
 1

Modeling long-term fire regimes of southern California shrublands 1 

 2 

(Suggested running head: “Modeling fire regimes with HFire”) 3 

 4 

Seth H. Petersona, Max A. Moritzb, Marco E. Moraisc, Philip E. Dennisond, and Jean M. 5 

Carlsone 6 

 7 

 8 

a Department of Geography, UC Santa Barbara, CA 93106, USA 9 
b Center for Fire Research & Outreach, Department of Environmental Science, Policy, & Management,  10 

UC Berkeley, CA  94720, USA  11 
c The Aerospace Corporation, 2350 E. El Segundo Blvd, El Segundo, CA 90245, USA 12 

d Center for Natural and Technological Hazards, Department of Geography, University of Utah, Salt Lake City, UT 13 

84112, USA 14 
e Department of Physics, UC Santa Barbara, CA 93106, USA 15 

 16 

 17 

 18 

Corresponding author email: seth@geog.ucsb.edu, phone: 805-893-4434 19 

 20 

  21 



 2

Abstract 22 

This paper explores the environmental factors that drive the southern California chaparral fire 23 

regime. Specifically, we examined the response of three fire regime metrics (fire size 24 

distributions, fire return interval maps, cumulative total area burned) to variations in the number 25 

of ignitions, the spatial pattern of ignitions, the number of Santa Ana wind events, and live fuel 26 

moisture, using the HFire fire spread model. HFire is computationally efficient and capable of 27 

simulating the spatiotemporal progression of individual fires on a landscape and aggregating 28 

results for fully resolved individual fires over hundreds or thousands of years to predict long-29 

term fire regimes. A quantitative understanding of the long term drivers of a fire regime is of use 30 

in fire management and policy.  31 

 32 

50 Word Summary 33 

This paper uses a new fire spread model, HFire, to examine the drivers of the fire regime in 34 

southern California shrublands, namely: the number of ignitions per year, the spatial pattern of 35 

ignitions, the number of Santa Ana wind events per year, and live fuel moisture. 36 
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Introduction 37 

The fire regime of a landscape integrates the spatiotemporal pattern of ignitions, fuels, weather, 38 

and topography, and describes the size, spatial pattern, and return interval of fires (Davis and 39 

Michaelsen 1995). The current fire regime of southern California shrublands extends over a 40 

broad range of fire sizes from numerous small fires to relatively few large, intense, stand 41 

replacing fires, at a 20 to more than 100 year recurrence interval (Davis and Michaelsen 1995; 42 

Moritz 1997; Keeley 2000; Moritz et al. 2005). Past fire regimes in chaparral may have been 43 

quite similar, with total area burned also dominated by large fires (Mensing et al. 1999; Keeley 44 

and Fotheringham 2003). This distribution of fire sizes is common to other fire prone ecosystems 45 

as well (Moritz et al. 2005). 46 

Fire regimes are dynamic, varying in response to changes in ignition frequency, 47 

vegetation, and climate. In the future, climate change will likely have an effect on fuel quality 48 

and amount, while increases in population in the wildland urban interface (WUI) will likely lead 49 

to increased number of ignitions and changes in ignition locales (Field et al. 1999; Keeley and 50 

Fotheringham 2003; Syphard et al. 2007; Moritz and Stephens 2008). A quantitative 51 

understanding of fire regime drivers will aid in understanding future fire regimes resulting from 52 

climate change and the expansion of the WUI. 53 

In this paper we evaluate the sensitivity of three fire regime characteristics (size 54 

distributions, maps of  fire return intervals (FRIs), and cumulative total area burned) to the 55 

number and spatial pattern of ignitions; the frequency of extreme, Santa Ana wind conditions; 56 

and live fuel moisture (LFM) using HFire, a landscape fire succession model (LFSM). HFire 57 

uses a mechanistic approach to modeling fire spread, using the full Rothermel (1972) equations. 58 

It is capable of modeling both individual fires and long-term fire regimes in southern California 59 
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chaparral shrubland landscapes (Peterson et al. 2009). The predictions of fire perimeters in HFire 60 

have been validated in baseline comparisons to FARSITE (Finney 1998) and hourly progressions 61 

of individual, southern California fires (Peterson et al. 2009). Modeled fire size distributions 62 

from the initial version of HFire have been shown to agree with fire size distributions for the Los 63 

Padres National Forest fire data between 1911 and 1995 (Moritz et al. 2005).  64 

The southern California shrubland fire regime and HFire together provide a unique 65 

evaluation study for comparing actual data with model results over broad spatial and temporal 66 

scales. The relatively short southern California FRI provides an extended historical record of 67 

observations, and the computational efficiency of HFire enables quantitative evaluation of which 68 

physical parameters (ignitions, wind, LFM) are most important for determining the fire regime. 69 

 70 

Background 71 

Landscape fire successional modeling 72 

Fire modeling is a viable approach for increasing our knowledge of fire regime dynamics under a 73 

suite of conditions (Davis and Michaelsen 1995; Keeley and Fotheringham 2003; Keane et al. 74 

2004; Franklin et al. 2001; Cary et al. 2006). Long-term simulation of fire and vegetation 75 

response has been used to examine variation in existing landscape patterns (Venevsky et al. 76 

2002), fire effects on vegetation dynamics (Haydon et al. 2000; Franklin et al. 2001), and 77 

scenarios of management activities (Haydon et al. 2000; Miller and Urban 2000), and climate 78 

change (Davis and Michaelsen 1995; Cary and Banks 1999).  79 

Keane et al. (2004) categorized the 44 most well known LFSMs based on their approach 80 

to modeling four main processes: (1) vegetation succession, (2) fire ignition, (3) fire spread, and 81 

