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Recently introduced constitutive equations for the rheology of dense, disordered materials are investigated in
the context of stick-slip experiments in boundary lubrication. The model is based on a generalization of the
shear transformation zone(STZ) theory, in which plastic deformation is represented by a population of meso-
scopic regions which may undergo nonaffine deformations in response to stress. The generalization we study
phenomenologically incorporates the effects of aging and glassy relaxation. Under experimental conditions
associated with typical transitions from stick-slip to steady sliding and stop-start tests, these effects can be
dominant, although the full STZ description is necessary to account for more complex, chaotic transitions.
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I. INTRODUCTION

Advances in developing nanometer scale technologies and
devices are intrinsically coupled to fundamental progress in
scientific understanding of the properties of materials under
atomic scale confinement[1–34]. On one hand, friction, frac-
ture, and plastic deformation at microscopic scales influence
the operation and performance of engineered systems. On the
other hand, investigation of clean, well characterized nanos-
cale systems is leading to additional insights into the under-
lying physical phenomena that govern systems under stress.

Increases in scientific computing capacity along with the
development of experimental techniques have recently cre-
ated opportunities for progress in both theory and measure-
ments. The surface force apparatus(SFA) was originally de-
signed to study solvation forces induced by a liquid confined
between parallel surfaces[1,2]. Subsequently it was adapted
to measure shear forces[3]. The SFA allows precise mea-
surements on a microscopically thin layer of lubricant, sepa-
rating atomically smooth(typically mica) surfaces. Friction
and/or adhesion associated with a single asperity contact can
be precisely measured. We focus here on friction and the
associated stick-slip instabilities.

In many practical instances friction involves rough mate-
rials. However, for rough surfaces it can be difficult to iden-
tify the underlying mechanisms associated with complex
phenomena(e.g., irregular dynamics and bifurcations). For
rough materials individual asperity dynamics area priori
combined with any collective phenomena which may be as-
sociated with the population of contacts, and the population
of contacts itself is necessarily time dependent. Rough sur-
face measurements are thus naturally complementary to in-
vestigations of the plasticity and rheology of isolated, indi-
vidual asperities. In addition, for single asperities, effects
associated with interfacial materials(e.g., lubricants) are
more easily isolated. Furthermore, there is growing evidence
that the frictional properties of rough surfaces even at mac-
roscopic scales are controlled by the plastic deformation of
individual contacts[35]. Indeed, experiments have recently
been designed that isolate and measure the dynamics of in-
dividual asperities at a rough dry interface, subject to shear
[36].

In this paper we focus on the dynamics of an individual
lubricated asperity contact. We model the lubricant using a
set of constitutive equations which generalize the shear trans-
formation zone(STZ) theory for amorphous, glassy materi-
als. In addition to the STZ equations, the model incorporates
the effects of glassy relaxation via the introduction of a state
variable related to the internal free volume(the additional
state variable may alternatively be thought of as an out-of-
equilibrium effective temperature). The coupled STZ and
free-volume dynamics were introduced previously and
shown to capture a range of experimental phenomena in
glassy and granular materials[37,38]. Here the constitutive
equations model internal states of the lubricant. We perform
a series of analytical and numerical calculations which
mimic typical SFA experiments[15,29,31] and investigate
the stationary states, the bifurcation diagram of the transition
between stick-slip and steady sliding, the nature of this tran-
sition (i.e., super- or subcritical), the emergence of chaos,
and aging of the yield stress in stop-start tests. At this stage,
we primarily map out qualitative behaviors of the model. The
compelling correspondence to existing experiments sets the
stage for future, more detailed, quantitative comparison with
data.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief overview of friction and boundary
lubrication. Section III describes the free-volume constitutive
equations and summarizes elements of STZ theory. Section
IV contains the numerical and analytical results in scenarios
representative of SFA experimental studies. Finally, we con-
clude in Sec. V with a discussion of our results, comparisons
with experiments, and directions for continuing research.

II. BACKGROUND

In this section we provide a brief overview of boundary
lubrication. Our emphasis is on unusual material properties
and the associated modeling challenges which arise for
atomically thin, confined liquid films. Note that, even for
interfaces with relatively simple features, we still lack pre-
cise, quantitative, predictive models for friction. A more
complete overview of recent results on friction and lubrica-
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tion can be found in[12] and references therein.
In boundary lubrication a molecularly thin film of mate-

rial is confined between two parallel surfaces. The relative
motion of the surfaces is mediated by the plastic deformation
of the interfacial material lubricating the contact. Molecu-
larly thin films display specific properties which differ from
the viscous behavior of bulk materials. Among the most
noteworthy of these is the development of a yield stress for
thin films at sufficiently low temperatures.

The changes of material properties under confinement can
largely be attributed to a liquid-solid transition[5,7,8]. In
some cases, numerical and experimental evidence suggests
that layering occurs in the interfacial material
[4–6,9,10,13,21,24] and the situation is similar to a liquid-
crystal transition. That is, the material orders, and its defor-
mation is expected to result from propagation of dislocations,
or layer-over-layer sliding. In other cases, no evidence of
ordering of the interfacial material is observed, and the
liquid-solid transition induced by confinement enters the
very large class of structural glass transitions[10,11,22,33].
In this case the material remains amorphous(liquidlike) but
displays solidlike properties. The emergence of a yield stress
is accompanied by power-law viscosities, as well as signs of
glassy aging[29,31,36] and anomalous response spectra
[22,25]. For some lubricants, either a glassy or layering tran-
sition can be observed, depending on features such as tem-
perature [33], holding time, surface roughness[39], and
commensurability of the surface and the film[24]. Conse-
quences of solidlike ordering within the film include devel-
opment of a static yield stress and stick-slip instabilities
[14,15].

Boundary lubrication and the SFA experiments provide
special opportunities for theory, because the interface is well
characterized and precisely controlled, yet the system is large
enough to display phenomena that also arise macroscopi-
cally. To date, models have primarily emphasized effects as-
sociated with ordering and interactions between the crystal-
line substrate and the lubricant. These aim to describe the
effects of layering and surface induced order and involve(i)
simple, reduced models of noninteracting particles in an ef-
fective periodic potential induced by the surfaces[23,26], (ii )
Ginzburg-Landau functionals which account for heteroge-
neous ordering[19], or (iii ) motion of adsorbate layers in the
periodic potential associated with a regular surface
[12,17,40].

Alternative approaches focus on internal properties of the
lubricant, including contrasts between liquid- and solidlike
properties and glassy behavior. Phenomenological rate and
state friction laws have been introduced[20,27], in which the
friction depends on the instantaneous slip rate and a state
variable. The state variable models the collective dependence
of friction on the internal degrees of freedom of the lubri-
cant. This approach assumes the fluctuations are sufficiently
self-averaging that microscopic degrees of freedom in the
boundary layer can be ignored. This simplifying assumption
was inspired by a large body of work in dry friction where
rate-and-state formulations[41–44] have been shown to be
useful to account for experimental data including stick-slip
instabilities[45–49]. State variables can be motivated by ex-
perimental observations or molecular dynamics. For dry fric-

tion the state variable is related to the average lifetime of
individual contacts, whereas in boundary lubrication the state
variable is loosely connected to the degree of internal order
in the lubricant. However, the friction laws these underlying
mechanisms inspire are based more on macroscopic, thermo-
dynamiclike criteria, than on the underlying microscopic
physics at the interface.

Our model aims to provide a microscopically motivated
description of the macroscopic forces which arise when the
amorphous, interfacial lubricant is subject to shear. It relies
on the assumption that the deformation of amorphous mate-
rials is controlled primarily by excluded volume effects,
which dominate over fine details of molecular interactions.
This is an old idea, advocated by Struik in the 1970s[50],
and supported by striking similarities between very different
amorphous systems. As a result, a relatively simple account
of viscoplasticity is expected to hold for wide classes of
amorphous systems. In the conclusion, we discuss how the
equations we study here may account for the behavior of not
only lubricants, but also sheared granular materials[51–54].

For the theorist, boundary lubrication has some special,
simplifying features which in many respects make it an ideal
template to study plasticity of amorphous materials. The in-
terfacial lubricant layer is sufficiently thin that certain bulk
phenomena, such as strain localization, appear to be avoided.
As a consequence, boundary lubrication is, in fact, one of the
few experimental setups wherehomogeneousconstitutive
equations can be directly tested. In contrast, for glassy bulk
materials deformation organizes in shear bands, usually a
few particle diameters thick, and the strain rate measured in
an experiment is averaged over a nonuniform field. The ori-
gin of strain localization is poorly understood, but clearly a
more complete understanding of simple homogeneous flows
must be established first. No shear banding is expected to
occur in nanoconfined films because the deformation is al-
ready confined at scales equal to or smaller than that which
would be expected for the shear band. The SFA experimental
setup closely resembles the sheared strip used in recent nu-
merical studies of relaxation in glasses[30,32].

