Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the
problem of source localization

Ted Brookings®, Stephanie Ortigue?, Scott Grafton?*, Jean Carlson®
! Department of Biology, Brandeis University,
Waltham, MA 02454, USA
telephone: 781 736 8141; email: brookings@brandeis.edu
2 Department of Psychology, University of California,
Santa Barbara, 93106, USA
telephone: 805 893 3045; email: grafton@psych.ucsb.edu
*corresponding author
3 Department of Physics, University of California,
Santa Barbara, CA 93106, USA
telephone: 805 893 8345; email: carlson@physics.ucsb.edu
(Dated: February 29, 2008)

We develop two techniques to solve for the spatio-temporal neural activity patterns using Elec-
troencephalogram (EEG) and Functional Magnetic Resonance Imaging (fMRI) data. EEG-only
source localization is an inherently underconstrained problem, whereas fMRI by itself suffers from
poor temporal resolution. Combining the two modalities transforms source localization into an over-
constrained problem, and produces a solution with the high temporal resolution of EEG and the
high spatial resolution of fMRI. Our first method uses fMRI to regularize the EEG solution, while
our second method uses Independent Components Analysis (ICA) and realistic models of Blood
Oxygen-Level Dependent (BOLD) signal to relate the EEG and fMRI data. The second method
allows us to treat the fMRI and EEG data on equal footing by fitting simultaneously a solution to
both data types. Both techniques avoid the need for ad hoc assumptions about the distribution of
neural activity, although ultimately the second method provides more accurate inverse solutions.

I. INTRODUCTION

Electroencephalogram (EEG) and Functional Mag-
netic Resonance Imaging (fMRI) are two commonly used
modalities for investigating human brain states in cog-
nitive neuroscience experiments. Both are noninvasive,
but in other respects they are complimentary. EEG mea-
sures voltage changes in roughly one hundred electrodes
placed on the scalp. EEG has millisecond time sensi-
tivity, but spatial information must be inferred through
an inversion process, and has at most as many indepen-
dent spatial measurements as there are electrodes (there
may be fewer due to correlations between nearby elec-
trodes). fMRI measures changes in blood oxygen level
[1, 2] (called the BOLD signal) throughout the brain. It
produces a 3D image with a spatial resolution of roughly
a few millimeters, but temporal resolution is on the or-
der of a few seconds. Furthermore the BOLD signal is
a complicated convolution of brain activity because the
blood oxygen level takes several seconds to rise and even
longer to fall in response to an impulse of activity. Thus
EEG provides an excellent measure of temporal dynam-
ics but a poor measure of spatial locations; and fMRI
provides an excellent measure of spatial locations but a
poor measure of temporal dynamics.

In this paper we develop two novel methods for source
localization using both EEG and fMRI data. By combin-
ing the two modalities, the high temporal resolution of
EEG can be augmented with the high spatial resolution
of fMRI. Existing literature has established the potential

gains from combining EEG and Positron Emission To-
mography [3] (another imaging modality with high spa-
tial resolution), as well as EEG and fMRI [4]. However,
in past studies the difficulties inherent in combining such
dissimilar modalities have led to a reduced scope of the
analysis: inclusion of data from only one EEG lead [5], or
reduction of the size of a unified space for joint inversion
of EEG and fMRI [6]. Here we present two techniques for
working with full EEG and fMRI data sets and solving
to obtain neural activities throughout the cortex at high
spatial and temporal resolution.