(4) fire effects. They found that for three of the processes the models varied in degrees of 82 
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stochasticity, complexity, and mechanism. However, a majority (36) of the models used a simple 83 

probabilistic approach to modeling fire spread or final fire perimeters. Only eight of the models 84 

used a mechanistic approach (Rothermel 1972; Finney 1998) to simulate fire spread in an 85 

incrementally expanding manner.  86 

Historically, mechanistic fire spread models have been considered too complex, computer 87 

intensive, and/or the data requirements too vast for use in long-term fire regime simulations 88 

(Hargrove et al. 2000; Venevsky et al. 2002), though their use would be preferable to empirical 89 

or stochastic approaches if they could be implemented (Keane and Finney 2003). Of the eight 90 

mechanistic models in the Keane et al. (2004) study, only Cary and Banks (1999) and Perera et 91 

al. (2008) simulated fire spread at hourly time steps with the same rigor as single event fire 92 

spread models (e.g., Finney 1998). Cary and Banks (1999) use equations and inputs designed to 93 

simulate fire in Australian fuels, and Perera et al. (2008) use equations and inputs designed for 94 

fire simulation in Canadian boreal forest, complementing our study of southern California 95 

shrublands. Additionally, FIRE-BGC (Keane et al. 1996) incorporated FARSITE (Finney 1998) 96 

fire spread simulations into their model, though they only simulated the spread of two fires 97 

within the 200 year simulation time frame, due to the inherent low fire return interval of their fire 98 

regime. The remaining five models used simplified fire spread equations of unspecified 99 

accuracy.  100 

HFire 101 

HFire is a spatially explicit, raster-based model of fire growth that incorporates the Rothermel 102 

equations (Rothermel 1972, 1983) for fire spread. The Rothermel equations were developed 103 

through burning small test fires in idealized dead fuels; from these experiments, equations were 104 

developed to predict fire spread based upon weather, topography, and both live and dead fuel 105 
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amounts and properties. The Rothermel equations are frequently implemented in fire spread 106 

models for use in intermediate spatial and temporal resolution fire spread simulations, such as 107 

FARSITE (Finney 1998) which is operationally used by the US National Park Service and the 108 

US Forest Service in both live and dead fuels (Pastor et al. 2003). Additionally, numerous 109 

authors have utilized fire models that use the Rothermel equations to model landscapes including 110 

live fuels, finding predictions of fire spread to be reasonable (e.g., Davis and Burrows 1994, 111 

Arca et al. 2007, Dasgupta et al. 2007, Peterson et al. 2009), especially when appropriate custom 112 

fuel models (Weise and Regelbrugge 1997, Arca et al. 2007, Peterson et al. 2009) are used. 113 

HFire can be used to simulate individual fires or long-term fire regimes (Peterson et al. 114 

2009). The computational efficiencies built into HFire allowed us to perform 1440 fire regime 115 

simulations, each 1200 years long, for a 100 000 ha shrubland landscape in southern California. 116 

HFire code can be found at the website of the model (http://firecenter.berkeley.edu/hfire/). Inputs 117 

necessary for modeling an individual event in HFire are nearly identical to those for the widely 118 

used FARSITE fire spread simulator (Finney 1998): ignition location(s); temporally varying 119 

inputs such as wind speed and direction, and live and dead fuel moistures; and digital maps of 120 

topography and fuel type. One-dimensional predictions from the Rothermel (1972) equations are 121 

fit to two dimensions, using the solution to the ‘fire containment problem’ (Albini and Chase 122 

1980) and the empirical double ellipse formulation of Anderson (1983). The raster 123 

implementation utilized by HFire does not produce fractal/unrealistic fire perimeters as earlier 124 

raster models did. This is demonstrated through a series of simulations comparing FARSITE and 125 

HFire fire perimeters on both simplified and actual landscapes (Peterson et al. 2009). HFire uses 126 

an adaptive time step, allows fire to spread into a cell from all neighboring cells over multiple 127 
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time steps, and is computationally efficient - a crucial advantage in long-term simulation studies 128 

like those presented here (Peterson et al. 2009).  129 

When HFire is used to simulate fire regimes, it implements the same fire spread 130 

algorithm and landscape inputs as in individual event mode, with additional variables accounting 131 

for stochastic ignitions, stochastic weather variables, stochastic LFM trend, and vegetation 132 

growth/succession. It runs at an hourly time step between fires and at sub-minute intervals during 133 

fires, for hundreds to thousands of simulated years. 134 

Fires cannot occur without ignitions. The average number of ignitions per year and the 135 

spatial distribution of ignitions are user-specified in HFire. Ignition probabilities can be spatially 136 

homogeneous or based on landscape features, such as the distance to the nearest road for fire 137 

regimes where anthropogenic ignitions are prevalent, or elevation for fire regimes where 138 

lightning strikes are the primary source of ignitions (Keeley and Fotheringham 2003). The actual 139 

number and location of these ignitions each year are then stochastically generated during the 140 

simulation runs. Ignitions that do not result in a spreading fire are identified with a size threshold 141 

parameter, and are not included in fire size statistics. 142 

Weather is considered to be the most important variable for predicting how a fire will 143 

spread for many ecosystems, including California chaparral (Davis and Michaelsen 1995, Moritz 144 