There are, however, several persistent challenges associ-
ated with the SFA. First, an astonishingly wide range of phe-
nomena have been observed in this system for different lu-
bricants under different conditions. The range of behaviors
remains a puzzle which is difficult to piece together in the
absence of a systematic theory that clearly captures the most
basic observations. The variability of experimental observa-
tions might be attributed to inherent difficulties in the prepa-
ration of samples of any glassy material, due to the effects of
aging. Certainly, capturing the full spectrum of properties is
a long term target for theoretical models. Second, it is diffi-
cult to increase the stiffness of the apparatus beyond
,3500 N/m[55]. A salient feature of boundary lubrication,
which directly results from this finite stiffness, is the emer-
gence of stick-slip instabilities at low velocity
[5,7,14,15,29,31,33,56]. In the most dramatic cases, the tran-
sition to stick-slip is accompanied by irregular or chaotic
behavior[7,31]. The main consequence of the stick-slip in-
stability (and of the finite scanning length of the experimen-
tal apparatus), is that the SFA can provide stationary data
only for limited ranges of strain rates. Thus for a wide range
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of parameters information about the interfacial material can
be gathered only through the observation of instabilities and
transient dynamics. Therefore, it is essential to treat this fi-
nite stiffness explicitly in any theoretical approach. Ulti-
mately, rather than hampering our understanding of structural
glasses, stick-slip instabilities and transient dynamics pro-
vide us with much richer data than simple stationary states.
These instabilities may help clarify important, general issues
associated with the out-of-equilibrium properties of struc-
tural glasses.

The model we study in this paper is an intermediate sta-
tistical theory recently proposed[37,38,57] for sheared struc-
tural glasses. Here “intermediate” refers to the fact that our
model falls between the thermodynamiclike, phenomeno-
logical rate and state descriptions which have been proposed
for friction at dry and lubricated interfaces, and an atomistic
statistical mechanical description of the lubricant, which
takes into account detailed microscopic, molecular interac-
tions. The model begins with shear transformation zone
theory [58,59], which was inspired by molecular dynamics
simulations of fracture in amorphous materials, and which
provides a microstructural description of shear-induced rear-
rangements[58–60]. STZ theory accounts for the emergence
of a yield stress in amorphous materials through introduction
of state variables characterizing the anisotropy of structural
arrangements. Drawing on earlier approaches to describing
creep in metallic alloys[61–65], STZ theory models local
shear rearrangements as activated processes, controlled by
local density fluctuations. This leads to the introduction of
free-volume activation factors, in the spirit of early theories
of the glass transition[66–70].

In [37] and subsequent works[38], it was noted that pre-
vious approaches treat free-volume as a fixed parameter, al-
though it clearly varies as the material dilates or contracts. In
granular materials, for example, density relaxations have
been observed and precisely characterized experimentally
[71], inspiring several models of slow relaxation[71–73].
Dilatancy in granular material is also involved in the defini-
tion of frictional properties and stick-slip transitions[74].
Slow relaxation of volume or enthalpy is a ubiquitous feature
accompanying the glass transition[50]. We expect more ex-
plicit modeling of the time dependence of density fluctua-
tions may capture the emergence of a wide range of glassy
properties near a jamming transition. The constitutive equa-
tions introduced in[37] were thus developed to address the
question: How much glassy phenomenology can be captured
by the simplest account of free-volume dynamics, coupled to
the dynamics of shear transformation zones?

Previously it was shown that free-volume dynamics suf-
fices to characterize aging and power-law rheologies, while
the dynamics of shear transformation zones are required to
account for the emergence of a yield stress[37,38]. In tran-
sient regimes, both processes may interact and contribute to
rheological properties. Furthermore, chaotic behavior has
been observed in the SFA close to the stick-slip instability
[31], and it is known in overdamped frictional equations that
two or more state variables are necessary to understand the
occurrence of chaos. Here, we did not invoke anad hoc
theory with multiple state variables[75], but were led to it by
the underlying physical mechanisms already associated with

other, relevant experimental observations. Moreover, as
chaos is difficult to characterize experimentally, significant
insight is provided when observations are supplemented with
theoretical models, to guide measurements and analysis.

Finally, we note that it is nota priori necessary to identify
the additional state variable as a free volume. It was previ-
ously noted by Falk and Langer that free volume is related to
the notion of Edwards’ temperature[58,76–78]. As noted
later [37,38], the essential feature that free-volume dynamics
captures is the existence of an intensive quantity that mea-
sures internal disorder and evolves as the system orders or is
driven away from equilibrium. Alternative approaches char-
acterize the internal state in terms of an effective temperature
[57]. Note, finally, that the concept of Edwards’ temperature
is likely to be related to effective temperatures arising in
weak versions of the fluctuation-dissipation theorem
[79–82]. In this paper, we use free-volume terminology and
refer the reader to[57] where the relation between free vol-
ume and effective temperature is discussed in more detail.

III. CONSTITUTIVE EQUATIONS

Our presentation of the model is broken down into four
steps:(i) preliminaries associated with the SFA, explicitly
accounting for the finite stiffness,(ii ) STZ theory,(iii ) the
free volume equations, and(iv) rescaling to obtain dimen-
sionless equations. The equations in Secs. III B–III D have
been presented elsewhere, but we include their derivation for
the sake of completeness. We refer the reader to[58] and
[37,38,57] for more detailed discussions of the underlying
assumptions.

A. Surface force apparatus

A primitive model of the SFA consists of a single slider
block, pulled along a surface by a spring of stiffnessk. The
opposite end of the spring advances at a prescribed velocity
V. Letting x denote the displacement of the block relative to
the stationary surface, the spring exerts a forceF=ksVt−xd,
where t is time measured from some initial timet=0 when
x=0. The block is subject to both the pulling force from the
spring and frictional resistance at the surface. Modeling the
SFA as a single slider assumes that the sliding surface is
sufficiently small, rigid, and uniform and that friction at the
contact is sufficiently self-averaging that slip occurs uni-
formly across the interface.

Assuming the thicknessh of the interface remains con-
stant, the motion of the slider is related to the rate of shear
deformationġ of the interfacial material byẋ=2hġ. If the
areaS of the contact is constant, the shear stress exerted by
the slider on the interfacial material can be written ass
=F /S. Furthermore, for the experiments we consider, the
friction is sufficiently strong that the motion is overdamped,
and inertial forces associated with the nonzero mass of the
slider can be neglected. This leads to an equation of motion
for the stress:

ṡ = msė − ġd s1d

with m=hk/S and ė=V/ s2hd. The motionẋstd of the slider
follows from the solution to Eq.(1), which depends on how
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the strain rateġ is related to the shear stresss and the inter-
nal state variables.

We next define the constitutive equations which couple
the free-volume and STZ dynamics. Later we restrict our
discussion to subsets and(linearized) simplifications of these
equations to isolate effects associated with distinct state vari-
ables and/or nonlinearities, and to illustrate phenomena that
require a larger number of state variables to be resolved.

B. Elements of STZ theory

STZ theory is based on the idea that the macroscopic
deformation of an amorphous material results from localized
rearrangements involving cooperative molecular motion at
mesoscopic scales[83–85]. The loci of such rearrangements
are called shear transformation zones, and the internal state
of the system is characterized by their number density. In its
simplest form, STZ theory involves only two types of zones
(labeled “1” and “2,” with number densityn+ and n−, re-
spectively) oriented along the principal axes of the shear
stress. Zones of each type transform into one another during
an elementary shear. The average strain rateġ is given by

ġ = A0sR+n+ − R−n−d. s2d

Here ġ is averaged over the populations of zones,n±, that
reorient with probabilitiesR±, respectively.

The important insight Falk and Langer contributed to pre-
vious STZ theories was to treat the populations densitiesn±
as state variables and propose equations of motion for the
populations. These take the following form[58,59]:

ṅ± = − R7n7 + R±n± + sġsAc − Aan±d. s3d

The first two terms on the right hand side account for ex-
changes between the populations of STZ’s due to mesos-
copic rearrangements, while the last term introduces a cou-
pling with the mean flow, through creation of STZ’s at rate
Ac and annihilation at rateAa. The equations describe how
shear deformations induce small displacements of the mol-
ecules, hence creating and destroying shear transformation
zones. In this framework, the emergence of a yield stress in
amorphous solids at low temperature is associated with the
mobilization of zones when stress is applied.

C. Free-volume activation

In the original formulation of STZ theory, the rates were
estimated to be nonlinear functions of stress. Derivation of
the rates were based on free-volume activation, as developed
by Cohen, Turnbull, and co-workers to understand the phe-
nomenology of the glass transition[68–70]. Specifically, the
ratesR± were estimated to be of the form expf−v0s±sd /v fg,
wherev0 is a stress-dependent activation volume, andv f is a
material-dependent constant. The detailed formulation of
transformation ratesR± is not essential to capture the STZ
mechanism for jamming. Instead, a first order approximation
for the stress dependence of the ratesR± is sufficient[58,59].

However, for hard-sphere systems, the free volumev f is
directly related to the density. There is no reason to believe
that it should take a fixed value as a function of pressure and

temperature. On the contrary, it is a dynamical quantity
which evolves as the material dilates or contracts. This ob-
servation naturally leads to dynamical equations for the free
volume, written in analogy with the equations of motion for
the populationsn± [37,38].

The activation factors depend on both free-volume and
stress fluctuations. Assuming these effects are uncorrelated,
we express the rates as

R±ss,v fd = R0 expF−
v0

v f
GexpF±

s

m̄
G . s4d

An elementary shear rearrangement takes a “1” oriented
zone to a “2” oriented zone, or vice versa, and occurs if
sufficient free volume(large thanv0) is available, and if the
virtual work of shear forces promotes the transition in the
±→7 direction. The variablem̄ is here a scale of forces(not
to be confused with the elastic modulusm) which may de-
pend on temperature, and governs stress activation factors.
Note that the introduction of backward and forward jumps is
an old idea, already present in Eyring’s theory of viscous
liquids [86] or in Spaepen’s approach to creep in metallic
glasses[61].