Our first method uses standard techniques to invert
EEG data, but employs fMRI data to constrain the so-
lution instead of more ad hoc regularization schemes fre-
quently employed. Throughout this paper, we refer to
this technique as our “fMRI regularized inverse”, and
we describe it in Section ITI. The second method uses
model reduction algorithms (Principle Component Anal-
ysis, or PCA; and Independent Component Analysis, or
ICA) to decrease the size of the inverse problem, and a
detailed model of the BOLD signal (discussed in Section
IV) to relate EEG and fMRI data. This enables us to
simultaneously fit the EEG and fMRI data. We refer to
this method as our “model-reduced joint inverse”, and it
is described in Section IV. The model-reduced joint in-
verse has the additional advantage of treating the EEG
and fMRI data on equal footing, instead of using the
fMRI merely as a constraint. In Section V, we evaluate
and contrast the effectiveness of these techniques on syn-
thetically generated data to demonstrate the potential



effectiveness of using this methodology to analyze data
recorded from human subjects.

II. EEG SOURCE LOCALIZATION

We begin with a brief, general description of EEG
source localization [7]. This background provides the
starting point for our first method of combining EEG and
fMRI (Section III) which begins with EEG, but makes
use of the fact that the basic problem of EEG source
localization is underconstrained. When EEG is consid-
ered alone, different methods employ different techniques
for regularization, —selecting a particular solution out of
an infinite family of possibilities, which would otherwise
share an equal quality of fit. In Section III, we introduce
a specific method of regularization which uses comple-
mentary fMRI data. Our solution optimizes agreement
with the fMRI data without altering the quality of fit to
EEG data.

To perform source localization and thus obtain spatial
information from EEG data, one must model the effect
that currents within the brain produce on voltages mea-
sured at the scalp. Sources in different regions of the
brain contribute to electrode voltages by summing lin-
early. Thus, given a set of source currents, the measured
EEG signal can be calculated with a linear Green’s func-
tion matrix (or lead field).

This matrix is typically calculated by modeling the
head as a series of concentric regions with different con-
ductivities, and solving Maxwell’s equations for dipole
current sources. Often the head model is quite simple,
although it is possible to incorporate 3D images from a
structural MRI (as in Figure 1) of the subject’s head.
More complicated head models may produce a more ac-
curate lead field matrix, but the resulting matrices are
used the same way.

Once the lead field L has been calculated, if the neu-
ral sources S are known, then the expected EEG signals
E can be computed simply through the linear forward
model

E=1LS. (1)

Source localization is then a matter of inverting the lin-
ear equation relating the unknown source currents to the
known EEG signal via the Green’s function. Therefore
for some generalized inverse L™, we have

S=LE. (2)

This system is highly underdetermined. If the brain is
divided up into regions similar in size to fMRI resolu-
tion, there are tens of thousands of voxels, but there are
only of order one hundred EEG signals to constrain the
solution. With no additional constraints, it is possible
to add to any solution a set of sources in the null space
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FIG. 1: Lead Field from Structural MRI. A structural
MRI (top) captures a high resolution 3D image of the brain.
This image can be used to identify regions of grey matter
within the cortex, which are likely locations for EEG sources
(bottom).

of the Green’s function and obtain another valid solu-
tion. Although it is possible to decrease the extra de-
grees of freedom by appealing to physiology[8] or careful
treatment of the electric field (as in ELECTRA[9] and
LAURAJ10]), ultimately the EEG data cannot produce
a unique solution by itself.

To produce a unique solution, the problem must be
regularized. This is typically accomplished through a
simplifying hypothesis: the solution is of minimum norm
[11], or constrained by a prescribed tradeoff between
quality of fit and smoothness (e.g. LORETA[12]), or
by imposing covariance constraints on the solution (as in
Beamformer[13] techniques), etc. Alternatively, Bayesian
methods [14-17] encorporate hypotheses through the in-
troduction of explicit priors. These priors are used as
a starting probability distribution for source activities,
and this distribution is updated by EEG data in a man-
ner consistant with Bayesian statistics. However, none



of these hypotheses are guaranteed to be correct. Thus,
aside from convenience, there is little reason to suppose
that they are more “correct” than the infinitely many
other solutions that equally agree with data (includ-
ing those produced by different regularization schemes).
More problematically, these regularization techniques ac-
tually exclude reasonable source distributions from pos-
sible solutions when those source distributions do not
conform to the regularizing hypothesis. Because of this,
for any given EEG-only regularization technique, there
are distributions of sources that can never be found as a
solution, no matter what the experiment is, or what EEG
data is produced [18, 19]. If the true source distribution
is one of those unobservable distributions, the solution
may bear little resemblance to the true sources.