1997). HFire uses hourly weather data (wind speed and direction, 10 h dead fuel moisture) to 145 

model fire spread. 10 h dead fuel moisture is commonly used to estimate 1 h and 100 h dead fuel 146 

moisture because 10 h data is measured at weather stations (Burgan et al. 1998). Weather data 147 

files are populated with historical data from weather stations within the study area. A majority of 148 

the total area burned in southern California occurs under extreme wind conditions, locally known 149 

as Santa Ana wind conditions (Countryman 1974), so HFire was designed to accommodate 150 
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separate ‘standard’ and ‘extreme’ hourly weather inputs. The user specifies the annual average 151 

number and duration of extreme fire weather events per year, with the timing and actual number 152 

of extreme events per year stochastically determined by HFire. The weather values used at any 153 

given hour during the simulation period are randomly selected from the standard or extreme data 154 

files.  155 

Live fuel moisture varies predictably on an intraannual basis, however it is highly 156 

variable on an interannual basis due to differences in annual precipitation (Countryman and Dean 157 

1979; Peterson et al. 2008). For fire regime simulations, woody and herbaceous LFM values are 158 

stochastically simulated, given annual average values and standard deviations, and seasonal 159 

trends. Bi-weekly LFM data are available from government agencies for many regions, LFM can 160 

also be predicted using satellite data (Peterson et al. 2008). 161 

Post-fire vegetation progresses through a series of fuel classes, represented by standard 162 

and custom fuel models (Albini 1976; Weise and Regelbrugge 1997), until it burns again. A 163 

climax, potential natural vegetation (PNV) type map is used to assign a particular successional 164 

trajectory to each pixel. Using pixel ages and regeneration trajectories, a fuel model map is 165 

produced. As the simulation progresses, age is incremented annually, or set to zero if the pixel 166 

burns, and the per-pixel fuel models change accordingly. More detail on parameterizing 167 

ignitions, weather, and vegetation regrowth is provided in the Methods section.  168 

Fires go out naturally when they encounter conditions that slow them to the point of 169 

extinction (e.g., moist or sparse vegetation), or they may be actively suppressed. Fire propagation 170 

in a given HFire cell is stopped when the rate of spread drops below an extinction rate of spread 171 

(ERS) threshold. After preliminary runs of HFire, we chose a baseline ERS threshold of 0.05 m 172 

s-1. This estimate is based on discussions with various Forest Service personnel, other fire 173 
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simulation work in southern California chaparral shrublands (e.g., Davis and Burrows 1994), and 174 

comparison of preliminary model output (e.g., fire sizes, shapes, frequencies) with mapped fire 175 

history for the Santa Monica Mountains (SMM). Other LFSMs have used a similar technique to 176 

extinguish fires, basing the threshold on intensity (Cary and Banks 1999; Miller and Urban 2000) 177 

or dead fuel moisture content (Perera et al. 2008) as opposed to rate of spread. 178 

HFire model accuracy and sensitivity have been evaluated in single-event mode by 179 

comparing observed and predicted fire spread during historical events (Peterson et al. 2009) and 180 

for simulated landscapes (Clark et al. 2008; Peterson et al. 2009). HFire has also been utilized 181 

previously in a comparison of empirical fire data, modeled fire regimes, and highly optimized 182 

tolerance (HOT) as the mechanism for ecosystem structure in fire prone areas (Moritz et al. 183 

2005). 184 

 185 

 Methods 186 

Study area, fuel characteristics, and vegetation dynamics 187 

The simulation domain for this project was a 96 000 ha region encompassing the Santa Monica 188 

Mountains National Recreation Area (SMM), abutting the Pacific Ocean and the densely 189 

populated Los Angeles metropolitan area in southern California (Fig. 1). The study area has a 190 

Mediterranean-type climate characterized by hot, dry summers and cool, wet winters. Average 191 

annual precipitation ranges from 400 mm at the coast to 600 mm at the mountain crest (Radtke et 192 

al. 1982), and exhibits a high degree of both intra- and interannual variability (Keeley 2000; NPS 193 

2005). Topography is rugged, with mountain peaks over 500 m in height just a few kilometers 194 

inland from sea level (Fig. 1a). SMM is dominated by sclerophyllous, fire-dependent chaparral 195 

and drought-deciduous coastal scrub shrublands, although there are also riparian corridors, 196 



 10

patches of invasive annual grasses, and vegetation typical of the local WUI (e.g., mixed native 197 

and non-native landscaping) (Radtke et al. 1982; NPS 2005).  198 

 Fires in southern California shrublands tend to be stand-replacing, all aboveground 199 

vegetation is killed (Keeley 2000). Herbaceous vegetation is dominant the first year after the fire, 200 

with shrubs again becoming dominant three to five years after the fire (Horton and Kraebel 1955; 201 

Keeley 2000). Shrub recovery comes from basal resprouting and/or seedling recruitment from 202 

the pre-fire seed bank (Keeley 2000). 203 

Spatial fuels data for the entire SMM area were derived from a 100 m X 100 m (1 ha) 204 

resolution regional PNV map (Franklin 1997), which represents the vegetation community, and 205 

therefore fuel type, that would occur in the long absence of fire.  The PNV map was modified 206 

using SMM maps of riparian areas and local planning agency maps of recent housing 207 

development.  Vegetation communities of the PNV map (Fig. 1b) capable of carrying wildfire 208 

during typical weather conditions were then crosswalked to 1 of the 13 standard fuel models 209 

(Albini 1976) or to custom fuel models for southern California shrubland vegetation (Weise and 210 