The equation of motion forv f is given by[37,38]

v̇ f = − R1 expF−
v1

v f
G + Avsġ. s5d

Here the free-volume dynamics involve two competing
mechanisms:(i) activated elementary compaction which in-
creases the density, and(ii ) the transfer of macroscopic work
into enthalpy, which dilates the material. The parameterAv
specifies how efficiently the work of external forces is used
in dilatancy. The parameterR1 is an update frequency, which
should be of the same order asR0; the activation volumev1
may differ from v0, because the two elementary rearrange-
ments(shear and compaction) involve different relative mo-
tion of the molecules and hence different reactional path-
ways. The ratiok=v1/v0 is an essential parameter of the
theory and is expected to depend on the shape of the mol-
ecules.

The equations described here correspond to the low tem-
perature limit of a more general set of equations for the dy-
namics of a disorder temperature[57]. We will restrict our
current discussion to this free-volume formulation. As we
will show, it captures a wide range of phenomena observed
experimentally.

D. Rescaling and change of variables

For the constitutive equations defined above[Eqs.(2), (3),
and (5)], it is convenient to introduce reduced variables
[58,59]

D =
n− − n+

n`

, L =
n− + n+

n`

, and x =
v f

v0
, s6d

along with the rescaled parametersn`=2Ac/Aa, e0
=A0Ac/Aa, m0=1/sA0Acd, E0=2e0R0, andE1=R1/v0. This
change of variables leads to the following set of equations:
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ġ = E0 expF−
1

x
G FL sinhSs

m̄
D − D coshSs

m̄
DG , s7d

Ḋ =
ġ

e0
S1 −

s

m0
DD , s8d

L̇ =
sġ

m0e0
s1 − Ld, s9d

ẋ = − E1 expF−
k

x
G + asġ. s10d

Equations(7)–(9)—the free volumex in Eq. (10) being held
constant—are almost identical to the original formulation of
STZ theory by Falk and Langer[58,59]. The variableL ac-
counts for the total density of STZ’s. The steady state value
L=1 is a stable fixed point. In STZ theory,L differs from 1
only in the initial transient, and its initial value is expected to
depend on the type of annealing performed during the cre-
ation of a glass from a high temperature liquid. Here we are
not concerned with transient features associated with these
annealing-dependent initial values ofL and will assumeL
=1 throughout. This eliminates Eq.(9). The variableD is the
normalized difference between “1” and “2” STZ densities.
It accounts for the anisotropy of the molecular structure. For
a fixed applied stresss (and fixed free volumex), Eqs.(7)
and (8) were shown previously to account for a transition
between an elastic regime(jamming) and a viscoplastic re-
gime (flowing). The transition occurs at a yield stresssy
satisfying

tanhSsy

m̄
D =

m0

sy
. s11d

The variablex is a normalized free volume, which accounts
for the existence of disorder in the molecular structure. Its
dynamics, determined by Eq.(10), couples with Eqs.(7) and
(8) only as long asx appears in the prefactor of Eq.(7),
setting the time scale of elementary shear events.

At a fixed applied stresss, Eqs.(7), (8), and(10) account
for plastic deformation resulting from the coupled dynamics
of D and x. When the system is driven at a constant shear
rate as in the SFA, these equations must be supplemented
with Eq. (1), which accounts for coupling of the material
deformation with a compliant driving apparatus.

E. Discussion

Most of the results presented here are consequences of the
free volume dynamics(10) coupled to Eq.(7), the STZ vari-
ablesD (andL) being held constant(D=0 andL=1). In this
case, Eqs.(7) and (10) reduce to

ġ = E0 expF−
1

x
GsinhFs

m̄
G , s12d

ẋ = − E1 expF−
k

x
G + asġ. s13d

These equations can also be linearized for small stresses,
which enables us to eliminate the parameterm̄ (taken to
unity) which enters the exponential activation factors to fix a
scale of stresses. The linearized(in s) equations are

ġ = E0 expF−
1

x
Gs, s14d

ẋ = − E1 expF−
k

x
G + asġ. s15d

We refer to this as thestress-linearapproximation. It cap-
tures most of the phenomenology accompanying the stick-
slip instability and allows for interesting analytical calcula-
tions.

Throughout this paper, we will use these three sets of
equations—the full, coupled system of equations including
STZ and free-volume effects, the nonlinear equations de-
scribing free-volume dynamics only, and the linearized ver-
sion of the free-volume equations—in order to clarify the
consequences of our assumptions and the role of the different
state variables. The questions raised are as follows. What
behavior is already captured by free-volume dynamics, in the
stress-linear version[Eqs.(14) and(15)]? What is the impor-
tance of the activation factors and the nonlinear dependence
of strain rate versus stress[Eqs.(12) and(13)]? What are the
expected consequences of the interaction between several in-
ternal state variables, as modeled by Eqs.(7), (8), and(10)?

IV. COMPARISON WITH EXPERIMENTS

In this section we compare the qualitative behavior of our
model with several important experimental protocols which
are widely used to characterize the behavior of frictional in-
terfaces. Two classes of experiments are especially relevant
for our study.

(i) Boundary lubrication experiments involving confined
fluids in a SFA. Here the geometry of the lubricated contact
is well controlled but at the cost of limited shearing distance,
which results in a limited range of accessible shear rates.
Many interfacial materials have been studied in this setup,
including spherical, linear, branched, and globular mol-
ecules. As discussed in Sec. II, two different types of behav-
ior can be identified depending on the ordering properties of
the material. Spherical molecules tend to order more easily,
while branched molecules are more likely to enter a glassy
regime [15]. Layer-over-layer sliding, in which molecules
retain an ordered structure during shear, is limited to very
carefully controlled samples of spherical molecules. More
often, packing and confinement of irregularly shaped mol-
ecules and/or the shearing motion induces disorder and
glassy behavior. Experimental observations indicate that ma-
terials which are glassy under confinement present a set of
similar properties, which are the focus of our study.

(ii ) Asperity friction involving nominally dry, rough, sur-
faces[36]. In this case, the contact between two surfaces is
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composed of a sparse set of load bearing asperities. In gen-
eral, the frictional response of dry surfaces results from the
dynamics of creation and destruction of these asperities
[44,87], but an experimental protocol has been designed by
Bureauet al.which uses dry friction measurements to access
an entirely different physics[36]. It relies on the property
that the stress response of individual asperities involves plas-
tic deformation of nanometer thick joints[35]. By perform-
ing studies at time scales for which the micro-contacts retain
their identity [36], dry friction measurements thus grant ac-
cess to the average rheology of an ensemble of plastic joints
between load-bearing asperities. Because they probe the
plasticity of the material, our STZ based theory is of direct
relevance. Furthermore, according to Bureauet al.such mea-
surements allow for a much larger shearing distance—while
maintaining asperities at contact—and hence higher veloci-
ties than the SFA. However, they provide little control on the
micrometric structure of individual asperities. The experi-
ments of Bureauet al. were performed using PMMA[36],
but contacts between many solids are expected to exhibit
such disordered frictional joints. This is expected to be the
case not only for solids which are disordered in the bulk, but
also for most ordered solids, due to nanometric surface
roughness, defects in the bulk, atomic surface misorienta-
tions, and/or the presence of adsorbates.

Both the SFA and the response of dry friction contacts
involve plastic deformation of a molecular interface of thick-
ness of order 1 nm and width of order 1mm. The SFA al-
lows independent measurement of normal and friction forces
at the interface. Friction forces are found to scale with the
external load[33], in agreement with Amonton’s law, and
forces are measured in units of millinewtons. The corre-
sponding stress on a surface of area 1mm2 is of order
106 N/m2, defining the typical unit of stress considered in
our study. In contrast, dry friction measurements provide
only indirect access to the normal load exerted on individual
asperities. The friction force scales linearly with the stress,
which is thought to arise from the increasing number of as-
perities with increasing load, whereas the typical value of the
load exerted on any single asperity is expected to remain
approximately constant, of the order of the yield stress of the
bulk material[87].

Accessible driving velocities with the SFA range between
10−3 and 10mm s−1, while velocities studied in dry friction
experiments range between 10−1 and 103 mm s−1. Given the
nanometer thickness of the molecular joints, velocities of
order 1mm s−1 translate into shear rates of order 103 s−1.
Time scales enter our equations through different constants.
For example, for fixedė andE0, a global rescaling ofm, E1,
anda changes the overall scale of the resulting dynamics.E1
andE0 both involve the update frequenciesR1 andR0, which
should be of the same order, but contain factors of rather
different origins, and may present different dependencies on
external pressure and temperature. In this present work, we
will avoid speculative discussions about the specific values
of these constants and their microscopic origin. We thus take
constants of order 1 to develop a qualitative picture of the
behavior emerging from our equations, and expect that a
simple rescaling of these constants will permit us to bring
our equation into rough quantitative agreement with experi-
ments.

Most of our investigation focuses on the equations gov-
erning free-volume dynamics, either in their nonlinear form
(12) and(13) or in their linear form(14) and(15). We study
(i) stress versus strain rate relations in steady sliding,(ii ) the
transient dynamics upon start-up, and(iii ) the transitions to
stick-slip at low velocities. In the last part of our work, we
focus on the existence of(iv) chaotic regimes of stick-slip. In
order to observe chaos, we need the full(three-dimensional)
set of nonlinear equations(7)–(10).

A. Steady sliding

The first step in characterizing the behavior of sheared
materials is, of course, the steady state relation between
stress and strain rate. In boundary lubrication and dry friction
measurements, it has been observed that, at low velocities,
the friction force is weakly velocity weakening. Velocity
strengthening behavior at higher velocity is observed in dry
friction measurements but typically not with the SFA. Of
course, it is difficult to draw definite conclusions for fast
driving rates due to the limited range of accessible velocities.

Below we calculate the stress vs strain rate relationship in
order of increasing model complexity, beginning with the
linearized free-volume equations, followed by the nonlinear
free-volume equations, and finally for the complete model,
including STZ’s.

