have terms of the first
and second sort. The Appendix gives expressions helpful for the three sorts of Fourier transforms.

The Fourier transform of Eqs. 41 through 44 yields:

〈α̃kα̃∗k〉 − 〈α̃k〉〈α̃∗k〉 =
(2N)
(2No)

[
2
(
A + B2(α̃k − 1)

)2
]

(54)

where for simplicity I have omitted terms smaller by a factor of 1/(2N) or more. The complete expression
includes additional terms of these orders, but they are small for spectra containing more than a few channels.
Note that, again, the noise in the spectral domain can be represented by the “digitization noise,” a spectrally-
constant noise (A−B)/B added in quadrature with the signal α̃k.

4.5. Correlation of Noise Across Spectral Channels

Just as in the case of the cross-power spectrum, the variation of noise on the correlation (explored
in Paper 1) leads to correlations in the spectral domain for the autocorrelation spectrum. An argument
precisely analogous to that for the cross-power spectrum, in §4.3.1 above, shows that only the second of the
3 terms in Eq. 41 contributes to the covariance. That covariance is given by:

〈α̃kα̃∗` 〉 − 〈α̃k〉〈α̃∗` 〉 =
1

2No

[
4(C −A)B2 − 8B4

]
α̃kα̃∗` . (55)

This expression should be compared with Eq. 53. The covariance is twice as great for the autocorrelation
function.
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5. DISCUSSION

5.1. Quantization Noise: One of Many Channels

In the limit of spectra with many channels, 2N >> 1, the noise in one particular channel is given by
terms in Eqs 50 and 49 with coefficient 2N for cross-power spectra. In this approximation,

〈r̆kr̆∗k〉 ≈ 〈r̆k〉〈r̆∗k〉+
2N

2No

[
2B2

XB2
Y

](
α̃k +

(
AX2

B2
X

− 1
)) (

α̃k +
(

AY 2

B2
Y

− 1
))

(56)

〈r̆kr̆k〉 ≈ 〈r̆k〉〈r̆k〉+
2N

2No

[
2B2

XB2
Y

]
ρ̃kρ̃k (57)

These equations closely resemble the expressions for noise for continuous correlation, Eqs. 20 and 20, except
that everything has been multiplied by the gain factor B2

XB2
Y , and a white noise component with variance

(AX2
B2

X
− 1) (or the corresponding quantity for Y ) has been added to the autocorrelation spectrum α̃k. These

factors are those represented in the gain of the quantized cross-power spectrum (see Eq. 46), and in the gain
and offset of the autocorrelation spectrum (see Eq. 46). Note that AX2 > B2

X for all (v0, n), so that the
added noise component is always positive. This component is conveniently interpreted as quantization noise.
In this particular approximation, treatment of the effects of quantization as white noise added in quadrature
is accurate.

5.1.1. Correlation of Noise and Noise Reduction

Because the noise in different spectral channels is covariant (often with negative covariance), the in-
tegrated noise across a spectral channel is different from the summed, squared values of the noise in each
channel (often less). Eqs. 52, 53, and 55 give the covariances. Although the covariances are smaller than
the variances of the spectral channels given above by factors of 2N , they sum coherently across the channel,
whereas the variances do not. Thus, in principle they yield comparable contributions when summed over all
channels. In practice, of course, the results of such a sum are given by Eqs. 38 and 40 with τ = 0, or Eq. 44
for autocorrelation, because the sum over all spectral channels yields the zeroth lag. The interested reader
can verify that the results for this lag are identical to those of Paper 1, for a white spectrum.

In principle, the reduction of noise by the covariances offers the possibility of reducing quantization noise
in a spectrally-narrow signal. For example, one could introduce additional correlated signals, with known
α̃k and ρ̃k, and measure the variation of those from theoretically-expected results. Using Eqs. 52, 53, and 55
one can calculate what weighted sum of those variations should be applied to the unknown signal, to reduce
the noise as much as possible. This potential application is closely related to “dithering” in quantization
(see, for example, Balestrieri et al. (2005) and references therein).

