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We present several methods to improve the resolution of human brain mapping by combining information
obtained from surface electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) of
the same participants performing the same task in separate imaging sessions. As an initial step in our
methods we used independent component analysis (ICA) to obtain task-related sources for both EEG and
fMRI. We then used that information in an integrated cost function that attempts to match both data sources
and trades goodness of fit in one regime for another. We compared the performance and drawbacks of each
method in localizing sources for a dual visual evoked response experiment, and we contrasted the results of
adding fMRI information to simple EEG-only inversion methods. We found that adding fMRI information in a
variety of ways gives superior results to classical minimum norm source estimation. Our findings lead us to
favor a method which attempts to match EEG scalp dynamics along with voxel power obtained from ICA-
processed blood oxygenation level dependent (BOLD) data; this method of joint inversion enables us to treat
the two data sources as symmetrically as possible.

© 2009 Elsevier Inc. All rights reserved.

Introduction

The rapid growth of large-scale, high-precision neuroimaging
technology has allowed the study of cognitive processes formerly only
accessible via behavioral measures. A key question in cognitive
neuroscience is a fundamental one: when and where do task-related
activations in the brain occur? Unfortunately, no single noninvasive
imaging technology is sufficient to fully capture spatiotemporal brain
dynamics on psychologically relevant temporal and spatial scales.
High density surface EEG has millisecond temporal resolution, but it is
based on 100–200 spatially correlated measurements on the scalp.
Complementary to EEG measurements, mapping with fMRI has
millimeter spatial resolution, but the low-pass filtering nature of the
hemodynamic response function (HRF) makes it difficult or impos-
sible to resolve dynamic events separated by less than several
seconds.

Recently there has been increasing interest in combining spatially
resolved BOLD signal measurements from fMRI with temporally
resolved EEG data in order to enhance resolution in both space and

time when trying to understand the neural basis of cognitive
processes. Several methods have been proposed including Bayesian
statistical methods (Phillips et al., 2005) and those based on linear
time-invariant system theory (Liu and He, 2008). Work has also been
done in regularizing magnetoencephalographic (MEG) data using
fMRImeasurements (Liu et al., 1998; Dale et al., 2000). The immediate
challenge with such a joint approach is that the methods yield
fundamentally different measurements in relation to underlying
physiologic processes. A critical first step is to find a modeling
framework that can represent both data types in a complementary
way. In this paper, we do this by first modeling the two datasets with
temporal and spatial ICA. From this a joint optimization that attempts
to fit both EEG and fMRI data simultaneously can be developed.
Independent component analysis (ICA) is a method for so-called blind
source separation, and was originally developed in the context of
speech signals (Jutten and Herault, 1991). ICA has been increasingly
employed in medical imaging (McKeown et al., 1998; Makeig et al.,
1996; Eichele et al., 2009) both for artifact removal in EEG recordings
(Jung et al., 2000; LeVan et al., 2006; Ting et al., 2006) and to try to
separate independent cognitive events. Investigators have used ICA
on both fMRI and EEG data and attempted to combine the resulting
information (Calhoun et al., 2006; Eichele et al., 2009, 2008;
Moosmann et al., 2008). These joint decompositions either used EEG
information from only a single electrode (Calhoun et al., 2006) or used
the joint decomposition to attempt to avoid the EEG inverse problem
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(Moosmann et al., 2008). Additionally, they required truly simulta-
neous EEG and fMRI measurements, which will not be available to all
investigators interested in combining the two imaging modalities.

We employ ICA as well, but emphasize that ICA alone does not
solve the mapping resolution problem. ICA is a very useful data
compression technique and in the context of neuroimaging experi-
ments can be an invaluable “automatic” method for artifact removal
(LeVan et al., 2006; Ting et al., 2006). We use ICA to clean and
compress the data, but additional machinery is required to merge the
two imaging modalities. We present a principled way of performing
this merger, using joint cost functions that simultaneously match both
EEG and fMRI data to obtain fine temporally and spatially resolved
brain maps.

Our approach is to treat the determination of source dynamics
in the brain as a large joint inverse problem; we build on and
expand the work using synthetic data in Brookings et al. (2009).
Sources of electrical activity in the cortex arising as a result of
particular tasks give rise to both EEG signals, via volume conduction
through brain, cerebrospinal fluid, skull, and scalp, and measured
fMRI signals, via the BOLD response. Our methods generate a single
set of dynamic brain sources that best reproduce the observed EEG
and fMRI signals.

The EEG-only inverse problem is highly underdetermined (see
below), and the way in which we should incorporate fMRI
information is unclear. For this reason, we compare and contrast
several different joint inverse problems that incorporate fMRI
measurements in different ways. We consider both quadratic cost
functions, which can be solved with straightforward linear algebraic
techniques, and higher-order cost functions that require iterative
methods.We show promising results for several of these methods in a
dual visual evoked response experiment with human participants. We
argue that experimental design and study goals are important
considerations when deciding how to fuse EEG and fMRI to obtain
high-resolution human brain maps.

Materials and methods

The data processing pipeline for joint inversion is illustrated
schematically in Fig. 1. The steps in this pipeline are discussed in more
detail in the following sections.

Experimental design

Participants
Twenty volunteers (five female) participated in the present study

involving EEG, fMRI, or both. All were right-handed by the Edinburgh
Handedness Inventory (Oldfield, 1971) and had normal or corrected-
to-normal visual acuity. None had any prior or current neurological or
psychiatric impairment, as ascertained by a detailed anamnesis. Mean
age of participants was 24 years (range 18–44 years). Here we focus
on data from four volunteers of the groupwhowere studied with both
EEG and fMRI. Prior to participation, volunteers provided written
informed consent that had been approved by the Ethical Committee of
the University of California, Santa Barbara.

Task and procedure
Participants observed a pair of static images obtained from videos

of hands interacting with objects (see Fig. 2). In the first frame, an
object was shown (a coffeemaker, a cup, cookies, etc.). This was
followed by a second frame showing a hand grasping the same object
or touching it. There were two types of familiar/meaningful grasping
actions and the touching action. For the purpose of this experiment
the different types of actions were collapsed into one sample. The
presentation of the pairs of stimuli was interspersed with periods of
blank screen including a fixation cross. Experimental blocks were
intermixed for every participant.

Every trial consisted of the following sequence: a 150 ms fixation
cross, a 500 ms single object, and a 2000 ms hand-on-object action.
The same design was used in EEG and fMRI experiments. For the EEG
experiment, intertrial interval (ITI) varied in 100 ms random
increments from 1000 to 2000 ms. For the fMRI experiment, ITI
varied from 2000 to 6000 ms in 2000 ms random increments. The
stimulus presentation used a discrete trial procedure so that the
temporal gap between the first and the second image of a video-clip
was very short (one refreshed screen) in order to simulate a
continuous image sequence that created a percept of an action.