III. FMRI REGULARIZED INVERSE

One way to improve upon regularization schemes is to
use an independent source of data (in our case, fMRI) to
chose between the infinitely many solutions allowed by
the EEG data. Our regularization strategy is to start
with a minimum norm inverse of EEG data, and then
alter it in ways that improve agreement with fMRI data,
without altering the quality of the fit to EEG data. We
accomplish this by adding vectors in the null space of the
lead field matrix. We still arrive at a unique solution, but
we do so with more principled assumptions.

To construct our fMRI regularized inverse, we begin
by considering solutions of the form

S=LE+ N.a, (3)

where L~ is the Moore-Penrose generalized inverse [20],
and Ny is a matrix whose columns are vectors in the
null space of L. With this form, the unknown vector &
controls the projection of the solution into the null space.
Thus, our solution is the minimum-norm solution, plus
some unknown vector in the null space of L.

Here we briefly justify this choice for the solution form.
We choose our sources to minimize disagreement between
the actual EEG data and our modeled EEG data. We
obtain the modeled EEG data Egoution With the lead field
matrix and the forward model (Equation 1). Thus, we
define the solution error as

7 = Esotution — E ||=[| LS = E || . (4)

Here || M || denotes the sum of the squares of all the ele-
ments of matrix M. Substituting the form of our solution
from Equation 1, we obtain

o5 =l L(LTE+Np@) - E | . (5)

Then since Ny, is a matrix of columns in the null space
of L, LNy, = 0, and therefore

oz =|LL"E—-E]|. (6)

Thus the error is independent of the value of & —adding
the null vector to the solution does not affect the quality
of the EEG fit. Regularization is then a process whereby
we choose a specific & (for each time step) and arrive
at a unique solution. Our goal is to choose an & that
causes our solution to be maximally consistent with ac-
companying fMRI data. Since the fMRI data will vary
with different experiments, the constraints placed on the
solution will vary as well. Thus, this technique dramati-
cally decreases the number of solutions that in principle
cannot be found, and thereby avoids eliminating from
consideration potentially valid solutions.

Any attempt at combining information from EEG and
fMRI invariably confronts the problem that EEG and
fMRI data are measuring fundamentally different quanti-
ties. fMRI measures blood oxygen level, which is affected
by blood volume, flow rate, and of course the oxygen
content of the blood. The various factors contributing
to the BOLD signal are directly or indirectly related to
the metabolism of brain cells, and thus neural activity.
On the other hand, the currents responsible for EEG are
ionic currents produced when neuronal activity causes al-
terations in the flow of ions into and out of neurons. Since
this activity varies spatially, currents are produced in the
brain fluid, roughly synchronous with and proportional
to activity. Additionally, current is fundamentally a vec-
tor quantity, although it is possible to describe the EEG
sources as scalars by fixing the direction of the currents
(e.g. by anatomical constraints), or by working with cur-
rent source density, or local field potential (voltage as
measured by an electrode inserted into the brain).

Several studies by different researchers have shown
that BOLD signal and neural activity are correlated —in
fact, if the frequency of the neural activity is fixed, the
BOLD signal is roughly linearly proportional to the neu-
ral activity [21-24]. BOLD signal has also been shown
to be proportional to local field potential [23, 24]. Since
the current sources should be proportional to neural ac-
tivity (and local field potential) it is reasonable to ex-
pect the sources of the EEG signal to be proportional to
the BOLD signal. This is the basis of our regularization
scheme: modes from the null space of the lead field are
added to ensure that the solution is proportional to the
BOLD signal B.