1. Stress-linear equations

In the stress-linear version of our model[Eqs. (14) and
(15)] the ratio between stress and strain rate determines a
viscosity

h = exps1/xd/E0, s16d

which is a simple function of the free volumex.
Initially, we take the limit of infinite stiffness for the ex-

perimental apparatus, so that, from Eq.(1), ġ= ė. From Eqs.
(14) and (15), the dynamics ofx reduces to

ẋ = − E1 expF−
k

x
G +

a

E0
expF1

x
Gė2. s17d

The quantityx admits a steady state value only if the shear
rate is not too large. For high shear rates,

ė . ėp =ÎE0E1

a
, s18d

this equation becomes unstable,ẋ is positive at all times, and
x diverges. This instability is not related to stick-slip, since it
occurs for any value of the stiffness. It indicates that, at large
shear rates, the material cannot dissipate the work of external
forces and is driven toward a highly disordered state. Situa-
tions when ė.ėp are by definition transient: the material
does not reach a steady state. Insteadx diverges.

Interpretingx as a free volume, this divergence may cor-
respond to an opening of the interface, and possible loss of
contact between the surfaces. In typical experiments, if such
high shear rates were applied, the divergence ofx would be
a priori limited by the scanning length of the experimental
device. The divergence ofx is accompanied by an apparently
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viscous behavior, with viscosityh=exps1/xd /E0,1/E0 ap-
proximately independent ofx. It may appear, from a mea-
surement of stress alone, that the system is stationary al-
though the internal dynamics may not have reached a steady
state.

The existence of this divergence at a critical driving shear
rate ėp arises physically from the fact that the transition
probabilities are bounded. The factor exps1/xd approaches
unity at high x, and becomes decreasingly sensitive to
changes in the intensive variablex when x is much larger
than 1. At this point, the free-volume dynamics is only
weakly coupled to the other equations. Of course, if a high
shear rateė.ėp is applied steadily, this divergence ulti-
mately leads(in the t→` limit ) the system toward a highly
disordered, “fluidized,” state. Our equations are not designed
to describe this limit, and instead should start to break down
whenx reaches some large value, say,x f. We expectx f @1
(here the value 1 corresponds to the activation free volume
for an elementary shear transformation, which is much less
than one molecular volume per molecule, whereasx f is of
the order of one additional molecular volume of free space
per molecule). We do not attempt to account for the late
stages of this divergence, and only changes of material be-
havior aroundx,1 are of interest to us. For this reason, and
to simplify the discussion, we can safely takex f to infinity.

We could avoid explicit reference to such a divergence as
several mechanisms could be invoked to explain the satura-
tion of free volume at high velocity resulting in the emer-
gence of another fixed point. Possible mechanisms include
the weak density dependencies of various parameters, like
E0, E1, or a, or higher order terms in the free-volume dy-
namics [Eqs. (10), (13), and (15)]. Here we study free-
volume dynamics in the simplest form for several reasons.
First, several mechanisms could be invoked to account for
the saturation of free volume at high velocity, and it is un-
clear at this stage which would be dominant. Thus we prefer
not to differentiate between them. Second, regardless of the
mechanism, the approach to any high free-volume fixed
point would, in its early stages, closely resemble the diver-
gence we discuss here. Given the limited span of experi-
ments, we expect that our model is relevant to observations
that are currently available.

For shear rates smaller thanė*, the free volume admits a
steady state value, and this leads to a relation between stress
and strain rate, of the form

s =
ė n

E0
S a

E0E1
Dsn−1d/2

. s19d

The constitutive equations thus account for power-law vis-
cosity, with an exponent

n =
k − 1

k + 1
s20d

which is directly related to the ratiok=v1/v0 of activation
volumes. Fork.1 the stress is an increasing function of the
shear rate, the material is shear thickening. Fork,1, the
stress is a decreasing function of the shear rate, the material

is shear thinning. We will see that, in the latter case, the
system exhibits a transition to stick-slip at low velocities.

2. Nonlinear free-volume equations

Next we calculate the stress vs strain rate for the nonlinear
free volume equations(12) and (13). In this case, we obtain
a generalization of Eq.(19) which is valid beyond the range
of small stresses, where the linear-stress approximation is
expected to hold. The resulting relationship is given by

ė = E0SaE0

E1
D1/sk−1d

s1/sk−1dFsinhSs

m̄
DGk/sk−1d

. s21d

For smalls, linearization of the hyperbolic sine leads to the
power-law rheology described above[Eqs. (19) and (20)].
For large stresses, the right hand side is dominated by the
exponential growth in the hyperbolic sine, which results in a
logarithmic dependence of the stresss on the strain rateė.

As in the linearized case, Eq.(21) is accompanied by a
condition imposed on the strain rateė which must be satis-
fied for there to be a self-consistent, steady state value ofx.
Violation of the conditionsė.ė* d is associated with diverg-
ing free-volume and fluidization. For the nonlinear free-
volume equations the constraint is more complicated than in
the linearized case and is described byė / fE0 sinhss / m̄dg
=exps−1/xd,1. A stationary value ofx exists if and only if
the inequality is satisfied. Equivalently, a solution exists if
and only if

FaE0

E1
s sinhSs

m̄
DG1/sk−1d

, 1. s22d

The case of equality in Eq.(22) can be used to define a
critical values*:

aE0

E1
s * sinhSs*

m̄
D = 1. s23d

Then, the validity of Eq.(22) depends on the value ofs
relative tos*. If k,1, s is a decreasing function ofė, and
the condition(22) is met fors.s*, or equivalentlyė,ė*
= ėss* d. If k.1, s is an increasing function ofė, and the
condition(22) is met fors,s*, or ė,ė*. In both cases, as
with the linear equations, there is a limiting driving strain
rate ė* above which the material fluidizes, and(in our
model) the high velocity fixed point is sent to infinity. For
ė.ė*, as the quantityx diverges, the relation between stress
and strain rate reduces to

ė = E0 sinhSs

m̄
D . s24d

Stress appears to be increasing for large values of the strain
rate.

These logarithmic relations between stress and strain rate
are consistent with experimental observations. Specifically,
with the SFA, the stress has been observed to be a decreasing
function of the strain[29,33], consistent with a value of the
parameterk,1. This is based on steady state measurements
covering more than two decades of the rescaled strain rate.
The window of observation for these measurements was lim-
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ited by the range of accessible driving velocities of the ex-
perimental apparatus at high shear rates, and by the emer-
gence of stick-slip at low shear rates[29,33]. No stress
increasing branch is observed at higher shear rate(this could
be due to these experimental limitations). Gourdon and Is-
raelachvili have measured frictional response of the SFA at
different normal loads[33] and shown that Amonton’s law is
satisfied: the friction force is proportional to the normal
force. In the framework of our model, this is consistent with
the assumption that the parameterm̄ is proportional to the
normal stress:m̄=āp. From measurements of the reduced
slope by Gourdon and Israelachvili[33] and Eq. (21) we
estimateāsk−1d /k,−6310−2.

In comparison, dry friction measurements of joint plastic-
ity provide a rather different picture. A decreasing branch of
the stress–strain–rate relation is observed on a small interval
of lower velocities, up to a limit driving velocity of order
1 mm s−1. Above this velocity, stress increases logarithmi-
cally over two decades in the scaled strain rate. There are
two different ways to interpret these data in the framework of
our model.

(i) The increasing branch corresponds to the true steady
state expression(21) for e,e* and k.1, and our model
does not capture the decreasing part.

(ii ) The velocity at which the stress starts to increase with
increasing strain rate corresponds toė*. In this case, the
stress decreasing branch should be fitted with Eq.(21) for
k,1, but the limited range of experimental data does not
provide an accurate estimate of the prefactor in this expres-
sion. The logarithmic stress increase allows us to estimate a
constant in the expression(24).

In either case, the stress increasing branch in experimental
data can be used to extract information about Eq.(21) or Eq.
(24). The slope ofs vs log10 ė in these equations issk
−1dm̄ /k and m̄, respectively. The measured value for this
prefactor is 5310−2s0 [36], wheres0 is a reference stress, of
the order of the loadp̄ sustained by individual joints, which
is of the order of the yield stress of the bulk material[87].

3. Full free-volume and STZ equations

Finally, we explore the steady state stress vs strain rate
relationship using the complete set of equations(7)–(10). In
this case, the steady state relation between stress and strain
rate reads

ė = E0SaE0s

E1
D1/sk−1dFsinhSs

m̄
D −

m0

s
coshSs

m̄
DGk/sk−1d

.

s25d

The complete equations capture the physical phenomena of
jamming(i.e., the absence of flow), which occurs for stresses
smaller than a yield stresssy that satisfies Eq.(11). Other-
wise, the behavior is very similar to our previous results for
the nonlinear free-volume equations. For nonvanishing shear
rates, we can again defines* .sy as the solution of

aE0

E1
Ss * sinhSs*

m̄
D− m0 coshSs*

m̄
DD = 1 s26d

and ė*= ėss* d. Again, for k,1, the stress vs strain rate
relation is decreasing, and fork.1, it is increasing. Again,
the range of strain rates where steady sliding is reached is
bounded byė,ė*. We see from Eq.(25) that the STZ dy-
namics do not significantly change the sliding properties as
soon as the relevant values of the stress are large compared
to sy. This situation is particularly relevant for stick-slip in-
stabilities, which occur fork,1, in the low velocity, large
stress regime.