Regelbrugge 1997). Vegetation types and their associated fuel models are shown in Table 1, and 211 

details of the fuel models are summarized in online appendix Table A1 212 

(http://firecenter.berkeley.edu/hfire/). 213 

The progression of fuels after a fire depends on the local PNV type. Some types 214 

regenerate on an annual basis, such as grass-dominated areas (NPS 2005) and others remain 215 

relatively constant (e.g., WUI type).  Most vegetation, however, is allowed to develop toward its 216 

late successional PNV type, being progressively assigned fuel models that reflect accumulating 217 

biomass and larger stem diameters (Table A1). The initial fuel model map was generated using 218 

the initial stand age (from fire history of SMM as of 1999) and PNV maps.  219 
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Factors that determine the fire regime 220 

Long-term fire regime sensitivity to the following four variables was evaluated: the number of 221 

ignitions per year, the spatial pattern of ignitions, the number of Santa Ana events per year, and 222 

LFM trend. Baseline settings for these variables are discussed below. HFire was run at 1 ha pixel 223 

resolution for fuels and other spatial inputs, leading to an 870 x 300 pixel modeling domain. 224 

Simulations were 1200 years long, but the first 200 years of each run were discarded to address 225 

possible sensitivities to initial conditions, leaving 1000 years of simulated fires for analysis. Fire 226 

spread was modeled for the period from July 1 to November 30 each year, the period of high fire 227 

risk for southern California (NPS 2005). In fact, 70% of the historical fires recorded in SMM, 228 

and 83% of the area burned, occurred between July 1 and November 30 (R. Taylor, pers. 229 

comm.). 230 

The mapped fire history for SMM is incomplete in the early 1900s (R. Taylor, pers. 231 

comm.), so it was not possible to estimate reliable annual average ignition frequencies from this 232 

dataset.  The southern portion of the Los Padres National Forest (LPNF), however, is a nearby 233 

shrubland-dominated region with a relatively complete ignition and fire perimeter record (Moritz 234 

1999), providing rough estimates of ignition frequencies per unit area.  On average, shrublands 235 

of LPNF experienced a total of 0.37 ignitions per km2 over the period 1911-1995.  Therefore, for 236 

a region the size of SMM (960 km2), a baseline estimate of 4.0 ignitions per year was chosen. 237 

Other values tested in the model runs were 1.0, 8.0, and 12.0 ignitions per year. Most ignitions 238 

are not likely to propagate and become fires in reality, as they are extinguished by human 239 

activity quickly or they go out before successfully igniting fuels that will promote further spread 240 

(Perera et al. 2008). This is incorporated into the model with a failed ignition size parameter, 241 

which was set to one pixel (i.e., fires must progress out of the initial pixel to be counted).  242 
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In addition, HFire allows the user to specify ignition location probabilities, for example 243 

increased probabilities along roads (Fig. 1c). In the SMM, 155 of the 161 fires from 1981-2003 244 

were anthropogenic in origin, the remaining six were due to lightning strikes (NPS 2005), and 245 

anthropogenic ignitions have been shown to preferentially occur close to roads (Keeley and 246 

Fotheringham 2003; Syphard et al. 2008). We tested (i) spatially homogeneous and (ii) spatially 247 

correlated ignition probabilities. For the latter case we used a piece-wise linear function whereby 248 

relative ignition probability was uniform at 1.0 up to 100 m from a road bed, and decreased to 249 

0.1 at 1000m from the road bed.  250 

Fire weather conditions can have a very strong influence on fire regimes, and this is 251 

especially true for chaparral-dominated shrublands (Davis and Michaelsen 1995; Moritz 1997; 252 

Keeley and Fotheringham 2003). We separated fire weather data from 1997-2007 from two 253 

weather stations in SMM (Cheeseboro and Malibu) into either ‘standard’ or ‘extreme’ days, by 254 

examining relative humidity, wind speed and wind azimuth data, and a list of Santa Ana days 255 

determined by Raphael (2003). This resulted in 3000 days of hourly observations for standard 256 

weather. The extreme fire weather dataset is 10% of this size, consisting of 276 days of hourly 257 

observations. A polar plot was used to show wind speed and azimuth values for the standard 258 

(black) and extreme (red) data sets (Fig. 2). Standard winds can blow from any direction, with 259 

southwest winds (wind blowing from the southwest) generally having the highest windspeeds. 260 

Extreme winds, with high wind speeds, generally blow from about 20 to 95 degrees. The lower 261 

windspeeds in the extreme data set are due to: (1) lulls in the winds mid-event, and (2) HFire 262 

requires the classification of weather data as standard or extreme on a daily basis rather than an 263 

hourly one, thus incorporating standard weather conditions at the beginning and end of extreme 264 

events.  265 
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The weather data stream used in the model switches from standard to extreme weather a 266 

user-specified number of times, corresponding to the average number of Santa Ana events per 267 

fire year, for a user-specified length of time. The 1997-2007 average Santa Ana frequency was 268 

5.2 events, with a standard deviation of 1.2 within the July 1 – November 30 HFire simulation 269 

period. Values tested in the model runs were averages of 0.0, 1.0, 2.0, 4.0, 8.0, and 16.0 Santa 270 

Ana events per year. The average duration of an event was calculated from the 1997-2007 271 

weather data to be 2.4 days. 272 

Live fuel moisture, a measure of the water content of live vegetation, affects rate of 273 

spread and ignition success (Countryman and Dean 1979). LFM is particularly important in the 274 

shrublands of southern California as a large proportion (55-75%) of the biomass available to fires 275 

is living, so fires will only propagate if LFM is low (Countryman and Dean 1979; Dennison et 276 

al. 2008). Dennison et al. (2008) examined the fire history of the SMM and found that all large 277 

fires occurred at a LFM below 77%. LFM is input in to HFire separately for woody and for 278 

herbaceous fuels (Fig. 3). We used average values for Los Angeles County chaparral for woody 279 