To regularize, we minimize the disagreement between
the solution and linearly-scaled fMRI at each time. We
introduce the unknown constants A (which describes the
proportionality between fMRI signal and neural activity)
and k (which is an offset).

o5 = min |[[L"E+Na|—AB—r|, (7
{\k,a}

with |M] used to denote the matrix whose elements are

the absolute values of the elements of M. X and k are

unknown a priori because they vary from machine to ma-

chine (and even between trials on a single machine). Thus



A, k, and @ are determined by our minimization proce-
dure. Since we assume the proportionality constants are
not changing over the course of a brief period of time, we
obtain a single set of values for A and k that characterize
the relationship between BOLD and neural activity for
the entire experiment.

An additional issue is that the BOLD signal is tem-
porally very different from the EEG signal. We will dis-
cus this in detail in Section V, but it can be thought of
(as a simple approximation) as following neural activity,
but delayed by roughly four seconds. Also, fMRI data
is sampled at a much lower rate than EEG data (a typ-
ical fMRI machine may record a new image every two
seconds, whereas EEG is often sampled every two mil-
liseconds), and therefore most EEG data will not have
accompanying BOLD signal at precisely the same time.

Typically analysis involves creating a poststimulus
time histogram (PSTH) collecting all images taken af-
ter a trial of a certain type: for example, a subject may
look at pictures of spiders or puppies, in which case all
“spider” images would be grouped together and catego-
rized by the relative time since the most recent spider
picture was displayed (EEG data is averaged through a
similar process). If there is a variable inter-trial interval
that is not synchronous with the image acquisition, then
the BOLD signal is effectively sampled several times per
second. Because the actual signal is changing much more
slowly than this (over the course of a few seconds), it can
be interpolated or shifted in time with a Discrete Fourier
Transform or a Fourier Series without missing features.
Thus we shift the transformed signal to account for the
temporal delay. We group vectors together so that for
each time ¢, @(t) for that time is a column in a matrix
a (and similarly B is replaced by B and E is replaced
by E). Then Equation 7 becomes a single equation to
simultaneously solve for A, x, and the matrix « (i.e. we
solve for every vector @(t) simultaneously):

op= min |||LTE+ Npa|—-AB—k | . (8)
{Nka

Equation 8 is not a linear equation. The EEG source
currents are inherently signed —large positive and large
negative currents both indicate large neuronal activity,
but they contribute oppositely to measured EEG signal.
Thus it is the absolute value of the EEG currents that
is proportional to the BOLD signal. However, this non-
linearity is mild enough that Equation 8 can be solved
iteratively through the following program:

Sy=LE

Repeat (increasing n)
min{)\n,nn} || ‘Sn—1| — B — kg H
define F, s.t. |F,| = |A\B + kp| and

sign(Fy,) = sign(Su-1)

ay = argmin, || Sp+ Nza—F, |
Sy = So + Nraw

Stop when || S, — S,—1 [|[< Tolerance

Once the difference between consecutive iterations of this
procedure falls below the prescribed tolerance, S = S, is
a solution to the nonlinear minimization problem. Each
of the minimization steps is linear, and reasonably fast.
The first, minimizing over A and k, is merely a best-fit
line (albeit one with many data points). The second is
solved to obtain o, as:

ay, = Np (B, — So), (9)
and N; need only be calculated once in advance. We
continue the iteration until the change in S,, from one it-
eration to the next is below our specified tolerance. The
result of this algorithm, S, is the fMRI regularized in-
verse solution S that we sought. We present the results
from tests of the fMRI regularized inverse in Section V.

IV. MODEL-REDUCED JOINT INVERSE

To better incorporate fMRI data into source localiza-
tion, we next incorporate a model that provides detail
beyond merely noting that the BOLD signal is propor-
tional to neural activity. As mentioned previously, the
BOLD signal response is delayed (by roughly four sec-
onds for a brief impulse of neural activity). Our fMRI
regularized inverse takes advantage of the correlation be-
tween BOLD signal and neural activity, but using the
correlation alone is not ideal because the BOLD signal
does not simply mirror lagged neural activity. The sig-
nal is also temporally broadened, and therefore simply
shifting BOLD to eliminate the time lag does not result
in a signal that matches neural activity. By incorporating
a detailed model of BOLD into an inversion algorithm,
we obtain closer agreement between our model and data,
and thus a more accurate inverse.