Participants received explicit instructions to observe carefully all
the stimuli, and to try to decode why a familiar/meaningful action
was performed (modified version of the intention inference task;
Ortigue et al., 2009). In order to avoid any saccadic movements,
participants were asked to fixate on a central visual cross during the
whole experiment. Before recording, every participant was familiar-
ized with all actions for 3 min.

For the EEG study, visual stimuli were presented on a PC computer
using Cogent 2000 (http://www.vislab.ucl.ac.uk/Cogent2000/index.
html) running in Matlab 7.0.1 under Windows XP, which provides
control of display durations and accurate recordings of reaction times.
Participants were comfortably seated 150 cm away from a PC
computer screen in which video clips were presented centrally. A
total of five experimental blocks were presented throughout the
whole experimental session. A total of 240 trials were administered
which took up to a total of 40 min including breaks between each
block.

During the fMRI recordings, visual stimuli were back-projected
onto a screen at the head of the scanner bore by a standard LCD
projector; participants viewed the screen using a mirror mounted on
the head coil. Stimulus presentation was controlled with Psychtool-
box and Matlab 7.4.0 (R2007a) running on the Mac OS X platform.
Functional images were collected in four discrete runs of 90 images
each.

EEG data collection and preprocessing
Continuous surface electroencephalogram (EEG) was recorded

from 128 AgCl carbon-fiber coated electrodes using an Electric
Geodesic Sensor Net (GSN300; Electrical Geodesic, Inc., Oregon;
http://www.egi.com/), where EEG electrodes are arrayed in a regular
distribution across the head surface and the inter-sensor distance is
approximately 3 cm. The EEG was digitized at 500 Hz (corresponding
to a sample bin of 2 ms), band-width of 0.01–200 Hz, with the vertex
electrode (Cz) serving as an on-line recording reference. Impedances
were kept below 50 k. Data logging were via NetStation Recorder.
Data were collected in multiple sessions with brief intervening rest
periods for the participant. Before ICA was performed, each electrode
was linearly detrended, the multiple sessions were concatenated, and
the data were band pass filtered between 1 and 30 Hz.

Magnetic resonance imaging recordings and preprocessing
Both functional and electrical neuroimaging was conducted at the

UCSB Brain Imaging Center. fMRI recordings were conducted using a
3T TIM Trio Siemens Magnetomwith a 12 channel phased-array head
coil. Foam paddingwas used for head stabilization. For each functional
run, an echo planar gradient-echo imaging sequence sensitive to
BOLD contrast was used to acquire 33 slices per repetition time (TR)
(3mm thickness, 0.5mmgap), with a TR of 2000ms, echo time (TE) of
30 ms, flip angle of 90°, field of view (FOV) of 192 mm, and 64×64
matrix. Before all the functional runs, a high-resolution T1-weighted
mprage sequence image of the whole brain was acquired
(TR=2300 ms; TE=2.98 ms; flip angle=9°, 3-D acquisition,
FOV=256 mm; slice thickness=1.1 mm, matrix=256×256).

Initial data processing was performed with SPM 5.0 (http://www.
fil.ion.ucl.ac.uk/spm/). fMRI image volumeswere slice time corrected,
motion corrected, unwarped, spatially normalized to the Montreal
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152 Average T1 atlas, and resliced to 3 mm × 3 mm × 3 mm voxel
sizes. Each voxel in every imaging session was linearly detrended and
then the sessions were concatenated; these steps occurred after all
SPM preprocessing. The high-resolution anatomical MRI was seg-
mented into gray and white matter, warped to the 152 T1 atlas, and
resliced to 3mm× 3mm× 3mmvoxel sizes in order to obtain a set of
potential solution points. No spatial smoothing was performed on the
functional images.

Independent component analysis
Independent component analysis was performed on both the EEG

data and the fMRI data, in each case using projection pursuit as
implemented in FastICA (Hyvarinen and Oja, 1997, 2000). Our
decompositions are similar in spirit to those used by other
investigators (Jung et al., 2001; McKeown et al., 1998) and we
employ both temporal and spatial ICA (Makeig et al., 1996;Hyvarinen

and Oja, 2000; McKeown et al., 1998; Stone, 2004). In the case of EEG
data, the ICA decomposition is

E = As ð1Þ

where each row of E is the time series of one electrode; we
decomposed the full experimental session before doing any epoching
or averaging. In our notation A is the mixing matrix and s is the matrix
of statistically independent sources; there need not be as many
sources as electrodes, but we attempted to extract as many sources
as possible, up to the number of electrodes. This is temporal ICA;
the statistically independent sources that are extracted are time
series. The rows of s are the independent sources that mix to give
the EEG data, and the columns of A give the so-called scalp maps,
which represent the degree to which a source is present in each
electrode.

Fig. 1. Box diagram illustrating data pipeline steps leading to joint inversion. Consult theMaterials andmethods section for further details on these processing steps and the methods
used in joint inversion.
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Fig. 2. Stimulus presentation for the dual visual evoked response experiment discussed in this manuscript.

Fig. 3. Example of task- and nontask-related sources obtained from full-session ICA of human evoked visual response data (see Materials and methods). For both sources, we show a
raster plot of the source, aligned with respect to stimulus presentation, and a Lambert equal-area polar projection of a spherical fit to electrode locations displaying the scalp map,
obtained from the ICA mixing matrix (see Eq. 1). A solid black line is drawn in the scalp map to represent the equator of the fitting sphere. Stimuli were presented at−0.5 s and 0 s
and are marked by the heavy black arrows in the raster plot. Anterior and posterior electrodes are indicated. In all panels red corresponds to positive and blue to negative. The left
panel (A) shows a task-related component. There is strong trial-to-trial synchronization in the raster plot following stimulus presentation, and the scalp map is quite dipolar. The
right panel (B) shows an artifactual or noise component; there is little consistency across trials, and the source has nothing to do with the stimulus. The scalp map is also quite
unphysical; a few electrodes have large positive loading, but even their nearest neighbors show no activity or activity of the opposite sign rather than a smooth transition between
positive and negative loading. We included the source in (A) and excluded the source in (B) in our analysis.
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Weuse spatial ICA on the fMRI data;wewrite the decomposition as

FT = DS ð2Þ

FT is a matrix with the same number of rows as there are fMRI image
volumes, and it has as many columns as there are voxels. Here, the
sources S are independent spatial maps, and the corresponding
column of D gives temporal variation of a map. In this case the sources
S are statistically independent maps, not time series as in the EEG case
(Stone, 2004).