5.2. Symmetries

Note that the noise in the cross-correlation function depends on both α and ρ. The variance 〈r̆kr̆∗k〉 −
〈r̆k〉〈r̆∗k〉 measures the summed squares of the principal axes of the elliptical Gaussian distribution of noise, or
its overall size. As one might expect from Eq. 18, that size depends primarily on the autocorrelation spectrum
in that channel α̃k. The error ellipse must maintain the same size under the transformation ρ → eiφρ, so
the noise can depend only on even powers of α̃, as it does.
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Similarly, the variance 〈r̆kr̆k〉 − 〈r̆k〉〈r̆k〉 measures the difference of the squares of the principal axes of
the elliptical Gaussian distribution of noise, or its shape. This shape must be circular for ρ̃ = 0, so that
the variance must vanish there, and so one expects that it cannot depend on α̃ independently of ρ̃. Eq.
19 confirms this. The difference must remain the same under the transformation ρ̃ → −ρ̃, for example, so
dependence on ρ̃ must be second order.

5.3. Limits of Validity

Numerical experiments suggest that Eqs. 49 and 50 reach their limits most commonly for spectra
encountered in radio astronomy when the autocorrelation function becomes large at lags other than the
zero lag. For example, for a single narrow line, when the integrated power in the line becomes comparable
to the integrated continuum (including system noise), then the autocorrelation function will reach about
0.5 in nonzero lags. This usually leads to noise larger than that expected from the second-order analytical
expressions, especially in channels containing the line, but also throughout the spectrum.

For particular spectra, the additional noise can be modeled accurately by expressions that involve
higher-order terms allowed by the preceding discussion, such as α̃kρ̃2

k or α̃3
k.

6. SUMMARY

This paper investigates signal and noise for correlation of digitized data. I assume that the received
data are noiselike, in the sense that amplitudes and phases are drawn from complex Gaussian distributions
in the spectral domain. The variance varies with frequency. For cross-correlation of two data streams,
covariance between the data streams may also depend on frequency. Almost all astrophysical signals have
this character. The variances and covariances contain all the information in the signal. The observed time
series are the Fourier transforms of these spectral components. At millimeter and longer wavelengths, these
time series are commonly digitized, and then correlated to obtain estimates of the underlying variances and
covariances. The correlation functions are finally Fourier transformed to yield the estimated autocorrelation
or cross-power spectrum. Averaged over a number of realizations, the elements of the correlation function will
approach a Gaussian distribution. The mean correlation represents the deterministic part of a measurement,
or the signal. The standard deviation of the measurement represents the random part, or noise.

Digitization of the signals involves quantization, which represents the continuous signal with a finite set
of levels, and thus destroys information. This affects both the signal and the noise. I summarize results for
continuous data in §2, and present new results, for noise for quantized data, in §3 and §4.

In §3 I investigate statistics of correlation functions. Under the assumption that the correlation is
smaller than 1 (except equal to 1 for the zero-lag of the autocorrelation function), I find expressions for the
mean cross- and autocorrelation functions. Results agree with earlier work (Cooper 1970; Jenet & Anderson
1998). I then find analytical expressions for the noise in the correlation functions. This noise takes the
form of variances of the measured elements, as a function of lag; and of covariances between the measured
elements.

In §4 I investigate statistics of spectra. The mean spectra are related to the mean correlation functions
by Fourier transform; the noise in the spectra is related to that in the correlation functions by a double
Fourier transform. I find that the mean cross-power spectrum for quantized data equals that for continuous
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data, times a gain factor. The mean autocorrelation spectrum equals that for continuous data times the
same gain factor, plus white noise added in quadrature with the original data: “quantization noise”. This
accords with previous results (Cooper 1970; Jenet & Anderson 1998). I then find analytical expressions
for the noise in the spectra. For both cross-power and autocorrelation spectra, I find that noise in one
channel of a spectrum is equal to a gain factor times that for continuous data, plus the same quantization
noise found for the autocorrelation spectrum. However, I also find that noise is correlated (most commonly
anticorrelated) across spectral channels. Thus, when noise increases the value measured in one channel above
the mean, noise will tend to decrease the value measured in another channel. This correlation can produce
a contribution comparable to, or even greater than, the quantization noise when summed over all spectral
channels.

I am grateful to the DRAO for supporting this work with extensive correlator time. I gratefully ac-
knowledge the VSOP Project, which is led by the Japanese Institute of Space and Astronautical Science
in cooperation with many organizations and radio telescopes around the world. The U.S. National Science
Foundation provided partial financial support for this work.