LFM and Los Angeles County coastal sage scrub (CSS) for herbaceous LFM. The data were 280 

provided by the Los Angeles County Fire Department. LFM follows a sinusoidal trend annually, 281 

with maximum values in early spring and minima in the fall. Three different LFM trends were 282 

tested: the average trend (1982-2007) during (i) wet years and (ii) dry years, and (iii) a 283 

temporally invariant trend (60% for woody fuels, 105% for herbaceous fuels) that might be used 284 

if more detailed information was unavailable. It can be seen that the peak LFM for CSS is nearly 285 

double that of chaparral, and that it occurs earlier in the year, due to CSS species having 286 

shallower roots. The differences between the two are lessened during the HFire simulation period 287 

of July 1 – November 30 (Fig. 3). The average standard deviations during the simulation period 288 
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(wet/dry) were (10.0/5.2) for woody LFM, (40.0/27.0) for herbaceous LFM, and (5.0/5.0) for the 289 

temporally invariant trend.    290 

Analysis 291 

We examined three aspects of fire regimes: fire size distributions, FRI maps, and cumulative 292 

total area burned. Sensitivity to two categorical and two continuous independent variables was 293 

assessed: spatial ignition pattern (uniform, increased number of ignitions closer to roads), live 294 

fuel moisture trend (wet, dry, constant value), ignition frequency (1.0, 4.0, 8.0, 12.0 per year), 295 

and Santa Ana event frequency (0.0, 1.0, 2.0, 4.0, 8.0, 16.0 per year). Ten replicates of each 296 

scenario were performed, varying the starting random number seed, in order to make the results 297 

more robust. Hence, a total of 1440 (2 ignition pattern x 3 LFM x 4 ignition frequency x 6 Santa 298 

Ana frequency x 10 replicates) 1200 year model runs were performed. 299 

Analysis of covariance (ANCOVA) was performed on the total area burned, which was 300 

transformed using the natural logarithm to make the data follow a normal distribution, similar to 301 

Cary et al. (2006). Linear regression is used to test relationships between a continuous dependent 302 

variable and continuous independent variables, analysis of variance (ANOVA) is used to test 303 

relationships between a continuous dependent variable and categorical independent variables, 304 

and ANCOVA allows for both continuous and categorical variables to be tested in the same 305 

model. Tukey’s honestly significantly different (HSD) post-hoc pairwise comparisons are used to 306 

determine which levels of a categorical variable are significantly different once ANOVA 307 

determines that the variable is significant. Statistical analysis was performed within the R free 308 

software environment (R 2008).  309 

 310 

Results 311 
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Modeling the current fire regime 312 

Reasonable, baseline parameter settings (uniform ignitions, 4.0 ignitions per year, 4.0 Santa Ana 313 

events per year, wet LFM) simulated a fire regime that is representative of general fire patterns 314 

in SMM (Fig. 4). In the SMM 1910-2007 fire history, the highest fire frequency occurs at the 315 

southern boundary (the mountain range adjacent to the Pacific Ocean), with the central southern 316 

portion having the most fires. There is another region of high fire frequency in the north central 317 

portion. Much of the east portion experienced zero to one fires in the period 1910-2007. Fig. 4 318 

also shows the last 100 years of modeled fire history for 3 of 10 randomly selected HFire 319 

baseline parameter runs. Patterns in the simulated fire histories are also present in the actual fire 320 

history. All three model results show a greater number of fires in the southern part of the area, 321 

two of the three show enhanced fire frequency in the north central region, and fire frequency is 322 

reduced in the eastern portion of SMM.  323 

A commonly used fire regime metric is the FRI, defined to be the average number of 324 

years between fires. The average FRI of the 10 random baseline runs was 37.2 years for the wet 325 

LFM trend and 21.4 years for the dry LFM trend (Table 2). These values envelop the published 326 

value of 32 years for SMM, which experienced a mixture of wet and dry years in the 1910-2007 327 

period (NPS 2005). 328 

Plots of simulated (1000 years) and actual fire size distributions demonstrate that the 329 

baseline parameter settings generated distributions that are similar in form to that of the 330 

chaparral-dominated portions LPNF (Fig. 5), indicating that simulated fire regimes approximate 331 

those observed in real shrubland ecosystems well. The distributions of fire sizes follow a power 332 

law, characterized by many very small events extending broadly out to relatively few larger 333 

events (Fig. 5; Moritz 1997; Moritz et al. 2005; Cui and Perera 2008). The LPNF shrubland 334 
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dataset represents a largely complete fire history that includes even very small events (Moritz, 335 

1999). The data were originally compiled in 1997, and have been updated through 2007 by 336 

including fires recorded by CAL FIRE (Moritz 1999; FRAP 2009). LPNF is 10 times larger than 337 

SMM, but the fire record (1910-2007) is approximately 1/10th as long as the HFire simulation 338 

period, so the number of fires recorded was comparable. The SMM fire history (R. Taylor, pers. 339 

comm.) is also included on the plot (Fig. 5), showing the form of both historical chaparral 340 

datasets is similar, despite the smaller number of fires and reduced large fire size, due to the 341 

reduced size of the study area. 342 

The large difference between median and mean fire sizes shown in Table 2 is also 343 

consistent with a power-law fire size distribution. Other measures characterizing the simulated 344 

baseline fire regime, such as the percentage of ignitions propagating to become fires and the 345 

coefficient of variation (CV) in fire size, are also given in Table 2. 346 

Evaluating fire regime drivers 347 

This section examines changes in fire size distributions and maps of FRIs resulting from varying 348 

ignition pattern and frequency, Santa Ana frequency, and LFM trend, as well as univariate 349 

relationships between those independent variables and the natural logarithm of total burned area. 350 