Obtaining task-related sources

Many of the sources returned by both temporal and spatial ICA
have nothing to do with the task; hence we must sift through the
components to discover those that have something to do with the
task. In the EEG case, we selected components by hand, as illustrated
in Fig. 3. For each source (row of s in Eq. 1) returned by temporal ICA,
we constructed an epoched raster plot, seen in the top row of Fig. 3.
We also considered the corresponding scalp map (column of A in Eq.
1), shown in the bottom row of Fig. 3. Task-relevant sources showed
strong vertical banding in the raster plot and a generally smooth scalp
map. In Fig. 3, the source shown in panel A has these properties and
that in panel B does not. All task-relevant sources—those that look
like the source in panel A of Fig. 3—were chosen when rebuilding the
EEG data (see below). Sources like those in panel B of Fig. 3 were not
used as temporal basis functions in joint inversion and were not
included in stimulus-locked time-averaged EEG data. The process of

source selection could be made more quantitative and automatic, and
we are currently working on metrics for picking EEG sources that
would make the process more similar to our process for picking fMRI
sources.

The selection of fMRI components was more automatic. A stimulus
function f (t), having the value 1 if an image was presented that TR
and zero otherwise, was constructed and its correlation with D(t) (see
Eq. 2) was calculated for positive and negative lags between−20 and
20 s

C τð Þ = bD tð Þf t + τð ÞNt ð3Þ

The use of a lagged correlation in this case reflects the expected
hemodynamic lag. The stimulus function was then randomly
permuted 1000 times and lagged correlations recomputed; this
gave a mean noise correlation and its standard deviation (denoted
by the dotted blue lines in Fig. 4). Any component that showed
above-noise correlations at negative lags, corresponding to the
response following the stimulus, was then selected as task-related. In
all cases for both fMRI and EEG data, the number of task-related
sources was much smaller than the total number extracted (a few as
opposed to hundreds), so ICA served as a useful data compression
technique.

Epoching and basis function calculation

We used information obtained from ICA of EEG and fMRI data as
follows, discussing the process for EEG data first. Supposing we found

Fig. 4. Example of task and nontask-related sources obtained from full-session ICA of fMRI of human evoked visual response data (see Materials and methods). For each source we
show a representative slice from the full spatial source, which extends to all gray and white matter voxels. We also show the lagged correlation of the temporal activity of that source
—obtained from the mixing matrix (see Eq. 2)—with a binary function encoding stimulus presentation. In the correlation plot, positive lags correspond to fMRI activity leading image
presentation and negative lags correspond to activity following presentation. The dotted blue lines give a significance level for the stimulus correlation, computed as described in
Materials and methods. The left panel (A) shows a task-related component. Notice the head map has contiguous areas of strong activity, particularly near the rear of the head, as we
expect for visual stimuli. The lagged correlation plot shows a strong correlation at 6–8 s after stimulus presentation. The right panel (B) displays a noise component; the head map
looks essentially random, and there is no significant correlation with the stimulus at any lag. We included the source in (A) and excluded the source in (B) in our analysis.
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m task-related sources, labeled {1,2,…,m}, we reconstructed the EEG
voltage data as follows:

Ẽ = AT
1 AT

2 N AT
m

h i s1
s2
v
sm

2
664

3
775 ð4Þ

The s variables are row vectors of the task-related sources, and the AT

are column vectors of the corresponding scalp maps (stored in the
matrix A, see Eq. 1). This operation gives a datamatrix of the same size
as E, but with artifacts and task-unrelated activity removed. To obtain
the voltage matrix V which we used in all subsequent inverse
methods, we then time-averaged E ̃ locked to the stimulus of interest.
This produced a matrix V with as many rows as there are electrodes,
and as many columns as there are time samples in the size of the
epoch we have chosen for averaging. For example, there would be
1000 time samples in 2 s of 500 Hz EEG data.

To obtain the matrix of basis functions ɛ used below (see the
Inversion algorithms section), we time averaged the components si,
locked to stimulus presentation, and then low-pass filtered themwith
a filter width of 32 ms. This process ensures that we will avoid
overfitting the noise in the EEG data; a linear combination of the
smoothed sources cannot perfectly fit the data in V, whereas a direct
ICA decomposition of V could reconstruct V with zero error. Our low-
pass filter is one commonly used in geophysical research (Flagg et al.,
1976; Limeburner et al., 1983); it attempts to balance frequency
ringing from filters of finite (temporal) support with the reduction in
peak amplitudes from infinite (temporal) support filters. For a width
of τc=1/fc, the filter equation is

f tð Þ = 2sin 2πfctð Þ− sin πfctð Þ− sin 3πfctð Þ
π2f 2c t

3 ð5Þ

Simpler filters like Gaussian (infinite support) and Epanechikov
(quadratic, finite support), applied with the same cutoff, give virtually
indistinguishable final results.

Rebuilding the fMRI data proceeded in a manner very similar to
that for EEG data; the task-related bold data F ̃ was built from task-
related fMRI components as in Eq. (4), using the appropriate rows and
columns of the D and S matrices in Eq. 2. Explicitly, if there were n
task-related fMRI sources, labeled {1,2,…,n} we computed

F̃T = DT
1 DT

2 DT
n

h i S1
S2
v
Sn

2
664

3
775 ð6Þ

This data was then time averaged, again locked to stimulus, to obtain a
matrix of BOLD data B. The matrix B has as many rows as there are
fMRI voxels and as many columns as there are time samples in the
epoch chosen for averaging (360 columns for this experiment). We
also use the fMRI components to compute a set of spatial weights w,
sometimes arranged for convenience in a diagonal matrix W (with w
on the diagonal). To construct w we found all the spatial maps
carrying task-related information and then formed w =

Pn
j = 1 jSj j .

We subsequently normalized w so that its largest element equals
unity. As we will soon show (“Inversion algorithms,” below), we
sometimes use w in our joint inversion methods and sometimes B.
When employing w, we are ignoring any voxelwise temporal
information from fMRI and using only the spatial map of task-related
activity. When we incorporate fMRI data as, B we are including the
temporal dynamics of each voxel, and are hence trying to fit not only a
spatial activity map but the fMRI dynamics at the voxel level.

There is a symmetry in the way the fMRI and EEG results are
treated; in each case the mixing elements were used in selecting task-
related components, but then that information was discarded, and

only the sources were kept. In the case of fMRI, all task-related sources
were collapsed into one vector w, rather than maintaining them
separately as in the EEG case. If the experiment were truly recorded
simultaneously (EEGmeasurements inside an MRI scanner) we might
be able to associate EEG sources with fMRI sources, but we have no
confidence in our ability to do so when the imaging is performed in
separate sessions, nor do we necessarily expect such a correspon-
dence in this situation.