A. Useful Facts for Spectra

Parseval’s theorem states:
N−1∑

τ=−N

ρτρ∗τ =
1

2N

N−1∑
k=−N

ρ̃kρ̃∗k. (A1)

Therefore, ∑
τ 6=υ

ei 2π
2N k(τ−υ)ρτρ∗υ = ρ̃kρ̃∗k −

1
(2N)

N−1∑
k=−N

ρ̃kρ̃∗k. (A2)

Also note that ∑
τ 6=υ

ei 2π
2N k(τ−υ)α(τ−υ) = (2N)α̃k − (2N) (A3)

N−1∑
ν=−N

ei 2π
2N νk

No∑
n=1

αnα−n+ν = (2N)α̃2
k. (A4)

For convolutions, recall that

N−1∑
τ=−N

N−1∑
υ=−N

ei 2π
2N k(τ−υ)

No∑
n=1

ρnρ−n+(τ−υ) = (2N)ρ̃kρ̃k. (A5)

where I assume that the correlation function wraps, and that the correlation function includes all lags with
nonzero signal.

I define the quantity:

C̃ρ(k) =
N−1∑

τ=−N

ei 2π
2N 2kτρτρτ . (A6)
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Fig. 1.— Characteristic curve for 4-level quantization.
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Fig. 2.— Model spectra and correlation functions for simulations of correlation. Upper panel: Cross-power
spectrum r̃k (circles) and autocorrelation spectrum α̃k (crosses). Curves show interpolated spectrum. Middle
panel: Cross-correlation function rτ and autocorrelation function aτ for continuous data. Lower panel: Cross-
correlation function r̂τ and autocorrelation function âτ for quantized data. Note the gain for cross-correlation
of r̂τ = BxBy0.4 = 0.693 for τ = 1, 2, and offset to a0 = 2.07 for the zero-lag autocorrelation. Data were
quantized with v0 = 1.5 and n = 3. Correlation includes 2N = 8 lags. When averaged over No = 2 × 106

simulated correlation functions, the simulated spectra and correlation functions are indistinguishable from
theoretical values.
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Fig. 3.— Noise for cross-correlation function shown in Figure 2. Upper panels: Schematic depiction of the
correlation matrices 〈rτr∗υ〉 − 〈rτ 〉〈r∗υ〉 (left panel: Equations 37 and 38); and 〈rτrυ〉 − 〈rτ 〉〈rυ〉 (right panel:
Equations 39 and 40). Letters indicate positions with expected nonzero standard deviation, according to
those equations, with the same standard deviation expected for identical letters. Lower panels: corresponding
noise, as found for a 4-level correlator for the spectrum of Figure 2. Standard deviations are for No = 16
measurements with 2N = 8 lags, calculated over 106 simulated correlation functions. Circles show statistics
of the simulations, and horizontal bars show predictions of Eqs. 37, 38, 39, and 40.
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Fig. 4.— Spectrum for model correlation function of Figures 2 and 3, in phasor form. Solid line shows
expected form, using Fourier interpolation. Ellipses show measured averages and standard deviations. Sim-
ulations used a 4-level correlator with v0 = 1.5, n = 3 with No = 16, 2N = 8. The displayed statistics were
calculated from 107 simulated spectra. The value of v0 was chosen to emphasize the eccentricity of the error
ellipses; in other words, of the size of the term 〈r̆kr̆∗k〉. Note that major axes point toward the origin.
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Fig. 5.— Model spectrum and noise, shown for simulations (circles: real parts, stars: imaginary parts), and
for theory (solid line: real part, dotted line: imaginary part). Simulations used a 4-level correlator with
v0 = 0.4, n = 3 with No = 16, 2N = 8, and 107 simulations. The level v0 was chosen to emphasize the
ρ-dependent term in Eq. 49, which appears as the variation from a constant value in the middle panel.
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Fig. 6.— Covariance of noise in two spectral channels, for simulated correlation of quantized noise. Upper
panel: Model spectrum, showing autocorrelation spectrum α and cross-power spectrum ρ. All of the cross-
power, and 80% of the autocorrelation spectrum, is concentrated into channels −3 and +1. Lower panel:
Distribution of noise in channels 1 and -3, realized from the model spectrum after quantization. Quantizer
parameters were v0 = 0.1, n = 3. Simulations used No = 800 measurements, 2N = 8 spectral channels.
Points show 104 realizations. Ellipses show 1- and 2-standard deviation contours. The tilt of the ellipse
shows the negative covariance of the noise in the two channels.
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Table 1. Second and Fourth Moments of Quantized Real Gaussian Variables