Linear regression results are provided for the continuous variables and ANOVA results are 351 

provided for the categorical variables.  352 

 Fig. 6 shows the effect of varying the four independent variables on fire size 353 

distributions. The distributions shown represent the sum of all of the fires from the 10 HFire runs 354 

having a different random number seed. Baseline settings (uniform ignitions, 4.0 ignitions per 355 

year, 4.0 Santa Ana events per year, wet LFM) were used for the variables that were held 356 

constant in the simulations. Varying the number of Santa Ana events has minimal effect on the 357 
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total number of fires, and the size of the 10 largest fires, however the distribution of medium to 358 

large fire sizes is very different (Fig. 6a). The size of the 1000th fire increases from 359 

approximately 2000 ha for the 0.0 Santa Ana cases to 30 000 ha for the 16.0 Santa Anas per year 360 

cases. Many more medium to large fires occur under more extreme weather conditions. Varying 361 

the number of ignitions has a different effect. As the number of ignitions per year increases, the 362 

number of fires increases (Fig. 6b). However, the fire size distribution lines cross in the figure, 363 

and the 12.0 ignitions per year case has the lowest largest fire size, as previously burned areas 364 

within the same fire season act as fire breaks for subsequent fires. The variability in fire size 365 

distributions is lower for the remaining two variables. Dry LFM generally leads to larger fires, 366 

although the largest fires within the 1000 year modeling period are of similar size for the wet 367 

LFM case (Fig. 6c). Having no set ignition pattern led to slightly larger intermediate fire sizes, 368 

but the largest fires were of the same size (Fig. 6d). 369 

 The FRI maps show that spatial variability in FRI is high for all four independent 370 

variables (Figs 7-9). The FRI maps presented here were constructed by averaging the FRI maps 371 

from the 10 differently seeded HFire runs. Areas in red on the maps experience FRI less than 10 372 

years, making them susceptible to type-conversion (Keeley et al. 2005). Fig. 7 shows the effect 373 

of varying the number of Santa Ana events. As with Fig. 4a, which showed the fire history of the 374 

past 100 years, Fig. 7 shows that the eastern and northerly western portions of the SMM burn 375 

less regularly. The FRI decreases with increasing numbers of Santa Ana events, with only the far 376 

eastern portion showing values greater than 100 years for the 16.0 Santa Ana events case. This is 377 

to be expected as winds blow from the northeast during Santa Anas, and fires do not readily 378 

spread upwind.  379 
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Fig. 8 shows the effect of varying the number of ignitions on FRI patterns. There is a 380 

clear difference between the 1.0 and the 4.0, 8.0, and 12.0 ignitions per year maps. The central 381 

southern portion of the landscape burns with return intervals of 30 years or less for the higher 382 

number of ignitions cases but return intervals of 60 years or less for the one ignition per year 383 

case.  384 

Varying the LFM trend has a noticeable effect on FRI maps (Figs 9a, 9b, and 9c). The 385 

three trends show similar spatial patterns of high and low values, with dry LFM having the 386 

lowest FRI values, followed by wet and constant LFM. This is consistent with Fig. 6c, which 387 

showed that large fires are most common for dry, then wet, then constant LFM.  388 

The FRI maps for uniform and spatially correlated ignitions (Figs 9c and 9d) demonstrate 389 

the importance of using multiple metrics to describe a fire regime. Fig. 6d showed minimal 390 

differences in fire size distribution due to the spatial pattern of ignitions, but the FRI maps show 391 

clear differences. The northerly western and the eastern portion of SMM show FRIs greater than 392 

100 years in the uniform ignition pattern map (Fig. 9c), and there is a strong contrast with the 393 

shorter FRIs seen in the central portion of SMM (FRI between 10 and 20 years). However, roads 394 

are concentrated in the northerly western and eastern portions of SMM (Fig. 1c), and while FRI 395 

is still highest in these portions of SMM for the correlated ignition pattern map, the area of FRI 396 

greater than 100 years is reduced (Fig. 9d). The area of FRI between 10 and 20 years is also 397 

reduced, leading to less contrast in values. It is interesting that introducing spatially correlated 398 

ignitions serves to decrease the spatial variability evident in the FRI map. 399 

Box plots showing relationships between the natural logarithm of total area burned and 400 

the four independent variables are provided in Fig. 10. Increasing the number of ignitions 401 

increases the total area burned, with the biggest increase occurring from 1.0 to 4.0 ignitions per 402 
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year (Fig. 10a). Increasing the number of Santa Ana events also shows increased total area 403 

burned, though the relationship is more consistent (Fig. 10b). For LFM trend, dry conditions lead 404 

to a much larger total area burned than the wet and constant trends (Fig. 10c). For ignition 405 

pattern, uniform ignitions lead to a slightly larger total area burned (Fig. 10d). 406 

 Statistical tests demonstrate that the variability seen in the fire size distributions, FRI 407 

maps, and box plots is very unlikely to arise by chance. All four of the independent variables 408 

showed statistically significant relationships with the logarithm of total area burned (p < .0001), 409 

with number of ignitions explaining the most variance (R2 = 0.395, slope = 0.175, intercept = 410 

13.74, Table 3), followed by number of Santa Anas (R2 = 0.327, slope = 0.12, intercept = 14.21), 411 

LFM trend (R2 = 0.08), and spatial ignition pattern (R2 = 0.008). The number of ignitions had a 412 

steeper slope than the number of Santa Anas and thus is more sensitive to total area burned. All 413 