Lead field calculation

Electrode locations were measured using an infrared tracking
system (Northern Digital), and put in registry with the participant's
structural MRI by using anatomical fiducials also measured with the
TMS tracker (outer canthus of the eyes and the tip of the nose). These
electrode positionswere thenwarped into template coordinates using
SPM 5, and the subsequent warped positions used for all subjects.
Three-shell spherical lead fields were calculated using Berg's method
(Berg and Scherg, 1994), employing the BrainStorm toolbox for
MATLAB (http://neuroimage.usc.edu/brainstorm/). Each shell was
assumed to have a different isotropic, uniform conductance. Gain
matrices obtained from lead field calculation were depth weighted
(using electrode power) to discount superficial sources (Kohler et al.,
1996).

A subset of gray matter voxels obtained from anatomical image
segmentation was chosen to be solution points. Only voxels with gray
matter intensity above a threshold of 75% of maximum were chosen,
in order to restrict the size of the solution grid. The size of the solution
grid was further decreased by selecting a desired number at random.
Dipole orientations were chosen to be radially outward from the
center of the head; hence all solution methods yield a scalar (rather
than a three-component vector) at each solution point, and the lead
field gain matrix reflected this choice of dipole orientation.

Inversion algorithms

Inferring which sources in the brain produced measured EEG
signals is a problem from classical electrodynamics; we wish to obtain
the dynamic charge distribution in the interior of a set of roughly
spherical conducting shells using only measurements on the surface
of the outermost shell. Given that classical electrodynamics is a well-
understood theory, this seems straightforward but is hardly so. One
can represent the forward problem as

V = GX ð7Þ

where V is the matrix of electrode voltages (all electrodes, all times),
G is the linear Green's function which propagates the interior sources
to the scalp, taking account of geometry and material properties of
cortex, cerebrospinal fluid, skull, and scalp, and X is the desired matrix
of sources (Hallez et al., 2007).

Formulated as a least-squares problem, the desired matrix of
sources minimizes the following cost function:

fEEG Xð Þ = 1
2
Tr V−GXð ÞT V − GXð Þ
n o

ð8Þ

G has a huge null space; we would like source information over the
entire cortex—tens of thousands of locations, depending on desired
resolution—at all times, but given typical EEG electrode montages we
have atmost around 200 correlated spatialmeasurements to constrain
the solution. While anatomical information (Phillips et al., 2002) or
careful consideration of the types of bulk currents that produce EEG
signals (de Peralta Menendez et al., 2000) can further constrain the
problem, all EEG-only mapping methods must eventually impose
regularization constraints to give a unique X. These constraints are
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usually chosen to impose desirable properties on the solution, like that
it be of minimum norm (Hämäläinen and Ilmoniemi, 1994) or
maximum smoothness (Pascual-Marqui et al., 1994), or have a
particular covariance structure (Sekihara et al., 2001). For a recent
review of EEG-only source localization see Grech et al. (2008).

We incorporate fMRI information because it has complementary
strengths and weaknesses to EEG; it has high spatial resolution but
very poor temporal resolution, on the order of several seconds. The
single term in Eq. 8 fits only the observed EEG electrode voltages V,
and we will always represent the EEG portion of the cost function this
way. In order to incorporate fMRI information we will modify the cost
function in Eq. 8 by adding terms constructed to fit fMRI data. There
are many ways to do this, and comparing and contrasting some of
them are the focus of the rest of this manuscript.

We summarize the joint cost function approach with the following
“master” cost function, which we wish to minimize:

C Xð Þ = 1
2
Tr V−GXð ÞTΣ−1

V V − GXð Þ
n o

+
μ1

2
ffMRI Xð Þ + μ2

2
fR Xð Þ ð9Þ

The first term represents the fit to the EEG data V, and it is identical to
Eq. 8 except for the addition of ΣV, discussed below. The second term
is the fit to fMRI data, and the third is a regularizing term. These final
two terms are written less explicitly than the EEG term because they
will have different representations in different joint inversion
methods. However, whatever form fR(X) and ffMRI(X) take, both
must be a function of the brain sources X (these are not the ICA
sources) in order to relate the two imaging modalities and best
constrain the parameters X using all available experimental
measurements.

ΣV is the electrode–electrode covariance matrix. Scaling by this
matrix serves two purposes; the off-diagonal elements ensure that we
do not overweight correlated data points, and the on-diagonal terms
ensure the relative contributions to the cost function of terms with
very different units are similar. We use the full-session EEG data,
before epoching and averaging but after filtering/rebuilding by ICA
(Eq. 4), to compute the electrode–electrode covariances in ΣV. The
parameters μ1 and μ2 control the relative weights of the various
terms; we include them for completeness, but we generally only
consider equal weighting (μ1=μ2=1) in this manuscript. Detailed
descriptions of eachmethod follow, and a table summarizes them (see
Table 1).

Minimum Norm (MN)
Minimum norm is a well-known method for regularizing under-

determined least-squares problems (Wunsch, 1996). It is a widely
used method to solve the EEG-only source localization problem
(Hämäläinen and Ilmoniemi, 1994). Minimum norm simply seeks a
solution in which the source matrix X is as small as possible, in the
sense of having minimum L2 norm. The second term in Eq. 9 is not
present, and the regularization term becomes

fR Xð Þ = Tr XTX
n o

ð10Þ

which is the correct expression for the sum of the squares of the
elements of thematrix X. Despite, or perhaps because of, its simplicity,
some investigators continue to argue for the use of minimum norm
estimation (Hauk, 2004).

ICA Only (ICAO)
This is a modification of the minimum norm procedure. Instead of

solving for the full matrix X, which has row dimension equal to the
number of fMRI voxels and time dimension equal to the number of

sampled EEG voltages, we posit that all source activities can be
written as a linear combination of our previously described ICA-
derived EEG basis functions, where

X = αe ð11Þ

with ɛ the averaged, smoothed, task-related EEG sources and α a
matrix whose column dimension is much smaller than the number of
times at which EEG data is collected. We refer to α as the loadings, as
they are static spatial weights. The temporal dynamics of the solution
are contained in ɛ. In any method employing this decomposition, all
the functions in Eq. 9 become functions of α instead of X.