Detailed models of the BOLD response exist —we use
a variant of the Balloon/Windkessel model [25]. The
model we use (developed by Robinson, et al. [26]) is a set
of coupled nonlinear differential equations that start with
neural activity as an input, and model physical changes
in the blood vessels, changes in the blood oxygen con-
tent, and the measured response of these changes in an
fMRI machine. The result is shown in Figure 2. The dif-
ferential equations are nonlinear, but over a range of in-
put activities the amplitude of the BOLD response varies
approximately linearly with the amplitude of the neural
activity. This must be the case, because we know that
BOLD is proportional to neural activity.

Our fMRI regularized inverse cannot make use of the
realistic model of BOLD response because it does not
have an estimate of how the neural activity varies with
time until it produces its solution. In order to incorporate
a modeled BOLD response into our inversion procedure,
we take an alternate approach that starts by identify-
ing candidate neural activity signals, and then fits them



BOLD Amplitude (Arbitrary Units)
o

.
0 5 10 15 20
Time (s)

FIG. 22 BOLD Response. Here we show the modeled
BOLD response after an impulse of activity at ¢t = 0.

to data. Principle Component Analysis (PCA) and In-
dependent Component Analysis (ICA) are ideally suited
to this job. PCA extracts orthogonal signals that ex-
plain the majority of variance in the data (while reduc-
ing noise) and ICA forms linear combinations of those
orthogonal vectors to produce a basis of signals that are
maximally independent of each other. Figure 3 shows the
result of this process.

Normalized EEG Signal

Time After Stimulus (s)

FIG. 3: ICA Basis Signals. Here we show an example of
how ICA extracts the critical features of EEG measurements
with a real data set. Human volunteers watched a series of
movies with different pairs of everyday objects. Either a hu-
man would be present in the scene and look at one object, or
one object would be highlighted. Here we show EEG data av-
eraged over the condition where during two sequential movies
the same object is looked at by a human, but from one movie
to the next the object has switched sides (e.g. from left to
right). The first two EEG signals determined by ICA are
plotted in blue and red, respectively. The 128 original EEG
signals are plotted in black.

The procedure to compute our model-reduced joint in-
verse begins by using PCA followed by ICA on EEG data
to produce candidate EEG signals ¢ (organized so that

signals make up the columns of the matrix). Next we use
e and the BOLD model to produce candidate BOLD sig-
nals 6. Then we simultaneously fit linear combinations
of these signals to EEG and fMRI data by solving the
minimization problem:

min o =|| (E - Lag)os | + || AB+r—aB)os |l

{a, Ak}

(10)
where o and op are diagonal matrices whose entries are
the measurement uncertainty for EEG data and BOLD
data respectively. Although superficially the minimiza-
tion problem appears to be complicated, it is linear and
can be solved efficiently. Once a has been determined,
the solution is

S=ae. (11)

We derive the solution to this minimization problem in
Appendix C.

Aside from a more accurate treatment of BOLD, this
technique has several additional advantages.

e Linearity guarantees a fast, exact solution.

e Since the number of temporal signals is far less than
the number of sampled times, the size of the inverse
problem is dramatically reduced.

e BOLD does not have to be interpolated or shifted
in time.

e This procedure allows the EEG and fMRI data to
be inverted simultaneously, and each fMRI data
point and each EEG data point are weighted
equally in the inversion. Thus we treat fMRI and
EEG on equal footing, instead of using fMRI as a
constraint on an EEG solution.