Tukey’s HSD posthoc pairwise comparisons for LFM were significantly different (p < 0.05), 414 

though wet and constant were not also significantly different at the .001 level. 415 

Multivariate relationships 416 

The cumulative variance explained by the four independent variables, without interactions, was 417 

0.8094 (Table 3). All possible interaction terms were added, and then non-significant terms were 418 

removed in a stepwise manner using the Akaike information criteria (AIC: Akaike 1974). When 419 

the statistically significant interaction effects were included, the explained variance increased to 420 

0.8702 (Table 3). Four interactions were significant at the 0.0001 level: between LFM trend and 421 

the number of Santa Anas, LFM trend and the number of ignitions, number of ignitions and the 422 

number of Santa Ana events, and the interaction between these three variables. The implications 423 

of these interaction terms are discussed below. 424 
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Most of the area burned in chaparral shrublands is during Santa Ana events in actuality 425 

(Countryman 1974) and also in HFire. Intuitively, increasing the number of ignitions increases 426 

the chances that an ignition will occur coincident with a Santa Ana event, up to a point. This may 427 

be the mechanism for the importance of the interaction between annual numbers of Santa Ana 428 

events and ignitions. One of the text outputs from HFire lists area burned under standard and 429 

extreme conditions, for each fire. Fig. 11 shows a contour plot representing the percentage of 430 

area burned during extreme conditions as a function of number of ignitions and Santa Anas. A 431 

number of interesting trends are present in the plot. For lower numbers of Santa Anas per year 432 

(0.0, 1.0, 2.0), the percent area burned during a Santa Ana does not change when the number of 433 

ignitions increases. Once the number of Santa Ana events per year is 4.0 or greater, increasing 434 

the number of ignitions results in increasing percent area burned during a Santa Ana from 0.450 435 

to 0.6 – 0.8.  For high numbers of both ignitions and Santa Anas, the number of Santa Anas is 436 

more sensitive to Santa Ana fraction of total area burned than number of ignitions. This suggests 437 

that the system is more limited by the number of wind events rather than the number of ignitions. 438 

The FRI maps for the ignitions per year cases also show that once ignitions increase beyond 1.0 439 

per year, FRI remains fairly consistent (Fig. 8). 440 

In the interaction between LFM and the number of Santa Ana events per year, it is clear 441 

that the constant trend has the steepest slope and thus is most sensitive to the number of Santa 442 

Anas (Fig. 12). The wet LFM trend shows a slightly steeper slope than the dry LFM trend, 443 

suggesting that wetter fuels require more wind than drier fuels in order to burn larger amounts of 444 

the landscape. The disparity in slope between the constant and wet/dry LFM trends is due to the 445 

smaller amounts of total area burned for the lower Santa Ana events per year cases for the 446 

constant trend, LFM may have been above a threshold that would lead to large fires under low 447 
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wind conditions.  It is interesting to note that for the zero Santa Ana case, the fire risk in the 448 

system appears to be fuel dominated as the dry LFM trend produces larger fires than the wet and 449 

constant trends. But as more Santa Anas are added, the differences in area burned due to LFM 450 

trend are reduced (all three LFM trends lead to a mean natural logarithm of total area burned of 451 

roughly 16 when the number of Santa Ana events per year increased to 16.0).  452 

The interaction between LFM and the number of ignitions per year shows some similar 453 

patterns. All three trends show a large jump in area burned between the one and four ignitions 454 

per year cases, and the constant trend shows the steepest slope overall (Fig. 13). However it is 455 

interesting to note that the three different LFM trends have less similar values for the maximum 456 

number of ignitions per year than they showed for the maximum number of Santa Anas per year 457 

(Fig. 13). The Santa Ana variable was able to dominate the effect of the LFM variable more so 458 

than the number of ignitions variable did.  459 

 460 

Discussion 461 

We studied drivers (weather, ignition, and fuel) of the long-term fire regime of SMM using the 462 

HFire LFSM. Three different aspects of the fire regime were examined: the distribution of fire 463 

sizes, the cumulative total fire size, and the spatial patterns of the FRI. These three ways of 464 

visualizing the output are complimentary, with the maps providing the most detail, and boxplots 465 

of the total area burned able to efficiently summarize a large number of model runs. 466 

 The number of ignitions was most important for predicting total area burned.  467 

Haydon et al. (2000) also found high model sensitivity to varying the number of ignitions, 468 

especially when values more than +/- 100% different were tested. In contrast, Oliveras et al. 469 

(2005) showed minimal sensitivity when the number of ignitions varied between 26 and 110 per 470 
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year, corresponding to half to two times the current fire ignition frequency per year for their 471 

study area. For our data, if we remove the one ignition per year model runs, which are one 472 

quarter the current fire ignition frequency of four per year, the R2 for this variable drops from 473 

0.395 to 0.138, though this value is still significant. Hence, while increasing the number of 474 

ignitions from 4.0 to 12.0 still serves to increase the total area burned, model sensitivity is 475 

reduced. A possible explanation is that within a calendar year, prior fires in the fire season may 476 

act as fire breaks to later fires, so that more ignitions does not necessarily equate to more area 477 

burned. The fire size distribution plot (Fig. 6b) and FRI map (Fig. 8) for the number of ignitions 478 

variable support the idea that the biggest difference in fire properties occurs from 1.0 to 4.0 479 

ignitions, with the 4.0, 8.0, and 12.0 ignition cases having more similar output.  480 

This has implications for future fire regimes because ignitions preferentially occur in 481 