Terms of 2nd or Lower Order Moments of
Average that Contribute to Expansion Quantized Variables

〈Ŵ X̂〉 [WX](ρWX) [BW BX ]ρWX

〈Ŵ 2〉 [1] [AW2]

〈Ŵ X̂Ŷ Ẑ〉 [WXY Z](ρWXρY Z + ρWY ρXZ + ρWZρXY ) [BW BXBY BZ ](ρWXρY Z + ρWY ρXZ + ρWZρXY )
〈Ŵ 2X̂Ŷ 〉 [XY ](ρXY ) + [(W 2 − 1)XY ](ρWXρWY ) [AW2BXBY ](ρXY ) + [(CW2 −AW2)BXBY ](ρWXρWY )
〈Ŵ 2X̂2〉 [1] + [ 12 (1−W 2)(1−X2)](ρWX

2) [AW2AX2] + [ 12 (CW2 −AW2)(CX2 −AX2)]ρWX
2

〈Ŵ 3X̂〉a [WX](ρWX) [BW3BX ]ρWX

〈Ŵ 4〉a [1] [AW4]

aImportant only for autocorrelations.



– 29 –

Table 2. Fourth Moments of Quantized Complex Gaussian Variables: ŵ x̂ ŷ and ẑ

Class Form Result: Quantized

11 〈ŵ x̂∗〉 [2BW BX ]ρWX

2 〈ŵ ŵ∗〉a [2AW2]

1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 [4BW BXBY BZ ](ρWXρY Z
∗ + ρWY ρXZ

∗)
1111− 〈ŵ x̂∗ŷ ẑ∗〉 [4BW BXBY BZ ](ρWXρY Z + ρWZρXY

∗)

211+ 〈ŵ x̂∗ŵ∗ŷ 〉 [2(CW2 −AW2)BXBY ](ρWXρWY
∗) + [4AW2BXBY ](ρXY

∗)
211− 〈ŵ x̂∗ŵ ŷ∗〉 [2(CW2 −AW2)BXBY + 4B2

W BXBY ](ρWXρWY )

22+ 〈ŵ x̂∗ŵ∗x̂ 〉 [(CW2 −AW2)(CX2 −AX2)](ρWXρWX
∗) + [4AW2AX2]

22− 〈ŵ x̂∗ŵ x̂∗〉 [ 12 ((CW2 −AW2) + 2B2
W )((CX2 −AX2) + 2B2

X)](ρWXρWX)
+[ 12 ((CW2 −AW2)− 2B2

W )((CX2 −AX2)− 2B2
X)](ρWX

∗ρWX
∗)

31+ 〈ŵ ŵ∗ŵ∗x̂ 〉a [2BW3BX + 2AW2BW BX ]ρWX
∗

31− 〈ŵ ŵ∗ŵ x̂∗〉a [2BW3BX + 2AW2BW BX ]ρWX

4 〈ŵ ŵ∗ŵ∗ŵ 〉a [2AW4 + 2A2
W2]

aImportant only for autocorrelations.
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Table 3. Terms in XCF Sums: r̂r̂∗ and r̂r̂

ID Conditions Subscript Class Form Multiplicity Notes

a b c d

Xc: 〈r̂τ r̂∗υ〉 = 〈x̂` ŷ
∗
`+τ x̂∗mŷm+υ〉 = 〈x̂aŷ∗b x̂∗c ŷd〉

Xcn: τ 6= υ:

Xcn.1 ` = m ` ` + τ ` ` + υ 211+ 〈ŵ x̂∗ŵ∗ŷ 〉 No Eq. 41
Xcn.2 ` + τ = m + υ ` ` + τ ` + (τ − υ) ` + τ 211+ 〈ŵ x̂∗ŵ∗ŷ 〉 No Eq. 42,a
Xcn.3 ` + τ = m 1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 − b
Xcn.4 ` = m + υ 1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 − b
Xcn.0 4 distinct ` ` + τ m m + υ 1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 N2

o − 2No Eq. 40

Xce: τ = υ

Xce.1 ` = m ` ` + τ ` ` + τ 22+ 〈ŵ x̂∗ŵ∗x̂ 〉 No

Xce.0 4 distinct ` ` + τ m m + τ 1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 N2
o −No

Xr: 〈r̂τ r̂υ〉 = 〈x̂` ŷ
∗
`+τ x̂mŷ∗m+υ〉 = 〈x̂aŷ∗b x̂c ŷ

∗
d〉

Xrn: τ 6= υ:

