Basic physics determines relevant properties of stars.

We can ask what type of star is likely to behave like a highly relativistic fluid?

What type of particle, in the sun for example, is clearly relativistic?

- yes - but don't interact

photons!

General result for relativistic gas $P = \frac{1}{3} (\text{internal energy})$

$$P = \frac{1}{3} \frac{U}{T}$$

$$U = \frac{a}{T^4}$$

$$P = \frac{1}{3} a T^4$$

Consider the interior of the sun

$T \approx 6 \times 10^6 \text{K}$

$$\Rightarrow P_{\text{rad}} = \frac{1}{3} \left(\frac{2.56 \times 10^{15}}{15 \times 3 \times 10^8} \right) \left(6 \times 10^6 \text{K} \right)^4$$

$$P_{\text{rad}} = 3.27 \times 10^{12} \text{ dyne/cm}^2 \sim 10^{-3} \text{ P}_c$$

which we see is quite small compared to the pressure needed for support against gravity

$$\langle P \rangle = -\frac{1}{3} \frac{E_{\text{GB}}}{V} \sim 8.75 \times 10^{14} \text{ dyne/cm}^2$$

+ So when is radiation pressure important in a star?

$$P_{\text{rad}} = \frac{1}{3} a T^4 \quad \text{vs.} \quad P_{\text{gas}} = \rho \frac{dE}{dV}$$

H.S.E. relates internal energy to binding energy

$$dE = \frac{GMm_p}{R}$$

per particle
\[
\frac{P_{\text{rad}}}{P_{\text{gas}}} = \frac{1}{8} a \frac{T^4}{\rho} \frac{m_p}{\rho c T} = \frac{a m_p}{T/3} \left(\frac{GM m_p}{R J} \right)^3 \approx \frac{a m_p}{T} \frac{R^3}{M} \left(\frac{GM m_p}{R J} \right)^3 \approx \frac{a m_p}{T} \frac{G^3 M^2}{\hbar^4}
\]

so \[\frac{P_{\text{rad}}}{P_{\text{gas}}} \propto M^2\]

and we can estimate the characteristic mass where radiation pressure becomes important.

\[M_{\text{rad}}^2 \approx \frac{2}{5} \frac{G^4}{m_p} (1) \]

\[\approx \frac{G^4}{m_p} \frac{15 c^6}{8 \pi^5 \hbar^4} \]

\[\approx \frac{G^4}{m_p} \frac{c^3 h^3}{G^3 m_p^4} \]

\[(\frac{M_{\text{rad}}}{m_p})^2 \approx \frac{c^3 h^3}{G^3 m_p^6} \approx \frac{(3 \times 10^8 \text{cm/s})^3 (6.63 \times 10^{-27} \text{erg s})^3}{(6.67 \times 10^{-8} \text{cm}^3 \text{g}^{-1} \text{s}^{-2}) (1.67 \times 10^{-29})^2 \times 10^{-32} \text{g}} = 10^{-32} \text{g} \]

\[M_{\text{rad}} \approx 10^{-32} \text{g} \Rightarrow M_{\text{rad}} > 10^{32} (1.7 \times 10^{-29}) / 2 \times 10^{32} \text{M}_\odot = 10 \text{M}_\odot \]

\[\Rightarrow \text{A stars much more massive than this are highly unstable.} \]

This is the first time in this class that we have used the basic physics to define a characteristic mass. And we obtained a stellar value – how cool!

We will learn several ways in which basic physics determines fundamental stellar masses in this class.
The utility of the adiabatic index γ as a parameterization of stability leads us to consider simple equations of states like

$$PV^\gamma = \text{const}.$$

or $P = \text{const}$

$$\frac{1}{V^\gamma}.$$

or $P = k\rho^\gamma$.

Let's build a star.

§5.2 Use simple models to insight into most basic ideas of stellar structure.

Complete analysis requires calculations of considerable complexity. Find numerical solution to a coupled set of differential equations.

+ 4 Equations of Stellar Structure

+ 4 boundary conditions $m(C) = 0$, $l(C) = 0$, $P(T, \rho)$

During most of its existence, a star is close to H.S.E.

$$\frac{dP}{dr} = -\frac{G m(r) \rho(r)}{r^2} \quad (1) \quad \text{H.S.E}$$

$$m(r) = \int_0^r 4\pi r^2 \rho(r) \, dr \quad (2) \quad \text{Mass Conservation}$$

The internal temperature gradient is just sufficient to maintain the power flux. Energy transport is by radiative diffusion:

$$\frac{dT}{dr} = -\frac{3}{4\alpha c} \frac{k(r) \rho(r)}{[T(r)]^3} \frac{L(r)}{4\pi r^2} \quad (3)$$

and

$$\frac{dL}{dr} = 4\pi r^2 \varepsilon(r) \quad (4)$$

power generated per unit volume.
Can find static structure if pressure, opacity, and power can be related to p and T.