The first term in Eq. 9 may be written as

fEEG αð Þ = 1
2
Tr V−Gαeð ÞTΣ−1

V V − Gαeð Þ
n o

ð12Þ

This equation is implemented here and in all subsequent methods
which use ICA decomposition of the source activity. The regularization
term in this case may be written as fR(α)=Tr{αTα}; it is minimum
norm regularization but on the reduced rank representation α rather
than X. We potentially gain something with this technique even
though it is still EEG only; the use of ICA to generate a set of
independent basis functions allows us to spatially separate the
dynamics of independent cognitive processes, insofar as ICA is able
to detect them in the EEG data. We also reduce the number of
parameters we need to determine by a factor of 100 or more—the
column dimension of α is of order 10, rather than 103 as with X.

W-scaled Gain Matrix (WGM)
In this method, we column-scale the lead field by the diagonal

matrixW obtained from ICA of fMRI. This has the effect of suppressing
solution intensity from solution points where no significant task-
related fMRI activity was found. Mathematically, there is still no direct
fMRI term, but a modified gain matrix G̃=GW is used for inversion.
Replacing G by G̃ in Eq. 12 gives the EEG fitting term for this method.
We again include a minimum norm term on α, so fR(α)=Tr{αTα}.

Table 1
A summary and quick reference for the inverse methods and their abbreviations used in
the manuscript and figures; for each method, information about each of the three terms
in Eq. 9 is given, along with the parameters determined in each optimization.

Method name
(abbreviation)

Parameters f
EEG

f
fMRI

f
R

Minimum
Norm (MN)

X (∼107) Full
solution
matrix

None L2 norm on X

ICA Only (ICAO) α (∼105) Loadings None L2 norm on α
W-scaled Gain
Matrix (WGM)

α Loadings, G
scaled by
fMRI

None L2 norm on α

W2-regularized
ICA (W2ICA)

α Loadings None L2 norm of
fMRI-scaled
solution

W1-regularized
ICA (W1ICA)

α loadings None L1 norm of
fMRI-scaled
solution

Power
Constrained
(PowR)

α, scalar λ Loadings Solution power fit to
fMRI power at each
voxel

None

Model Reduced
Joint Inverse
(MRJI)

α, scalars
λ, κ

Loadings fMRI dynamics fit to
balloon model basis
β

None

G is the lead field matrix (see Eq. 7). X and α (see Eq. 11) both have a number of rows
equal to the number of MRI voxels used in performing the joint inverse. X has a number
of columns equal to the number of EEG sampling times, and α has a number of columns
equal to the number of task-related sources in the EEG data. In calculating order-of-
magnitude sizes for X and αwe have assumed a solution grid of size 10000 voxels, 1000
EEG sampling times, and 10 task-related EEG sources.
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W2-regularized ICA (W2ICA)
This method still has no direct fMRI term; fMRI information is

included in the regularization term. The form of the third term in
Eq. 9 is

fR αð Þ = Tr αTW−1α
n o

ð13Þ

To understand the purpose of this term, note that it is similar to the
minimum norm constraint in Eq. 10 except that the loadings α
(rather than the full source activity) are being constrained and W−1

is present. Multiplication by W−1 has the effect of increasing the
penalty term for solution points which show little task-related
activity (small Wii, hence large 1/Wii). The less fMRI activity found
at a solution point, the bigger a penalty this term introduces, and
hence the more its activity will be suppressed in the inverse
solution.

We should note here that ICAO,W2ICA, andWGM are all members
of a family of cost functions; they all can be thought of as having an
EEG fitting term like that in Eq. 12, and a regularizing term

fR αð Þ = Tr αTW−pα
n o

: ð14Þ

ICAO has p=0 (thereby completely ignoringW), since its regularizing
term is Tr{αTα}. For WGM, the transformation α→Wα yields an EEG
fitting term identical to Eq. 12 but with a regularizing term of Tr{αTW
−2α}. As p gets larger, the solution is penalized more heavily for
placing solution power at voxels where fMRI activity is small; as p→∞
only the single most active fMRI voxel would be allowed to have
solution activity. Hence, WGM forces more stringent correspondence
with fMRI activity thanW2ICA. (We thank an anonymous reviewer for
pointing out this correspondence.)

W1-regularized ICA (W1ICA)
This method is very similar to W2ICA except for the form of the

regularization term

fR αð Þ = jW−1α j ð15Þ

which uses the L1 norm rather than L2. The L1 norm has been used
with great success in many regularized optimization problems, and in
Bayesian statistical problems would correspond to a Laplacian rather
than the more common Gaussian prior.

Operationally, the L1 norm is often used for finding sparse
solutions to inverse problems because the force on the parameters
(derivative of the cost function) coming from the regularization term
is constant rather than linear with X as in the L2 case. No matter how
small a parameter becomes, the L1 term continues to push it towards
zero until it is identically zero. L2 terms become less and less
effective as the parameters shrink, so it is difficult to obtain truly
sparse solutions with them. Solving this optimization problem
requires an iterative (though deterministic) algorithm for a matrix
of parameters based on that previously described for a vector of
parameters (Alliney and Ruzinsky, 1994). At a significant memory
cost this minimization problem can also be formulated as a quadratic
program. For recent applications of L1 regularization in solving the
EEG/MEG-only source localization problem, see Huang et al. (2006)
and Ou et al. (2009).

Power Constrained (PowR)
This is the first of two methods which explicitly fit fMRI data,

utilizing the second term in Eq. 9. This fMRI fitting term takes the form

ffMRI αð Þ = 1
σ2

P

λP−P αð Þð ÞT λP − P αð Þð Þ ð16Þ

The vector P is the observed fMRI signal power at each solution
point; its ith element is computed from the reconstructed BOLD data
B as

Pi =
X
t

B2
it ð17Þ

P(α) is the calculated solution power, which for parameters α is

Pi αð Þ = αCαT
h i

ii
ð18Þ

where C=ɛɛT. The matrix C would be diagonal if ɛ came directly
from ICA of the averaged EEG data (due to independence of the
components), but our full-session EEG ICA and smoothing process
introduces off-diagonal elements. The number σP

2 is the variance of
the distribution of voxel power, which gives an appropriate scaling
for the fMRI term relative to the EEG fitting term. The scalar λ
absorbs the unknown conversion between BOLD units and solution
intensity (essentially local field potential); it can be computed by
setting ∂C/∂λ=0 and does not require a separate minimization
step.

We seek to match scalp dynamics via EEG, and dynamics in the
bulk brain by comparing solution power to observed voxel power
from fMRI measurements. This algorithm must be solved via an
iterativemethod; we useMøller's scaled conjugate gradient algorithm
(Møller, 1993). While the cost is no longer simply quadratic, it is not
highly nonlinear—merely quartic. Also, an analytical gradient is
available making derivative-based methods accurate and easy to
implement.