B. Transient dynamics characterizing the approach
to steady sliding

Next we describe transient effects associated with discrete
jumps in the applied strain rate. Both the initialization of the
system, as well as several common experimental procedures
probing transients under controlled conditions, can be de-
scribed in this general framework. We first consider the ini-
tial, waiting-time-dependent transients associated with start-
ing the system from rest. This is followed by an examination
of the experimental protocol, referred to as stop-start or
slide-hold-slide tests, in which the system is prepared in the
steady state before the waiting time begins. For this analysis,
we will focus on the linear and nonlinear free-volume equa-
tions. Inclusion of the STZ terms does not quantitatively al-
ter the results.

1. Transient dynamics upon start-up

In the absence of forcing,s=0, the linear and nonlinear
free-volume equations are equivalent. From Eq.(10) [or Eq.
(13), or Eq. (15)], the free volumex relaxes to 0. The late
stages of this relaxation(as the waiting timetw, goes to`)
are logarithmic in time:

xstwd .
k

log10sE1twd
. s27d

Simultaneously, as the system becomes increasingly com-
pact, the effective “viscosity”[Eq. (16)] increases:

hstwd ;
1

E0
expF1

x
G .

1

E0
sE1twd1/k. s28d

The immediate consequence of this time-dependent relax-
ation is that the material displays an age-dependent initial
value of the stress when shear is subsequently applied.

This is illustrated in Fig. 1 where we plotx and s as a
function of time, obtained from the integration of Eq.(1)
coupled to Eqs.(12) and (13). Distinct peaks correspond to
samples of different ages at the onset of the applied strain
rate. In every case, the system is initialized att=0 with a
large valuefxst=0d=10g of the free volume. From timet
=0 to t= tw, the free volume relaxes in the absence of applied
shear. At timet= tw, a strain rateė is suddenly applied and
held constant from that time on. For each curve, the value of
tw corresponds to the time when stress begins to ramp up.

The initial increase of the stress is due to the fact thatx
has relaxed to a relatively small value during the waiting
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time, resulting in a high effective viscosity, which resists
rapid deformation of the material. When the stress gets large,
the free volume increases. The system dilates, and the shear
deformation rate increases suddenly, resulting in the ob-
served stress drop.

2. Stiff apparatus

To provide analytical estimates of the age dependence of
the peak stress, we take the limit of an infinitely stiff appa-
ratus,m→`. When a fixed shear rate is imposed after some
waiting time tw, the interfacial material resists with a force
which is an increasing function of agetw. For the linearized
equation(14), the stress upon start-up reads

sstartstwd =
1

E0
sE1twd1/kė. s29d

The response is viscous, with an instantaneous initial viscos-
ity which increases as a power of the waiting time. For the
nonlinear free-volume equations(12), the power-law depen-
dence is replaced by a logarithm. For largetw, the force upon
start-up is

sstartstwd .
m̄

k
log10sE1twd + m̄ log10S ė

E0
D . s30d

This logarithmic dependence is a direct consequence of the
assumption that transformation ratesR± depend exponen-
tially on stress[i.e., are proportional to exps±s / m̄d]. A re-

markable consequence arises from this assumption: the
slopes ofsstart vs log10stwd and s vs log10 ė in steady state
have a ratio given byk−1. Expression(30) is consistent with
experimental observations, although existing SFA data
[29,33] do not present a clear scaling for the long waiting
time behavior of the peak stress. A logarithmic scaling of the
peak stress, however, can be observed in the dry friction
measurement of joint plasticity by Bureauet al. [36]: the
slope ofsstart vs log10stwd is of order 10−3. The ratio of the
slopes ofsstart vs log10stwd and s vs log10 ė in steady state
extracted from their data is consistent withk of order 1,
which is reassuring as this quantity is a ratio of two activa-
tion volumes.

A common observation in both classes of experiments is
that the increase of the peak stress over time depends sensi-
tively on the level of shear stress that is sustained during
aging. With the SFA, the peak stress has been observed to
decrease with increasing stress level[29]. In our framework,
this is consistent with the idea that shear induces some
amount of dilatancy, i.e., of rejuvenation. Sustaining a stress
during the waiting time arises in our model through the term
a E0 exps−1/xds2 in Eq. (10) [or Eq. (13), or Eq.(15)]. For
fixed time and increasing levels of stress, the variablex
reaches larger values than in the absence of stress. Hence the
stress peak is smaller.

In the experiments by Bureauet al. the slope ofsstart vs
log10 stwd increases as the level of shear stress sustained dur-
ing the waiting time is increased. This shear-stress-induced
acceleration of aging dynamics in dry friction experiments
can be understood in two different ways.

(i) Subdominant stress dependencies of the activation vol-
umes,k=v1/v0, may slightly decrease with shear stress. This
would correspond to the idea that shear stress activates the
relaxational dynamics of aging.

(ii ) Since we have no control on the orientation of indi-
vidual asperities in this geometry, part of the shear stress
sustained during the waiting time may be transformed into
normal stress by very small amounts of elastic deformation
or creep, tilting the orientation of joints between individual
asperities. Such a transfer would affect the value of
m̄—which is expected to depend on the normal load—at least
just upon start-up, and hence the value of the peak stress.
The existence of transfers between shear and normal stress
cannot be identified in dry friction measurements. The SFA
could be helpful in separating the different contributions by
studying how aging depends on the normal load.

3. Stop-start tests

The characteristics of glassy materials depend sensitively
on sample age and preparation methods. It is therefore im-
portant to focus on experimental protocols in which the ini-
tial state can be relatively well defined. One common experi-
mental convention which aims to control the initial state
involves starting from steady sliding motion. The initial state
of the material is determined by the driving velocity. In ve-
locity step experiments the drive velocity undergoes discrete
changes from one value to another, and the transient re-
sponse is monitored. This was one of the original protocols
used to investigate the correspondence between rate and state

FIG. 1. Transient dynamics upon start-up from the integration of
Eq. (1) coupled to Eqs.(12) and(13), with E0=E1=a=1. s andm̄
are in units of 106 N/m2; time is made dimensionless by the choice
of E0, E1, anda. From Eq.(18), ė* =1, and the applied strain rate
is ė=0.9. Results fork=0.8 (solid lines) andk=1.2 (dashed lines)
are shown. No stress is applied during the initial density relaxation
of the material fromt=0 to t= tw, marked by the increase of stress.
At tw the strain rate is suddenly applied and the ensuing dynamics
of 1/x (top) ands (bottom) are displayed. Here smaller values ofk
(i.e., k=0.8) lead to a larger value of the dynamical yield strength,
which results from the fact that a smaller value ofx (more compact
state) is reached during the waiting period.
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laws and dry friction experiments[41,42] and was recently
investigated for lubricated contacts[29]. Another protocol,
referred to as stop-start or slide-hold-slide experiments, in-
volves preparing the system in a constant velocity steady
state, then suddenly stopping the drive and letting the system
relax for a timetw, and finally restarting at the initial veloc-
ity. This latter protocol has been studied extensively in
boundary lubrication[5,15,31] and for the plastic response of
single asperities at the contact between rough surfaces[36].

This stop-start protocol grants direct access to the aging
process from a well controlled initial state. Stop-start tests
are depicted in Fig. 2, based on numerical integration of Eqs.
(12) and(13) in the limit of an infinitely stiff apparatus. Here
x ands are plotted as functions of time. The initial value of
x corresponds to the steady state at a given shear rateė
=0.5. When the external drive halts(the “stop” phase), x
relaxes to a smaller value, as the lubricant becomes more
compact. The same shear rate in then suddenly reapplied(the
“start” phase) after different waiting times. In thism→`
limit, ġ= ė, and the stress immediately takes its peak value,
where the position of the peak marks the waiting time for
each curve. After start-up, the free volume increases, due to
the transfer of the work of shear forces into enthalpy. This
results in a decrease of the viscosityh, accompanied by a
decay of the stress with time.

The solid line in Fig. 2 marks the envelope of all response
peaks, and thus defines the peak stress as a function of the
resting time tw. Experimentally, for short waiting times,
Yoshizawa and Israelachvili[15] observed that for certain
lubricants the corresponding curve exhibits a well defined
latency time. That is, there is a threshold in the waiting time,

below which no increase in the stress is observed. For longer
waiting times, Drummond and Israelachvili[29] and Gour-
don and Israelachvili[33] found that the differenceDs be-
tween the peak value of the stress and the steady state value
(the so-called “stiction spike”) increases asDs, log10stwd
for large tw.

Both the short and long time behavior is reproduced by
the nonlinear free-volume equations, as shown in Fig. 3 for
different values of the driving velocity. Note that the latency
time (roughly associated with the rapid rise ofDs) becomes
increasingly sharply defined at high drive velocities. This
follows from the fact that at high velocities, approaching the
limiting shear rateė*, the stationary value of the free volume
is large, and hence free-volume activation factors[which
scale as exps1/xd] are essentially constant. Therefore, the
free volumex nearly decouples from the relation between
stress and strain rate: if the external drive is stopped during a
short time interval,x relaxes, but the changes inx have little
effect on the dynamic viscosityh. When the shear is applied
again, the relation between stress and strain rate is still very
close to steady state, and only a very faint peak is observed.

This effect has dramatic consequences at high shear rates.
For ė.ė*, x is driven toward high values corresponding to a
fluidized state. In our model,x steadily increases at a rateE1.
After stopping the drive, the time required forx to reenter
the aging regime is proportional to the time it was driven out
of equilibrium. This phenomenon should thus result in a la-
tency time which depends linearly on the shearing time prior
to stopping.