The basic technique is also very flexible and can be al-
tered to include additional temporal signals that the ex-
perimenter may expect to be present. For example, the
experimenter could insert a cardiac signal as a column
of a to provide an alternative to preprocessing data.
Additionally, it is possible to group solution points to-
gether that the experimenter may expect to have cor-
related activity (either due to neurophysiological, func-
tional, or anatomical priors, or from PCA/ICA used on
fMRI data).

V. TESTING THE ALGORITHMS

We tested each source localization technique by gen-
erating a data set with known activity patterns and
then comparing the actual activities to the solutions pro-
duced by the inversion technique. Inversion of multiple
sources was a critical test, as many existing EEG inver-
sion techniques (such as those based on ad hoc regular-
ization schemes) have particular difficulty with multiple



sources. We tested the techniques against sources that
were distributed over moderate-sized regions of the brain
(roughly ten percent of its width). We chose distributed
sources (instead of sources with a single active point) be-
cause many regularization schemes have difficulty with
distributed sources. Of course, the presence of multiple,
distributed sources is also to be expected in any experi-
ment involving human subjects.

To produce the synthetic data, we began by calculating
a lead field and an associated set of solution points from
an anatomical MRI image, using the SMAC [27] toolkit.
We then randomly selected one or more of those solution
points to have significant activity. For the majority of
our trials, activity consisted of two randomly chosen lo-
cations, with a cluster of nearby sites all having the same
activity pattern. To produce a realistic time course for
such a signal [26] we used the form

2(t) = ae"Ptsin(B6t). (12)

All active sites (those in any active cluster) had an ac-
tivity z(¢) (with parameters a, , and § randomly gen-
erated), and all other points had an activity z(t) equal
to zero. We grouped the activities for all solution points
together into the vector Z(t). Synthetic EEG data was
then generated by multiplying the sources Z(t) by the
lead field matrix L. The BOLD signal was generated via
the differential equations, acting directly on z(t) for each
solution point. Gaussian noise (uncorrelated in space and
time) was added to all the values for these synthetically
produced EEG and BOLD signals. The noise level was
scaled so that the standard deviation was a pre-chosen
fraction of the maximal signal value. For example, if the
noise fraction was 0.1, then the Gaussian noise added
to the EEG signal would have a standard deviation of
0.1 times the maximum EEG signal amplitude (maxi-
mum across all channels and the whole trial), and the
Gaussian noise added to the fMRI signal would have a
standard deviation of 0.1 times the maximal fMRI signal.
After noise was added, the signals were then preprocessed
(fMRI data was whitened, and the EEG signal was passed
through a notch filter to remove signal components above
50 Hz). After performing the inversion procedure, the so-
lution sources were compared to the true sources, z. The
most critical comparisons were true source location ver-
sus solution source location, and true signal time courses
versus solution time courses.

For our model reduction procedure, PCA and ICA
were performed by the FastICA algorithm [28], using a
“skew” non-linearity. We found that FastICA’s “sym-
metric approach” produces better quality solutions, but
was more likely to fail to converge than the “deflation
approach”; thus our procedure made up to two attempts
with the symmetric approach, and if they both failed,
used the deflation option as a fall-back. Over the course
of thousands of test trials with synthetic data sets, this
strategy was sufficient to produce a solution in each case.

Since it was impossible to manually oversee the gener-
ation of so many solutions, invariably some low quality
ICA results were obtained. Refinements to the ICA algo-
rithm (or finding a more robust alternative) could further
improve the quality of the model-reduced joint inverse.