Model Reduced Joint Inverse (MRJI)
This method is described in more detail elsewhere (Brookings et

al., 2009), but we summarize it here. The cost function contains both
EEG and fMRI terms and is

C α;λ; κð Þ = 1
2
Tr V−Gαeð ÞT V − Gαeð Þ
n o

+
g
2
Tr λB + κ−αβð ÞT λB + κ − αβð Þ
n o

ð19Þ

This is the entire cost function; it replaces the first two terms of Eq. 9
and contains no third fR(α) term. The goal is to treat fMRI and EEG as
symmetrically as possible; both types of data are fit to dynamical
models. β=β(ɛ) is a matrix of fMRI sources, analogous to the EEG
sources. These are obtained by feeding each EEG source (row of ɛ)
into a balloon-type (Buxton et al., 1998) model for BOLD dynamics
(Robinson et al., 2006). The β act as basis functions for attempting to
fit the BOLD activity B in theway ɛ are used to fit the EEG dynamics. So
in the same way that we assume the local source activity can, via
propagation of the lead field, describe measured EEG voltage, we
assume that fMRI activity can be written as a linear combination of
fMRI basis functions, corresponding to computed BOLD responses to
the sources ɛ.

The details of the solution in this case and the performance of the
method on synthetic data are contained in Brookings et al. (2009).
This cost function is entirely quadratic in the parameters (λ, α and κ)
allowing us to find a (global) minimum using only linear algebra. g is a
gain term that attempts to make the EEG and fMRI terms in the cost
function of the same magnitude; we use the ratio of the average
electrode variance to the average voxel variance. Note there is no
covariance weighting in the function; see the Discussion section for
further comments on this issue.

Considered in total, the inversion methods detailed above form a
sort of hierarchy. ICAO attempts to improve on MN by employing a
reduced rank representation for the parameters (α rather than X).
WGM and W2ICA both incorporate fMRI information as an L2
regularizing term, but WGM imposes a stricter correspondence with
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fMRI activity. W1ICA uses an L1 regularizing term, in an effort to force
voxels with very small solution activity to zero activity. PowR and
MRJI fit successivelymore of the fMRI dynamics, withMRJI attempting
to fit the dynamical data for voxels (fMRI) as well as electrodes (EEG).

Results

In this section we compare results for the inversion methods
described above. We have chosen the visual evoked response to test
our methods because it generates a strong cortical signal and much is
already known about its dynamics and localization. To wit, we expect
up to three visual evoked potentials—an early peak and a late single or
double peak—appearing in the occipital cortex due to a visual
stimulus. The reader should keep this in mind when considering the
results presented below.

Figs. 3 and 4 show implementation of ICA on full-session human
EEG (Fig. 3) and fMRI (Fig. 4) data and give examples of which
components were included in mapping and which were not. These
figures are discussed in detail in the “Materials and methods” section
andwe refer the reader to that section for details about our filtering by
ICA.

Figs. 5–7 show the results of the inversion methods described in
Materials and methods for the evoked visual response data. Fig. 5
shows a set of summary plots for each algorithm, for one of the four
participants shown in Fig. 7. Identical information for the other
three participants is shown in three supplemental figures. The first
panel indicates the ability of each inversion method to reproduce
observed EEG voltages; hence rows of the matrix V are plotted
simultaneously with rows of the matrix GX (for the MN method) or
the matrix Gαɛ (for all other methods, see Eqs. 8 and 11). The second
panel shows the agreement between observed fMRI activity, in the
form of the weight vector w obtained from ICA of the BOLD data, and
the square root of P(α), the power computed at each solution voxel
(see Eq. 18).

For the MN method, X is not decomposed as in Eq. 11, so the
solution power in this one case is computed exactly as in Eq. 17,
except with the matrix X in the place of B. The final panel shows a
representative slice with solution power superimposed on subject
anatomy. The size of each circle corresponds to solution power at that
voxel, and voxels with very little solution power have been omitted
for the sake of clarity. These anatomical plots indicate if significant
solution power has been placed in physiologically reasonable
locations. In our subsequent discussion we focus on Fig. 5 as
exemplary, but our statements about method performance are
consistent across the four participants (see supplemental figures).

There are several notable features of Fig. 5. First, by scanning the
first column one can see that all the inversion methods used fit the
EEG data quite well. This is true for the entire head and not just
representative electrodes. One can obtain a global goodness of EEG fit
by looking at the EEG portion of the cost function at the best
parameters. The MRJI fits almost perfectly due to lack of covariance
weighting in the EEG fitting term; we discuss this below. W1ICA fits
the EEG data slightly worse than the other methods, particularly at
electrode T5 (in three of the four participants). More striking is that
similar EEG quality of fit is obtained for drastically different spatial
distributions of solution power, as one can see by examining columns
two and three. In the extreme, for all four participantsW1ICAwas able
to obtain a respectable fit to the EEG data by placing solution intensity
at less than 10 of 4000 voxels! This extreme sparseness is a
phenomenon that has been observed in other L1 mapping approaches,
and the spatial discontinuities we see (highly active voxels in direct
proximity to those of no activity) are similar to temporal “spikiness”
obtained with L1 methods applied at each timestep (Huang et al.,
2006; Ou et al., 2009). These drawbacks have led other researchers to
modify L1 approaches using information fromMEG physics (Huang et
al., 2006) or to use L1 regularization in the spatial domain and L2 in the

time domain (Ou et al., 2009). It would be interesting to see if similar
approaches could be integrated into our framework in order to
improve the performance of W1ICA.

One should also note that theWGM,W2ICA, and PowRmethods all
placed significant power in physiologically relevant regions. These
results illustrate the underdetermined nature of the EEG-only
problem and suggest there may be no single correct way to increase
mapping resolution. We argue below that one needs to think about
the interplay between joint inversion, experimental design para-
meters, and robustness issues when combining multiple imaging
modalities for improved resolution in whole-brain mapping.

Fig. 6 shows the solution, rather than its diagnostics, for the subject
shown in Fig. 5 for four of the methods we have discussed. Minimum
norm has been left out because we here show α (the spatial loadings)
and ɛ (the temporal signals) separately and basic minimum norm
admits no such decomposition as part of its solution process. The ICAO
method is essentially pre-decomposed minimum norm and is shown.
We also do not display the MRJI orW1ICA, as their results did not look
promising for any of the four subjects. For each method in Fig. 6 we
show the individual rows of ɛ along with corresponding weights α,
plotted as a scatterplot on subject anatomy. Negative loadings are in
cyan and positive loadings in magenta, and a consistent scale for point
size is used across all panels.