This strain dependence of the latency time is a direct con-
sequence of the fact that in our modelx does not saturate in
the limit of high shear rate. However, saturation should arise
from weak density dependence of the constants. Schemati-

FIG. 2. Numerical integration of Eqs.(12) and(13) during stop-
start tests for shear rateġ= ė=0.5. Parameters areE0=E1=a=m
=1, andk=0.8; s and m̄ are in units of 106 N/m2; time is made
dimensionless by the choice ofE0, E1, anda. For each curve, the
applied shear halts for a timetw, after which it is suddenly reap-
plied. The dynamics ofx (top) and s (bottom) are displayed. The
solid lines indicate the relaxation ofx in the absence of shear, and
the value ofs upon start-up. Different line styles are used for dif-
ferent tw.

FIG. 3. Peak stressDs as a function of waiting timetw, from
integration of Eqs.(12) and(13). Parameters areE0=E1=a=m=1,
andk=0.8, whenceė*=1; s andm̄ are in units of 106 N/m2; time
is made dimensionless by the choice ofE0, E1, and a. Different
shear rates have been used:ġ= ė=0.3 (solid line), 0.9 (dotted line),
and 0.99(dashed line). Approachingė*=1, a latency time interval
becomes increasingly well defined, indicating the increasing impor-
tance of free-volume dynamics beyond the smallx domain, where
log-time relaxation of the free volume holds.
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cally, we can see how our picture might be altered by incor-
porating this effect, by adding a constraint thatx cannot
increase beyond a large valuex`@1. At high shear ratex
would ultimately saturate atx`. When the driving is stopped
the time required forx to relax to values of orderk (the
latency time) is of orderx` /E1.

We see here two related yet different types of latency. In
both cases a latency interval emerges due to the weak depen-
dence of the activation factors for large values ofx. For
ė,ė*, x reaches a true steady state. Forė.ė*, x either does
not converge or reaches a very high saturation valuex`. In
all cases, because of the decoupling ofx from the stress-
strain relation, measurements of stress become unreliable to
assert that the system has reached a steady state.x may be
nonstationary. In this case, the latency interval emerging
from this underlying dynamics should depend on the detailed
preparation of the system, in particular on the amount of
shear before stopping.

In experiments, typical values of the latency time are of
order 1 s[15,29,31]. Because the underlying microscopic
time scale parameters in our model are not fixed a priori,
such values can be interpreted in several different ways in
the context of our model.(i) By an appropriate scaling of the
parameters, in particular,E1: scalingE1 translates the curves
horizontally in Fig. 2.(ii ) Because seconds are also the time
necessary to prepare the system in a state believed to be
steady, the latency time may reflect the preparation period,
while the dynamics ofx remain nonstationary.(iii ) Assuming
a saturation valuex` for x would prescribe a latency time
x` /E1, which could be of order seconds. We cannot distin-
guish between these possibilities at the present time. How-
ever, we remark that measurements of latency times are often
accompanied by very large fluctuations[15,29,31]. Our study
suggests that the nonstationary dynamics of an underlying
state variable can be responsible for these fluctuations. If this
is the case, experimental data could be regularized by con-
trolling the amount of shear the system undergoes at a high
velocity, starting from a well controlled initial state—
prepared, for example, by first shearing at a lower velocity.

C. Instability and transition to stick-slip

Here, we show that our constitutive equations not only
account for the existence of stick-slip behavior at low drive
velocity, but reproduce the shape of the stick-slip cycle with
remarkable accuracy. They also account for the existence of
continuous and discontinuous transitions to stick-slip de-
pending on the stiffness of the apparatus, and, in some cases,
chaos in the neighborhood of the transition. For this analysis,
the nonlinear free-volume equations will be sufficient to
characterize the transition from stick-slip to steady sliding
and the nature of the bifurcation. The full set of coupled
constitutive equations, including the STZ, preserve the phase
boundaries described by the free-volume equations. How-
ever, STZ effects(particularly those introducing another di-
mension to the dynamical system) are required to capture
chaotic phenomena.

1. Stick-slip motion: Shape of the pulse

At low drive velocities, and for a sufficiently compliant
apparatus, rather than sliding at constant velocity, the inter-

face exhibits stick-slip motion. We begin our analysis of this
motion by illustrating a typical stick-slip cycle obtained from
numerical integration of Eq.(1) coupled with the constitutive
equations(12) and (13). In Fig. 4 we plot the time series of
x and s during stick-slip. As in the experiments, stick-slip
cycles appear qualitatively similar to stiction peaks. How-
ever, stick-slip arises when the driving motion is constant,
unlike stiction peaks in stop-start tests, which represent tran-
sient responses to time varying slide-hold-slide drivers and
are typically monitored in a regime where the steady state
motion corresponds to constant velocity sliding. Stick-slip
arises due to an internal instability of the material at a given
shear rate. Rather than sliding at that steady rate, the material
alternates between “sticking” and “slipping.” During the
stick phase the free volume decreases to a value that is small
enough to hinder the relative displacement of lubricated sur-
faces, during which time the material creeps at a rate that is
too slow to keep up with the external drive. Consequently,
the stress builds up. When it becomes large enough to trigger
dilatancy, the slip phase begins,x increases suddenly, and
the stress is released during rapid sliding motion.

In Fig. 5 the same data are represented in a plot ofs
versusġ, which compares quite favorably with typical cycles
observed by Drummond and Israelachvili[29].

2. Characterization of the Hopf bifurcation

With decreasing velocity and for a compliant apparatus,
our constitutive equations exhibit a Hopf bifurcation separat-
ing steady sliding from stick-slip dynamics. The locus of
bifurcation points defines a phase boundary in them (stiff-
ness) vs ė (strain rate) plane. A systematic analysis of the
emergence of stick-slip motion is easily performed for the

FIG. 4. Stick-slip dynamics obtained from numerical integration
of Eqs.(1), (12), and(13) for a fixed strain rateė=0.2 and stiffness
m=0.2. Parameters areE0=E1=m̄=a=1, andk=0.8;s andm̄ are in
units of 106 N/m2 time is made dimensionless by the choice ofE0,
E1, anda. The initial value of the free volume isx=1. The regime
of steady plastic deformation is unstable and leads to stick-slip mo-
tion. Fast relaxations of the stress result from sudden dilatancy of
the material.
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stress-linear version of the constitutive equations. The details
are given in the Appendix. The critical stiffness defining the
Hopf bifurcation point for Eqs.(1), (12), and(13) is given by

mHopf =
E1

E0

1 − k

sk + 1d2S aė2

E0E1
Dsk−1d/sk+1d

lnF aė2

E0E1
G2

. s31d

Solving for m as a function ofė, with all other parameters
held fixed, defines the phase boundary in thesm , ėd plane,
below which steady sliding becomes unstable(see Fig. 6).

Our curve exhibits the same convexity as available experi-
mental data[31,47]. Additional experiments are needed to
provide a quantitative experimental characterization of the
curve.

Experimental data also suggest that different types of
transitions between stick-slip and steady sliding are possible.
The transition may be continuous(approaching the phase
boundary the amplitude of stick-slip motion decreases con-
tinuously to zero as drive velocity is increased) or discon-
tinuous (there is an abrupt change from finite amplitude
stick-slip spikes to steady sliding as drive velocity is in-
creased). Continuous transitions correspond to supercritical
Hopf bifurcations, and discontinuous transitions correspond
to subcritical bifurcations. The latter case is typically accom-
panied by hysteresis(i.e., coexistence of stick-slip and steady
sliding, such that a steady decrease in the drive velocity re-
sults in a transition to stick-slip at a lower strain rate than
that associated with the transition to steady sliding associated
with increasing velocity from the stick-slip phase). This fea-
ture is observed in both lubricated friction[31] as well as dry
interfaces. In the latter case it is better characterized[47],
although the physical origin of the similarity(if indeed it
persists upon more detailed experimental investigations) re-
mains unclear. For both cases to date analytical models have
failed to capture the existence of both super- and subcritical
Hopf bifurcations.

The transition point separating super- and subcritical Hopf
bifurcations on the phase boundary in thesm , ėd plane de-
pends on third order terms in a normal expansion of the
dynamical system around the steady state. Therefore, this
property offers a particularly stringent test of the constitutive
equations. We have performed the analysis of the system(1),
(12), and(13). Our analysis defines a point

mcrit =
E1

E0

e−k+Î2−2k+k2

1 − k
sk − Î2 − 2k + k2d2 s32d

on the Hopf line, which is drawn in Fig. 6. Above, and on the
left of this point, the Hopf bifurcation is supercritical(con-
tinuous); below, and on the right of it, the bifurcation is
subcritical(discontinuous).

The shape of the phase boundary as well as the types of
transitions and even their relative placement in the phase
diagram are consistent with current experimental observa-
tions. However, a complete and quantitative characterization
of the phase diagram for boundary lubrication remains an
open challenge experimentally. Overcoming obstacles asso-
ciated with the limited range of stiffness that can be probed
with existing techniques will enable key observations which
can be compared with both the contrasting case of dry fric-
tion experiments and the theoretical results presented here.

D. Chaotic stick-slip

Drummond and Israelachvili[29] observed that in some
cases stick-slip motion became erratic in the neighborhood
of the transition. These authors identified the erratic motion
aschaotic, based on the analysis of experimental time series.
Their results were indeed suggestive of positive Lyapunov
exponents. However, methods to identify chaos based on

FIG. 5. Stick-slip cycle from the data of Fig. 4. Arrows indicate
the direction in which the stick-slip cycle is followed. The ramps on
Fig. 4 correspond here to the increase ofs at vanishingġ. The
plastic strain rate suddenly increases at almost constants before the
friction force starts to decrease.