Now $P = P(p, T) \Rightarrow \frac{dP}{dr} = \frac{k}{r^{n+1}}$ Polytrope model of index n.

Later $K = K(p, T) \Rightarrow$ Thermic scattering and...

$E = E(p, T) \Rightarrow$ H burning and...

Must obey $H.S.E \ (1)$ and mass conservation E_2:

$$\frac{dP}{dr} = -\frac{GM(r)p_c(r)}{r^2} \quad \text{and} \quad \frac{dm}{dr} = 4\pi r^2 p$$

Divide by p and multiply by r^2

$$\frac{r^2}{p} \frac{dP}{dr} = -GM(r)$$

Take d/dr

$$\frac{d}{dr} \left(\frac{r^2}{p} \frac{dP}{dr} \right) = -4\pi Gp$$

Look familiar?

Recall Poisson's Eqn.

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{2\pi G}{dr} \right) = \nabla^2 \Phi$$

$$\nabla^2 \Phi = +4\pi Gp$$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{2\pi G}{dr} \right) = -g = -\frac{dr}{dr} \quad \text{we'll - not quite, so let's see}$$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dP}{dr} \right) = -4\pi Gp$$

$$\nabla^2 \Phi = -\left(-4\pi Gp\right)$$

Polytropic Model

$$\frac{1}{r^2} \frac{d}{dr} \left[\frac{r^2}{p} \frac{dP}{dr} \left(\frac{k}{p} p^{n+1}/n \right) \right] = -4\pi Gp$$
Polytropic models — played a role in development of stellar structure theory.

Can find a unique solution by imposing boundary conditions such as $p = p_c$ and $\frac{dp}{dr} = 0$ at $r = 0$.

$$-\frac{dp}{dr} = -G \frac{m(r)p(r)}{r^2} \Rightarrow -G \frac{p_c}{r^2} \Rightarrow 0$$

$\Rightarrow G \frac{p_c^2}{2} \Rightarrow 0$ as $r \to 0$

Similarly $\frac{dp}{dr}$ is small as $r \to R$ at the surface.

$$\frac{dp}{dr} = -G \frac{m(R)p(R)}{r^2} \Rightarrow 0$$

Not a complete description of a star!

What have we neglected?

3) Nuclear power generation

Let $L(r)$ be the power generated inside a sphere of radius r.

Then

$$\frac{dL}{dr} = 4\pi r^2 E(r)$$

where $E(r)$ is the nuclear power density of radius r.

4) will show that the energy is transported by radiative diffusion.

Define opacity of the gas

$$\kappa = \kappa(p, T) \quad \text{area / unit mass}$$

as its interaction cross section with the radiation.

$$\frac{dT}{dr} = -\frac{3}{4ac} \frac{\kappa(r)p(r) L(r)}{[\kappa(r)]^3 4\pi r^2}$$

\Rightarrow 4 Equations of Stellar Structure
Stellar Models

How to Build a Star

1. Guess \(P(r) \) or \(p(r) \)

2. Integrate \(\frac{dm}{dr} \) to get \(P(r) \)

 Integrate \(\frac{dp}{dr} \) to get \(P \)

3. Get \(T(r) \) from e.o.s. \(P = \rho T \) to estimate power flow \(L(r) \)

4. Compare power flow to that found by integrating the nuclear power density.

... and Iterate until they match.

\(\Rightarrow \) So you need a good guess for the initial \(P(r) \) profile

Know \(\frac{dp}{dr} \bigg|_{\infty} < 0 \) and \(\frac{dp}{dr} \bigg|_{r} > 0 \)

and the Pressure Gradient < 0 to counter gravity

Clayton model — Use in HUV

\[
\frac{dP}{dr} = -\frac{4\pi}{3} \frac{Gm^2}{c} e^{-r/a^2}
\]

\(\Rightarrow \) so a related to minimum in \(dp/dr \) steepest gradient

\[
P = \frac{2\pi}{3} Gm^2 a^2 \left[e^{-r/a^2} - e^{-2r/a^2} \right]
\]

\(\Rightarrow \) reasonable model for the sun

\(\Rightarrow \) central pressure \(p_c \) determines minimum + maximum stellar masses.