As expected, a simple minimum norm inverse produces
results of limited usefulness. While some high activity ar-
eas overlap the true sources, there are high activity areas
found far away as well (Figure 4), and also there are true
sources that are not not found. The time courses of cor-
rectly identified points are of decreased amplitude in low
noise data (Figure 5) and are lost altogether in high noise
data (Figure 6). Regularizing the inversion with fMRI
produces only slightly better results. The fMRI regu-
larized inverse solution contains false positives and nega-
tives, and still finds a greatly decreased signal amplitude.
By contrast the model-reduced joint inverse method cor-
rectly identifies the true locations of the sources, and the
time courses it finds are closer to the correct amplitude.
When the synthetic data has very little noise added to it,
the model-reduced joint inverse has slightly less noise in
its solution than do the other two techniques —this is be-
cause the model-reduced joint inverse produces a solution
that is a linear combination of the (presumably smooth)
signals found by ICA. However, the model-reduced joint
inverse also responds more robustly to increased noise,
producing useful solutions even after the minimum norm
and fMRI regularized inverses produce solutions domi-
nated by noise. Figure 7 shows plots of the receiver op-
erating characteristic (ROC) as well as signal error at
increasing values of noise.

VI. CONCLUSIONS

The fMRI regularized inverse solution provides results
that are only a slight improvement over a simple mini-
mum norm solution. Any regularized solution involves
selection of a single point near or within the (very large)
null space of the lead field matrix. The main advantage
of our fMRI regularized inverse is that it arrives at a
unique solution in a data-driven manner, and therefore
represents an improvement largely in conceptual frame-
work rather than solution quality. We suspect that any
solution that takes the form of an EEG-only solution plus
a null vector will tend to be biased in the same ways that
the minimum norm solution is. Specifically, which solu-
tion points are active will be due to influences from EEG
data as well as distortions introduced because the res-
olution matrix R = L~ L is far from the identity. Put
another way, the EEG-only part of the solution is dis-
torted because the lead field matrix can only be inverted
approximately, and in a manner that biases the result to-
wards certain solution locations. Thus starting with the
EEG-only solution and then adjusting it through some
regularization process necessarily entails a poor starting
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FIG. 4: Typical Location Accuracy of Source Inver-
sion. A view from the side of solutions found by different
inverse algorithms applied to the same synthetic data set: the
minimum norm inverse (top), fMRI regularized inverse (mid-
dle), and model-reduced joint inverse (bottom). The different
true sources are circles colored magenta and yellow, with X’s
colored green and red marking the locations found by the in-
version procedure (green corresponds to magenta, and red to
yellow). As was typical in our trials with low noise data, the
model-reduced joint inverse correctly identifies the location of
each solution point, while the other two techniques have false
positives and false negatives. The fMRI regularized inverse
performed marginally better in this example, which was also
typical in our low noise tests.
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FIG. 5: Typical Time Course Accuracy of Source In-
version. In this test with low noise data, the signals recov-
ered from minimum norm inverse (top) and fMRI regularized
inverse (middle) are significantly reduced in amplitude com-
pared to signals from the model-reduced joint inverse (bot-
tom). The true synthetic signals are in black with the inverted
signals in red and green (different colors indicate that the al-
gorithm found two distinct sources). In the bottom signal for
the model-reduced joint inverse, the inverted signal overlays
the true signal.
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FIG. 6: Time Courses in a High Noise Test. Here are
the time courses found by the minimum norm inverse (top)
and the model-reduced joint inverse (bottom) in a test with
increased noise. The minimum norm solution finds only one
source, which is dominated by noise. The model-reduced joint
inverse has produced a good solution (albeit one with a de-
creased amplitude). The fMRI regularized inverse (not shown
here) also produces a solution that is dominated by noise.

point. The result of regularized EEG inverse solutions is
therefore likely to include false positives and false nega-
tives.

By contrast, the model-reduced joint inverse algorithm
outperforms minimum norm consistently, and over every
range of test parameters we tried. The model-reduced in-
verse has several advantages, including a general reduc-
tion in noise, inherent uniqueness of the solution, and
more symmetric treatment of EEG and fMRI data via
equally-weighted simultaneous fitting. It is perhaps un-
surprising that the more detailed treatment of BOLD
results in better determination of source location, but
using ICA to extract source signals results in superior
characterization of signal time courses as well.