FIG. 6. Phase diagram for Eqs.(1) and(14), and(15), andk,1,
in the log10 ė−log10 m plane. The dotted line indicates the limit
velocity ė* beyond whichx diverges. The solid and dashed lines
denote the curvemHopf below which steady sliding motion is un-
stable;mHopf vanishes atė= ė*. The solid part of this line corre-
sponds to points where the transition to stick-slip is continuous
(supercritical) while the dashed line corresponds to points where the
transition is discontinuous(subcritical). When the transition is dis-
continuous, there is a zone of bistability, which lies above the
dashed line.
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analysis of an individual experimental time series are neces-
sarily approximate and inconclusive, and alone are insuffi-
cient to guarantee that the erratic motion is chaos as opposed
to some form of noise amplification.

Given these uncertainties, models can play a special role
in helping to differentiate between mechanisms which may
lead to chaos vs other modes of irregular motion. Here we
study the full set of nonlinear constitutive equations(1) and
(7)–(10), which include the STZ state variables. The dimen-
sion of this dynamical system is 3, which is the minimum
requirement for chaos. As shown below, over a restricted
range of parameters, the model admits chaotic solutions,
characterized by irregular stick-slip and positive Lyapunov
exponents. Because these equations are deterministic, noise
amplification is ruled out as a source of irregular motion in
the model.

In order to measure Lyapunov exponents we directly in-
tegrate the equations of motion of a Lyapunov vectorustd in
the tangent space(see, e.g.,[88]). The largest Lyapunov ex-
ponentl is estimated from the long time behavior of the
norm of this vector:

l = lim
t→`

1

t
log10 iustdi. s33d

For this numerical study, we used a fourth order Runge-Kutta
algorithm with fixed and variable time steps. We checked
that the results do not change qualitatively as a function of
the precision of our numerical method, as long as the preci-
sion is sufficiently high.

Figure 7 shows typical traces in the chaotic regime. The
three variabless ,D ,x as well as the value of

lstd ;
1

t
log10 iustdi s34d

are shown. These data illustrate that chaotic stick-slip can
arise in this system. Chaos results from the interplay between
the dynamics of the variableD, which characterizes the an-
isotropy of the molecular packing, and the variablex, which
characterizes the dilatancy of this packing.

Further investigation reveals that the range of parameters
where chaos(i.e., at least one positive Lyapunov exponent)
is observed is restricted to a relatively compact area of them
vs ė phase diagram, which is close to but not overlapping the
transition from stick-slip to steady sliding, in a region near
the critical point separating sub- and supercritical Hopf bi-
furcations. This relatively restricted range is not surprising.
Since chaos requires the dynamical system to be three di-
mensional, it may disappear as soon as one variable is en-
slaved to another. In our case, this decoupling may occur
either when the time scales of the dynamics ofD andx are
well separated from each other or when the absolute value of
D becomes negligible in Eq.(7).

To illustrate the chaotic domain, in Fig. 8 we present a
two-dimensional image illustrating the value of the maxi-
mum Lyapunov exponent as a function of the parametersm
andė. In the grayscale map, negative values of the Lyapunov
exponent appear in dark shades and indicate that the dynam-
ics has reached a stable fixed point. This corresponds to
steady sliding motion at constantx. Such solutions exist be-
tween the Hopf bifurcation and theė= ė* line (recall that, for
ė.ė*, x diverges, and our theory breaks down). In the gray-
scale map, medium gray corresponds to a zero value of the
Lyapunov exponent. The valuel=0 indicates that the dy-
namics reach a time translation invariant manifold. This is

FIG. 7. Chaotic motion:D, x, s, andl are plotted as functions
of time t for Eqs. (1), (7), (8), and (10) for parametersE0=0.5,
E1=1, e0=1, a=2, m0=0.5,m̄=0.5,m=0.14,k=0.8, andė=0.14;s
and m̄ are measured in units of 106 N/m2. The asymptotic limit
reached bylstd is the largest Lyapunov exponent, which is clearly
positive, indicating chaos.

FIG. 8. Two-dimensional plot of the asymptotic Lyapunov ex-
ponent in theflog10sėd , log10smdg plane obtained from numerical
integration of Eqs.(1) and (7)–(10). The grayscale on the right
gives the maximum value of the Lyapunov exponentl, as defined
in Eq. (33). Negative values of the Lyapunov exponent appear in
dark shades: they correspond to steady sliding. The vertical asymp-
tote of the phase boundary as log10smd→−` (i.e., roughly the right
edge of the figure) corresponds toe*. Periodic stick-slip is shown in
medium gray, corresponding to vanishing of the Lyapunov expo-
nent. Chaotic behavior is associated with positive values of the
Lyapunov exponent, which appear here in light shades. Chaotic
regions of stick-slip are separated by windows of periodic motion.
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indicative of stick-slip regimes, which exhibit a periodic
limit cycle. Lighter shades correspond to positive values of
the Lyapunov exponent: for these values of the parameters,
the dynamics is chaotic.

Chaotic motion is associated with positive Lyapunov ex-
ponents which appear as light gray in Fig. 8. They occur
within the stick-slip portion of the phase diagram, near the
transition between super- and subcritical bifurcations. As
shown in the figure, in the model this behavior is clearly
separated from the Hopf boundary by a narrow range of
regular stick-slip. The close proximity of the chaotic zone to
the Hopf bifurcation may explain the fact that experimentally
it appears that, when chaotic stick-slip is observed, it merges
continuously into the Hopf transition. While our equations
predict a regular Hopf bifurcation to periodic stick-slip, with
chaotic stick-slip resulting from secondary instabilities, the
intermediate periodic regime occurs over a sufficiently nar-
row range that it may be difficult to differentiate experimen-
tally between this case and a case in which the Hopf transi-
tion takes place directly via chaotic stick-slip.

V. CONCLUSION

We have shown that a limited set of constitutive equations
capture at least qualitatively a wide variety of phenomena
observed experimentally in single asperity, boundary lubri-
cated friction. Most of the phenomena are captured by the
dynamics of a single state variable identified here as the free
volume. In steady sliding, the free-volume dynamics account
for the existence of velocity-weakening or velocity-
strengthening friction laws, involving mixed power laws and
logarithmic dependences. In stop-start experiments, logarith-
mic increases in the peak stress with increasing hold time
result from the relaxation of the free volume, whereas for
short hold times a latency time emerges from the nonlinear-
ity of the transition rates. The dynamics of the free volume
also accounts for the existence of a transition from steady
sliding to stick-slip as the drive velocity is decreased and for
the presence of both continuous and discontinuous transi-
tions, depending on the stiffness of the driving apparatus.
Finally, the complete set of equations where the free volume
couples to the dynamics of STZs accounts for the emergence
of chaotic behavior close to the stick-slip transition.

Our present work is in sufficiently close qualitative agree-
ment with experiments to warrant a further round of more
quantitative experimental vs theoretical comparisons. Our
work leads to clear predictions for the friction in steady slid-
ing regimes, and the transition to stick-slip as a function of
the compliance. Available experimental data provide steady
sliding friction over a limited range of velocities and a col-
lection of stick-slip cycles at low velocities for a given inter-
facial material, most often for a unique value of the compli-
ance. Available measurements of power-law or logarithmic
relationships between force and driving velocity are not suf-
ficient to validate or invalidate a set of constitutive equa-
tions. In principle, we could attempt to directly fit cyclic
stick-slip data, but in practice this is extremely difficult, re-
quiring additional assumptions about initial values of one or
more internal variables. What information can we thus use to

compare theory and experiments? Compliance is included in
the model at a low cost in terms of the assumptions required,
yet provides a large panel of predictions that magnify the
sensitivities of the constitutive equations and the microscopic
assumptions of the theory. The location of the transition to
stick-slip, its dependence on compliance, and the type of
transitions to stick-slip are important predictions of our
model that present opportunities for more detailed compari-
sons with experimental data. Drummond and Israelachvili
[29] have been able to study transitions to stick-slip for a few
values of the compliance over a limited range. We hope this
initial, exploratory study will be followed by a more com-
plete set of measurements to compare with our predictions.

Recent experimental results by Gourdon and Israelachvili
[33] have focused on the temperature and pressure depen-
dence of the transition to stick-slip. While these variables are
more accessible experimentally than compliance, they
present greater challenges for theory, and cannot be ad-
dressed directly here because temperature and pressure do
not appear explicitly in the constitutive laws we consider.
However, a recent derivation of similar equations[57] pro-
vides theoretical insights into the temperature and pressure
dependence, suggesting future opportunities to extend our
current analysis in this direction.

A quantity that arose in several contexts throughout this
paper was the critical strain rate«̇*, beyond which the value
of x cannot reach steady state. In our equations, above«̇*, x
diverges with time, because the internal(bounded transition
rate) relaxation dynamics cannot keep pace with the rate at
which energy is added to the system. While an actual diver-
gence ofx may be impeded by various physical mechanisms
(which we did not attempt to incorporate), we believe that
the existence of a change of behavior at some high strain rate
is physically meaningful and likely to be an important prop-
erty that is closely related to the existence of a latency time
in stop-start tests. Because transformation rates are bounded,
at high strain rates the underlying state variable is expected
to decouple from the relation between stress and strain rates.
This decoupling has several consequences.(i) Since the
shear rate is only weakly dependent on state variables, and
since it is an increasing function of the stress, velocity
strengthening behavior emerges.(ii ) The state variable is hid-
den, its value cannot be deduced from the relation between
stress and strain rate, and measurements of apparent steady
relationships between stress and strain rate may not corre-
spond to a true steady state.(iii ) The hidden value of the
state variable depends on the strain.(iv) When the deforma-
tion is interrupted, the state variable requires some time be-
fore it reaches a sufficiently low value for it to make a mea-
surable impact that can be probed by the emergence of a
transient peak(i.e., a stiction spike) in stress. In this case, the
latency time becomes a function of the overall strain. If a
high strain rate fixed point is reached by the state variable,
this dependence disappears, and the latency time should de-
pend only on the strain rate. It would therefore be particu-
larly interesting to see whether the underlying dynamics of a
state variable can be probed in experiments close to and
above«̇* and whether it is consistent with either the emer-
gence of a high strain rate fixed point, or with unstationary
dynamics of the state of the lubricated contact. Velocity
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strengthening has not been observed with the SFA, probably
because of intrinsic limits due to the finite scan length.
Therefore, it is likely that the high strain rate regimes we
discuss here cannot be directly accessed with this experimen-
tal setup. However, velocity strengthening has been observed
in numerics[7] and recently in the experiments[36] by Bu-
reau and co-workers. This latter experimental setup is con-
structed to allow sliding over longer distances, and provides
access to higher drive velocities than those available with the
SFA. It thus may present opportunities to probe some phe-
nomena that arise at high velocities.