Notice that the loading maps are relatively smooth, despite having
no explicit smoothness constraint in the cost functions. All the
solution smoothness in WGM, W2ICA, and PowR comes directly from
the smoothness of the activity map obtained from fMRI. This is a
particularly nice feature, as the solution smoothness found is a side
effect of fitting both modalities well, rather than a condition imposed
by fiat. We also note that all three components used in the task-only
EEG average (the top row of Fig. 6) have similar but not identical
dynamical structure and localization. This is expected; the dominant
response to the two successive stimuli will be the evoked visual
response, and we do not expect nor desire that ICA will oversplit the
paired visual stimulus into separate components for each image.
However, for more complicated experimental paradigms in which we
expect independent responses—for example visual evoked response
followed by a motor response—ICA should be able to produce one
component for each which, upon joint inversion, will show distinct,
physiologically relevant localization.

Fig. 7 shows the temporal and spatial characteristics of the
responses of the four study participants when computed using the
PowR joint inversion method. First notice that the number of basis
functions (rows of ɛ) comprising the solution varied from subject to
subject. There is no guarantee that ICA will find the same number of
task-related EEG components in different individuals, and we see that
this is the case here. This statement is also true of spatial ICA of fMRI
data; while all components for each participant have been collapsed
into a single spatial map (not shown), the number of task-correlated
components was variable among individuals. Fig. 7 shows intersubject
differences in both activity timing and localization. However, common
to all the subjects are single and double peaks following stimulus
presentation, with significant occipital loading. These results show
that joint inversion could be a powerful tool for probing intersubject
variability, and in the “Discussion” section we elaborate on how one
could begin to do so.

Discussion

We now compare and contrast the various inversion schemes
presented. First, it is clear that ICA of EEG data alone does very little to
condition the inverse problem; while it is valuable to pre-split
temporally independent neural events before inversion mapping, the
regularization problem remains, and minimum norm solutions
produce substantial power at most solution voxels. Among the
remaining methods, W1ICA is an interesting case, in that it was able
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Fig. 6. Joint inverse solution for four of themethods described in the text: ICAO,WGM,W2ICA, and PowR, for subject S3 (shown also in Fig. 5). The top row of the plot shows the rows
of ɛ, the matrix of temporal basis functions; heavy black arrows indicate stimulus presentation times. In the anatomical plot negative loadings (elements of α, the parameters
obtained by inversion, see Eq. 11) are shown in cyan and positive loadings in magenta. The same slice is shown for each signal and all methods. To obtain the full solution for all
solution voxels and all times, one constructs αɛ, which essentially multiplies the signal in the first row of the figure by the head map below it and then sums over the figure row.

Fig. 5. Solution diagnostics for the seven inversion methods described in the text, for one participant (S3 in Fig. 7) in the visual evoked response experiment. For each method, three
panels are shown. The left column displays the quality of fit to the EEG data; the inverse solution is shown in red and the data in black, for four electrodes. They are, from top to
bottom in the 10/20 naming system, P4, T5, O1, and F8. The voltage traces have been offset to allow for easier viewing. The second panel is a log-log plot ofw (weights obtained from
ICA of fMRI as described in the text) on the x axis and the square root of voxel power calculated from the inverse solution on the y axis. Hence we are plotting the power in the (fMRI)
data (the x axis) versus the power in the model (the y axis). The red dotted line has unit slope; the amount of point scatter about this line shows the degree of disagreement with
measured fMRI voxel power. The third column shows a representative anatomical slice with dots with size proportional to solution power at that voxel. In these plots, voxels with
power less than 25% of the most powerful voxel have been omitted for clarity. Whenever possible we have chosen the same slice for all methods, but in the case of the MRJI and
W1ICA that was not possible, as very little if any solution power was present in the slice shown for the other methods. Method abbreviations are indicated at right, and a quick
reference is contained in Table 1. The same information for the other three subjects in Fig. 7 is shown in the supplemental figures.
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to accurately reproduce the scalp voltage signal in all four subjects by
putting power at only a few (O(10)) voxels; all other solution voxels
had identically zero activity. One way to view this is as a side effect of
basis construction; while we do smooth the averaged components
from ICA to construct 6, the smoothing process is very mild, and
therefore the individual basis functions still strongly resemble the
signals from the electrodes. This would not be the case in a more
complicated experiment with multiple different stimuli; each com-
ponent might then be expected to encode only one of many
independent event-related potentials.

Also too extreme in our estimation isWGM,which as we described
in “Materials and methods” is very similar to W2ICA but with a stiffer
penalty for placing solution activity at voxels with little fMRI activity.
Given that both W2ICA and WGM place significant activity in
physiologically relevant regions, we would opt for the softer penalty
due to signal-to-noise issues in the fMRI data. We should point out,
however, that p in Eq. 14 could also be included as a hyperparameter
in the data pipeline and optimized rather than chosen a priori.
Extensive simulations have previously shown the utility of L2
regularization with fMRI (Liu et al., 1998), and this utility seems to
carry over into our inversion framework.

MRJI was somewhat of a surprise. MRJI performed extremely well
in tests on synthetic data (Brookings et al., 2009), but was far less
successful with human subject data. This underperformance comes
about for several reasons. For one, the individual rows of β are really
all identical in this case; the low-pass filtering nature of the
hemodynamic response makes events separated by less than several
seconds unresolvable when used to force a Balloon/Windkessel
model. In essence, rather than using a sum of distinct basis functions
to fit the data in B, we are really only fitting a rescaled hemodynamic
response function (HRF) to the time-locked fMRI average data. If the
time-averaged voxel dynamics deviate from this simple shape, the
fMRI term in the MRJI will not model them well.

This brings up the crucial subject of the interaction of inversion
method with experimental design; this fMRI experiment was a rapid
event-related paradigm, in which the responses to successive stimuli
“pile up” in the measured fMRI data. Upon averaging, we do not
recover simple rescalings of the HRF in the data. However, in a slower
event-related design, where the hemodynamic signal is allowed to
return to baseline after each stimulus presentation, this may not be
true and the MRJI may approach its performance on simulated data
(in which the assumed forwardmodels generated the data, so a better
fit was essentially ensured). It is therefore extremely important to
consider experimental design when choosing how to improve
mapping resolution using joint inversion; this is an issue which we
are addressing with ongoing empirical studies.