One potential source for further improvement in our
algorithm is is in the ICA process itself. ICA is an iter-
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FIG. 7: Accuracy at Progressively Higher Noise Lev-
els. Cumulative results for 1000 trials at each of six noise
levels. Gaussian noise (uncorrelated in space and time) was
added to the synthetic EEG and fMRI data, with the noise
amplitude scaling as a fraction of the maximal EEG and fMRI
signal strength respectively. The top graph shows area under
the ROC curve, and the bottom graph shows signal error nor-
malized to signal magnitude (taken in the frequency domain).
The results are color-coded by inversion algorithm, with mini-
mum norm inverse as cyan, fMRI regularized inverse as black,
and model-reduced joint inverse as red. The bars indicate
standard deviation. Note that an ROC area of 0.5 indicates
that a test has provided no information, while an ROC area
of 1.0 indicates perfect discrimination.

ative technique, that occasionally fails to converge, and
occasionally converges to a sub-optimal solution. Our
procedure (skew nonlinearity, two tries with symmetric
approach followed by deflation) was able to overcome this
difficulty and produce unsupervised solutions to thou-
sands of synthetic trials. However, further improvements
are likely possible through additional adjustment of the
ICA parameters, human supervision of the process (e.g.
experimenter judgment of whether the ICA procedure



has been successful), or replacement of ICA with another
algorithm that may be superior for this particular pur-
pose.

The principle remaining difficulty with combined EEG-
fMRI techniques is accurate registration of the EEG so-
lution points to the underlying structural MRI image
—a problem we avoided by dealing with purely syn-
thetic data. However, this subject is an active area of
research[27, 29] with solutions already in existence. We
expect that the advantages of the model-reduced joint
inverse as applied to synthetic data will carry over in
application to human data.
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Collaborative Biotechnologies through grants DAAD19-
03-D-0004 and W911NF-07-1-0072

Appendix: The Minimization Problem for the
Model-Reduced Joint Inverse

In this Appendix we show the steps necessary to solve
the minimization problem presented in Section V. Al-
though the problem and derivation are novel, the nu-
merical algorithms required to obtain the solution are all
widely available. The minimization problem is:

min o =| (E - Lag)og || + || (AB+r—af)os |,

{a,\,k}
(13)
Henceforth we drop the underline notation —all the
vectors have been converted to matrices. To begin, we
first compute the variation of o with respect to «, and
set it to zero:

LTEoke — LT Lacoie” + (AB+r)o3 87 —apos 3t = 0.

(14)
Right-multiplying this equation by (e0%eT)~ puts this
equation into the form of a Sylvester equation,
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L'La+ aBos BT (e0%e™)™ 4+ (AB + k)03 87 (co%e™) ™
(15)

—LTEoie(eo2eT)y™ =0

Sylvester equations (equations of the form Aa + aB +
C = 0) are solvable numerically, and have a nice linear
property. For matrices C'1, C2 and scalars u, v:

a(A, B,uCl 4+ vC2) = ua(A, B,C1) + va(A, B,C2).
(16)
Thus we can write

a = ag + Ay + ko, (17)

where g, a) and «, are the solutions to the Sylvester
equation considering only the constant parts, the parts

with coefficient A, and the parts with coefficient k respec-
tively.
Now we substitute this form into Eq. 13 to obtain

{n;in} o =|| (E — L(ap + Ay + ko )e)og | (18)

+ | ()\B + k= (o + Ay + nam)ﬁ)UB Il,

In this seemingly complicated expression, we are only
interested in solving for A and k. Since A and & are linear
inside the norms, this is just a best-fit plane. The data
points are organized into two separate matrices, but that
is irrelevant. We simply treat every entry in the matrices
as a separate data point, and thereby reduce the problem
to one of the form

migl || a2 + by + 2 || . (19)

After fitting for A and k, we can now substitute their
values into Eq. 17 and thereby obtain the solution,

S = ae. (20)
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