Finally, we note that the constitutive equations presented
here are derived from heuristic assumptions, which extend
STZ theory to the rearrangements occurring inside the
sheared material in a lubricated contact. Although our ap-
proach is phenomenological, it relies on a specific picture of
the microscopic and mesoscopic mechanisms of deforma-
tion, and thus forms a bridge between macroscopic, empiri-
cal descriptions and a fundamental understanding of the mi-
croscopic physics. The STZ picture of plastic rearrangements
occurring in localized zones is supported by numerical ob-
servations[58]. However, it would be useful to also image
rearrangements in experimental situations. Although the SFA
provides a very well controlled environment at the micro-
scopic level, it seems unlikely that such atomistic imaging of
the lubricant could be performed. Other materials are more
likely candidates for such observations. Indeed, the picture
of elementary rearrangements that emerges here is not lim-
ited to lubricants, but is expected to apply to a wide range of
amorphous materials, in particular colloidal suspensions and
granular materials. Indeed, recent experiments by Gollub and
co-workers have imaged local rearrangements in granular
bead packs forming the interfacial material in friction mea-
surements. These experiments also exhibit stick-slip at low
drive velocities, and a transition to steady sliding as the driv-
ing rate is increased[51–53]. A further theoretical challenge
associated with these measurements arises because slip does
not occur homogeneously in the material, but rather is pri-
marily restricted to a relatively narrow dilating region near
the top of the bead pack. We expect the results presented
here may extend to other types of amorphous materials, but
in situations when strain localization does not preempt the
application of a homogeneous description. Colloids and
granular materials may provide simultaneous access to mac-
roscopic rheological properties and microscopic imaging of
elementary rearrangements.
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APPENDIX: HOPF ANALYSIS

We present here the details of the calculation of the Hopf
bifurcation for the stress-linear free-volume constitutive
equations(14) and(15). The complete dynamics studied can
be rewritten as

ṡ = mSė − E0 expF−
1

x
GsD , sA1d

ẋ = − E1 expF−
k

x
G + aE0 expF−

1

x
Gs2. sA2d

The calculation of the Hopf bifurcation point is straightfor-
ward: it amounts to considering the trace of the Jacobian of
this dynamical system. However, the calculation identifying
the critical Hopf pointmcrit dividing the sub- and supercriti-
cal bifurcation lines requires more lengthy calculations and
benefits from the introduction of simplifying notation. Let us
write the equations as

ṡ = mfė − f1sxdsg, sA3d

ẋ = − f2sxd + af1sxds2, sA4d

and perform the analysis in this more general framework.
The stationary solution is determined by

s2 ; Ssxd =
f2sxd

af1sxd
sA5d

and

ė2 ; Esxd =
f1sxdf2sxd

a
, sA6d

where the functionsE andS have been introduced for future
convenience. In the case of Eqs.(A1) and (A2), these func-
tions are

Esxd =
E0E1

a
expF−

k + 1

x
G sA7d

and

Ssxd =
E1

aE0
expF−

k − 1

x
G . sA8d

The Jacobian of this dynamical system reads

J = S− m f1sxd − m f18sxds
2 s f1sxd − f28sxd + s2 f18sxd

D , sA9d

and around the stationary solution the eigenvalues of the
Jacobian satisfy

l2 + lÎEsxd
Ssxd

fm + a S8sxdg + a m E8sxd = 0. sA10d

The Hopf bifurcation occurs when

m = − aS8sxd sA11d

at any point whereEsxd is strictly increasing. In our case,E
is always an increasing function ofx, andS is a decreasing
function of x if and only if k,1. If S is an increasing func-
tion of xsk.1d—which also means thatS+E−1 is an increas-
ing function ofė, there is no Hopf bifurcation, and the steady
sliding motion is stable. Ifk,1, S is a decreasing function
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of x; for any ė, there is a critical value ofm where the system
undergoes a Hopf bifurcation:

mHopf = − aS8fE−1sė2dg

=
E1

E0

1 − k

sk + 1d2 S aė2

E0E1
Dsk−1d/sk+1d

lnF aė2

E0E1
G2

.

In order to determine the type of Hopf bifurcation(super-
or subcritical), we write our nonlinear system of ordinary
differential equations(ODE’s) in normal form. For this pur-
pose, we look for the linear operatorT which transforms the
Jacobian as

T−1JT= Sr − v

v r
D sA12d

where the eigenvalues of the Jacobian arel±=r± iv. We also
have

r = −
1

2
ÎEsxd

Ssxd
fm + aS8sxdg sA13d

and

v2 = − r2 + am E8sxd. sA14d

The complex eigenvectors associated withl± are

u± = 1−
r ± iv

2aÎEsxd
−

m

2aÎSsxd
1

2 , sA15d

andT is obtained from the real and imaginary parts of these
complex eigenvectors,ur =Resu+d, ui =Imsu+d:

T = sur uid

=1−
1

2a
S m

ÎSsxd
+

r

ÎEsxd
D −

1

2a

v

ÎEsxd
1 0

2
and

T−1 = 1 0 1

− 2a
ÎEsxd

v
−

r

v
−

m

v
ÎEsxd

Ssxd
2 . sA16d

The conditionr=0 determines the Hopf bifurcation, and at
this point the transformationsT andT−1 reduce to

T = 1 S8sxd
2ÎSsxd

−
1

2
Î−

S8sxdE8sxd
Esxd

1 0
2 sA17d

and

T−1 = 1 0 1

2Î−
Esxd

S8sxdE8sxd
−Î−

S8sxdEsxd
SsxdE8sxd

2 .

sA18d

Next, we implement the linear change of variables

Sx

y
D = T−1Ss − s0

x − x0
D , sA19d

which leads to the system of ODE’s

Sẋ

ẏ
D = Sr − v

v r
DSx

y
D + S fsx,yd

gsx,yd
D . sA20d

The stability coefficienta determines whether the bifurcation
is super- or subcritical. In normal form, this coefficient can
be directly obtained from the derivatives of the functionsf
andg:

a =
1

16
sfxxx+ fxyy+ gxxy+ gyyyd +

1

16v
ffxysfxx + fyyd

− gxysgxx + gyyd − fxxgxx + fyygyyg.

We then obtain, at the Hopf bifurcation point,

fxx =
aÎEsxdfS8sxd2 − 2SsxdS9sxdg

2Ssxd3/2 ,

fxy =
aÎ− S8sxdE8sxd

2Esxd
,

fyy = −
aS8sxdE8sxd
2ÎSsxdÎEsxd

,

gxx =
aÎ− S8sxdfE8sxd2 − 2EsxdE9sxdg

2EsxdÎE8sxd
,

gxy = −
aÎEsxdS8sxd2

Ssxd3/2 ,

gyy =
aS8sxdÎ− S8sxdÎE8sxd

2Ssxd
,

fxxx= −
3aÎEsxdS8sxd

4ÎSsxd
SS8sxd

Ssxd
−

E8sxd
Esxd

D
3SS8sxd

Ssxd
− 2

S9sxd
Ssxd

D −
aÎEsxdSs3dsxd

ÎSsxd
,

fxyy=
aS8sxdE8sxdfEsxdS8sxd − SsxdE8sxdg

4Ssxd3/2Esxd3/2 ,

gyyy= 0,
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gxxy=
aS8sxd2fEsxdS8sxd − SsxdE8sxdg

2Ssxd5/2ÎEsxd
,

whence

a =
aÎEsxdS9sxd

32Ssxd1/2 S3
S8sxd
Ssxd

− 3
E8sxd
Esxd

+ 2
E9sxd
E8sxd

− 2
Ss3dsxd
S9sxd

D .

We thus obtain a quite simple condition for the vanishing of
a, which determines the points where the super- or subcriti-
cal character of the Hopf bifurcation changes:

Ss3dsxd
S9sxd

=
1

2
S3S8sxd

Ssxd
−

3E8sxd
Esxd

+
2E9sxd
E8sxd

D . sA21d

With the specific functionsE and S of our current interest,
the parametera reads

a =
1

16x6 expF−
k

x
GE1s1 − kdsk − 1 − 2kx + 2x2d,

sA22d

which admits a single positive zero fork,1:

xcrit =
1

2
sk + Î2 − 2k + k2d. sA23d

This value defines a critical value for the parameterm at the
Hopf bifurcation,

mcrit =
E1

E0

1 − k

xcrit
2 expF1 − k

xcrit
G

=
E1

E0

e−k+Î2−2k+k2

1 − k
sk − Î2 − 2k + k2d2,

and the critical strain rate

ėcrit =ÎE1E0

a
expF−

k + 1

k − 1
sk − Î2 − 2k + k2dG .
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