Xrn.1 ` = m ` ` + τ ` ` + υ 211− 〈ŵ x̂∗ŵ ŷ∗〉 No

Xrn.2 ` + τ = m + υ ` ` + τ ` + (τ − υ) ` + τ 211− 〈ŵ x̂∗ŷ ŵ∗〉 No a
Xrn.3 ` + τ = m 1111− 〈ŵ x̂∗ŷ ẑ∗〉 − b
Xrn.4 ` = m + υ 1111− 〈ŵ x̂∗ŷ ẑ∗〉 − b
Xrn.0 4 distinct ` ` + τ m m + υ 1111− 〈ŵ x̂∗ŷ ẑ∗〉 N2

o − 2No

Xre: τ = υ

Xre.1 ` = m ` ` + τ ` ` + τ 22− 〈ŵ x̂∗ŵ x̂∗〉 No

Xre.0 4 distinct ` ` + τ m m + τ 1111− 〈ŵ x̂∗ŷ ẑ∗〉 N2
o −No

aRoles of x̂ and ŷ reversed from Table 2. Use complex conjugate.

bImportant only for autocorrelations. Yields standard form for cross-correlation.
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Table 4. Terms in ACF Sums: ââ∗

ID Conditions Subscript Class Form Multiplicity Notes

a b c d

ACF: 〈âτ â∗υ〉 = 〈x̂` x̂
∗
`+τ x̂∗mx̂m+υ〉 = 〈x̂ax̂∗b x̂

∗
c x̂d〉

Antu: τ 6= υ, τ 6= 0, υ 6= 0

Antu.1 ` = m ` ` + τ ` ` + υ 211+ 〈ŵ x̂∗ŵ∗ŷ 〉 No

Antu.2 ` + τ = m + υ ` ` + τ ` + (τ − υ) ` + τ (211+)∗ 〈x̂ ŵ∗ŷ∗ŵ 〉 No a
Antu.3 ` + τ = m ` ` + τ ` + τ ` + τ + υ (211−)∗ 〈x̂ ŵ∗ŵ∗ŷ 〉 No a
Antu.4 ` = m + υ ` ` + τ `− υ ` 211− 〈ŵ x̂∗ŷ∗ŵ 〉 No

Antu.0 4 distinct ` ` + τ m m + υ 1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 N2
o − 4No

An0u: τ 6= υ, τ = 0:

An0u.1 ` = m ` ` ` ` + υ 31+ 〈ŵ ŵ∗ŵ∗x̂ 〉 No

An0u.2 ` = m + υ ` ` `− υ ` 31− 〈ŵ ŵ∗x̂∗ŵ 〉 No

An0u.0 3 distinct ` ` m m + υ 211+ 〈ŵ ŵ∗x̂∗ŷ 〉 N2
o − 2No

Ant0: τ 6= υ, υ = 0:

Ant0.1 ` = m ` ` + τ ` ` 31− 〈ŵ x̂∗ŵ∗ŵ 〉 No

Ant0.2 ` + τ = m ` ` + τ ` + τ ` + τ 31+ 〈x̂ ŵ∗ŵ∗ŵ 〉 No

Ant0.0 3 distinct ` ` + τ m m 211+ 〈x̂ ŷ∗ŵ∗ŵ 〉 N2
o − 2No

Aet: τ = υ, τ 6= 0:

Aet.1 ` = m ` ` + τ ` ` + τ 22+ 〈ŵ x̂∗ŵ∗x̂ 〉 No

Aet.2 ` = m + τ ` ` + τ `− τ ` 211− 〈ŵ x̂∗ŷ∗ŵ 〉 No a
Aet.3 ` + τ = m ` ` + τ ` + τ ` + 2τ (211−)∗ 〈x̂ ŵ∗ŵ∗ŷ 〉 No a
Aet.0 4 distinct ` ` + τ m m + τ 1111+ 〈ŵ x̂∗ŷ∗ẑ 〉 N2

o − 3No

Ae0: τ = υ, τ = 0:

Ae0.1 ` = m ` ` ` ` 4 〈ŵ ŵ∗ŵ∗ŵ 〉 No

Ae0.0 2 distinct ` ` m m 22+ 〈ŵ ŵ∗x̂∗x̂ 〉 N2
o −No

aComplex conjugate of element in Table 2.