Lack of similarity between the fMRI model employed and the
observed data is not the only complication for the MRJI. Another
comes when we try to properly weight the two terms in the cost
function. Covariance weighting in least-squares cost functions per-
forms two essential functions: it ensures we do not give ourselves
more credit than we should when we fit correlated data, and it
introduces a scaling term that can accommodate data in drastically
different units, since the standard deviation should generally be of the
same order of the mean and at least has the same units. While it is
simple to include electrode–electrode covariance weighting in the
MRJI, voxel–voxel covariance weighting poses a challenge. We cannot
simply insert Σ−1

B , the full voxel–voxel covariance matrix, into Eq. 19
in the obvious place; this is because of the parameter λ. Note that as

written, λ rescales the data B to best match the model, for any choice
of α. However, rescaling the data by λ rescales Σ−1

B by λ−2, and doing
so destroys our ability to use the linear algebraic methods described
previously (Brookings et al., 2009). For this reason, one would like to
leave B alone and rather rescale αβ, which would adjust the units on
the model to best fit the experimental units in the data. This again
destroys our ability to use linear algebraic methods to solve the
problem, as there are now terms quartic in the parameters present in
the cost function (λ2αTα). We have used iterative methods to attempt
to solve the problem in this case, but they prove particularly
inefficient, partly owing to the fact that a≡0 is not a valid initial
starting solution—λ becomes undefined in this case.While the use of g
in Eq. 19 tries to remedy the units problem, it does nothing to ensure
that we do not overfit correlated fMRI data.

We should also mention that while placement of λ can ensure a
quadratic cost, there are several additional parameters involved in the
generation of β. These additional parameters are present regardless of
whether one uses a fully nonlinear model for β or a linear time-
invariant one. One would like to estimate these parameters or
integrate them out as Bayesian nuisance parameters (Sivia and
Skilling, 2006), but this would come at a significant increase in
computational cost. We continue to work on variants of the MRJI that
address these difficulties, but for the type of rapid event-related
experiment considered here we do not recommend its use.

We therefore recommend the PowR method. It requires iteration,
but the all-zero starting guess gives a very efficient estimation with
scaled conjugate gradient. The cost function is quartic rather than
quadratic, but this is a relatively mild nonlinearity. Fig. 5 and the
supplemental figures show that PowR yielded solution power that is
well correlated with fMRI activity, particularly when considering the
most active voxels, but which is not absolutely coincident with fMRI
measurements. In all four subjects the scatterplots of fMRI power
versus solution power (middle column of Fig. 5 and the supplemental
figures) show this ability to not overfit to the fMRI data when it is
weak. Also, when considering the MRI slices (third column of Fig. 5
and the supplemental figures) PowR yielded activity maps in which
all four subjects show strong (but not exclusive) occipital activity, as
we expect from this visual evoked response experiment. We also
suggest that PowR attempts to take advantage of the best features of
each data modality; it fits the temporal dynamics of EEG and the
spatial dynamics of fMRI to obtain one high-resolution map.

We mention here that the activity we are localizing is not all
stimulus-related activity; our procedures for selecting components
from the EEG and fMRI data would exclude all non-evoked activity,
that is, activity which is not phase-locked to the stimulus. If the
stimuli modulate oscillatory activity unlocked in phase to that same
stimulus, the methodology we present here would exclude that
activity. To attempt to reveal and retain this non-evoked activity, we
could potentially average the time–frequency power maps of the
components (anonymous reviewer, private communication), employ
spectral clustering (Makeig et al., 2004), or directly apply ICA in the
frequency domain (Anemüller et al., 2003).

In going beyond the present study, issues of experimental design
and data resolution are key. Slow versus fast event-related designs
may require different joint inversion methods and we are currently
conducting further empirical studies to address this issue. Also
important are issues of data resolution; we have used a simple three
sphere head model in this study, but detailed anatomical head
models using cortical and scalp surface extraction from structural

Fig. 7. Joint inverse solution using PowR for four subjects participating in the dual evoked visual response experiment. Each basis function along with its loadings in a representative
slice are shown, as in Fig. 6. Small loadings have again been omitted for clarity. Each row, labeled S1–S4, shows a different subject, and the columns pair a basis function with the
corresponding loadings in a representative slice, as in Fig. 6. The grouping is not arbitrary. Subject S1 had only two task-related components. His/her entire solution is shown in row
S1, and for the other subjects, we show the two basis functions most correlated with S1's directly below (grouped with a dotted box). Continuing with S2, in which we found three
basis functions, we then vertically group this component with the component in the remaining subjects most similar as again judged by correlation. Heavy black arrows in row S4
indicate stimulus onsets (first frame, second frame); these onsets are the same for all basis function panels but suppressed to avoid clutter.
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MRIs exist (Spinelli et al., 2000; Ermer et al., 2001). How much
descriptive power is gained by using an anatomically detailed head
model, and how does this choice interact with the signal-to-noise
ratio in the EEG data? The EEG electrodes are also highly spatially
correlated, suggesting the use of a lower-density EEG montage would
result in the same quality of inverse solution. In addition, the EEG
data could be temporally downsampled and the fMRI data spatially
smoothed and/or resliced at lower resolution. All of these choices
affect both the size of the subsequent joint inverse problem (and
hence solution efficiency) as well as the nature of the solution
obtained.

We would also like to be able to combine data from multiple
participants into a group-level map. However, we believe doing so
with these multimodal maps is a subtle issue that requires care. The
challenge is the following: suppose as in Fig. 7 S1 has two components
and S4 has five components. What does it mean to do a group
average? We would like a procedure that finds group-wise consistent
components and then generates a group-wise spatial map for those
components also. However, to do this, we need to be able to determine
our confidence in the components from each subject. If a component
in S4 but not S1 is highly significant—meaning robustly present
despite noise in the data and choices made during processing—the
group analysis has to treat such an outlier as important. However, if
the unique component is essentially lost in the noise (insignificant)
then it may be ignored in the group average.

One basic measure of parameter error bars (for example in the
loadings α) is the covariance matrix of the fitted parameters, which is
the same as the inverse of the Hessian matrix of the cost function at
the minimum. A more careful analysis would sample from the
posterior density, but both of these methods ignore all the steps
leading up to joint inversion (Fig. 1), many of which are not easily
expressible in parametric form, so they cannot be properly sampled
over in this way. Even for single imaging modality data the effect of
choices in the data processing pipeline is a complex and active area of
study (Strother et al., 2004; Strother, 2006). We believe a cross-
validation approach would be best for determining robust solution
features, and we are actively working on this.

The next phase of cognitive neuroscience is to go beyond studying
local brain regions and to begin to learn about the global, distributed
networks in the brain underlying cognitive activity (Bullmore and
Sporns, 2009). In order to understand the dynamics within and
between such networks, measurements with both high temporal and
spatial resolution are essential. In addition, as researchers move
towards more complicated, naturalistic stimuli (Malinen et al., 2007)
in an effort to understand complex decision making, ever more
sophisticated techniques for extracting relevant information from
neuroimaging datasets will be required. Pushing EEG/fMRI fusion
techniques to the limit will optimize our ability to extract information
from these noninvasive, proxy measurements of the neuronal basis of
cognition.
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