WUI areas (Radeloff et al. 2005, Syphard et al. 2007), and the WUI will expand in coming 482 

decades (Swenson and Franklin 2000). From our model results, it would appear that the 483 

increased number of ignitions beyond the current value will have a small effect on burned area. 484 

However, increased numbers of people living in the WUI will lead to increased exposure to fire.  485 

The number of Santa Ana events also explained a large amount of variance in total area 486 

burned. When the 1.0 ignition per year model runs were removed from the analysis, the R2 for 487 

number of Santa Anas increased from 0.327 to 0.571 and the overall R2 increased from 0.809 to 488 

0.832. Additionally, the Santa Ana variable shows the most consistent increase in area burned in 489 

Fig. 6, and the most consistent decrease in FRI in Figs 7-9. This finding heightens the value of 490 

initial fire suppression efforts when Santa Ana events are forecast, especially during dry years, if 491 

a commensurate increase in total area burned, and loss of life and structures is to be avoided 492 

(Westerling et al. 2004). 493 
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The importance of weather-related factors is well established in the fire modeling 494 

literature (e.g., Cary et al. 2006). Additionally, a global sensitivity analysis applied to HFire in 495 

single-event mode found that windspeed was three times as important as the second place input 496 

(1 h dead fuel moisture) for predicting fire size (Clark et al. 2008).  497 

Climate change is likely to have major effects on ecosystem structure and function, and 498 

changing fire regimes will play an important role on many terrestrial landscapes. General 499 

circulation models (GCMs) are typically used to predict changes in average temperature and 500 

precipitation rather than extreme weather events, but two recent studies have examined changes 501 

in Santa Ana event frequencies under different climate change scenarios (Miller and Schlegel 502 

2006; Hughes et al. 2009). Miller and Schlegel (2006) predicted that the peak Santa Ana season 503 

will shift from September-October to November-December by the end of the 21st century. 504 

Hughes et al. (2009), using a different GCM and methodology, show that Santa Ana frequency 505 

has decreased 30% from the 1960s to the 1990s and predict a similar decrease through the mid 506 

21st century. The impact of the number of Santa Ana events on fire regime evident in our 507 

research provides impetus for clarifying the response of Santa Ana frequency to climate change.  508 

 The sensitivity to LFM trend in HFire is reflected in actual conditions, too. Weise et al. 509 

(1998) suggested that fire danger can be approximated using LFM, with low fire danger for LFM 510 

> 120%, moderate fire danger for 120% > LFM > 80%, high fire danger for 80% > LFM > 60%, 511 

and extreme fire danger for LFM < 60%. The dry LFM trend has values at 60% for August, 512 

September, and October, whereas LFM does not reach 60% for the wet trend. Dennison et al. 513 

(2008) also found an interaction between LFM and Santa Ana events. They found that the seven 514 

largest fires in the SMM between 1982 and 2007 occurred when the LFM was below 77%, and 515 

Santa Ana winds were present. The net effect of climate change predictions on LFM are unclear, 516 
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as winter and summer temperatures are predicted to increase by 30C and 10C, respectively, which 517 

would tend to dry out fuels, but precipitation is also expected to increase, which may increase 518 

LFM (Field et al. 1999). If future fuels are drier, the fire regime will shift to more, larger fires, 519 

with a shorter return interval. 520 

 The pattern of ignitions demonstrates that viewing different aspects of the fire regime 521 

may reveal different trends. The fire size distribution and the total burned area both show 522 

minimal differences due to uniform and spatially correlated ignitions. However, the two FRI 523 

maps show clear differences. The uniform ignitions map has more areas of high and low FRI, 524 

whereas the correlated ignitions map has less contrast. 525 

 It is doubtful that native plant species which dominate many shrublands of California will 526 

be able to persist under shorter fire return intervals, because for many fire-dependent chaparral 527 

species, there is a threshold in fire return interval below which plants are not able to successfully 528 

regenerate (Zedler et al. 1983). Large areas of FRI below 10 years (highlighted in red in Figs 7-529 

9) occurred in HFire simulations under three conditions: when the number of Santa Ana events 530 

was 16.0 per year, when ignitions increased to 12.0 per year, and under dry LFM conditions. The 531 

16.0 Santa Ana per year case is plausible, but unlikely, given current climate change predictions 532 

(Miller and Schlegel 2006; Hughes et al. 2009). Future LFM trends are unclear, as discussed 533 

above. However, increasing ignitions are almost certain to occur as the WUI expands (Syphard et 534 

al. 2007), so there is a risk of type-conversion in the future. Additionally, once a threshold is 535 

crossed and native vegetation is type-converted into non-native invasive grasses, further 536 

alterations to vegetation patterns and fire regimes are likely through positive feedback cycles 537 

(D’Antonio and Vitousek 1992).   538 

   539 
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Conclusions 540 

Fire regimes are characterized by statistics describing fire size distributions, fire return intervals, 541 

and cumulative total area burned. HFire has been shown to model the fire regime of a southern 542 

California shrubland (Moritz et al. 2005). In this paper we evaluated the importance of four 543 

physical drivers of these characteristics for southern California. These include the annual number 544 

of ignitions, the spatial pattern of ignitions, the annual number of Santa Ana wind events, and 545 

live fuel moisture trends.  Our simulations demonstrated the most significant change in the fire 546 

regime metrics arose in response to variations in ignition frequency and extreme fire weather 547 

events, while fuel moisture trend and ignition pattern had less influence on fire regime metrics. 548 

Not surprisingly, the largest cumulative area burned occurred under the most ignitions (12.0 per 549 

year), highest wind (16.0 Santa Anas per year), most flammable fuels (dry LFM trend) scenario. 550 

This study demonstrates the promise of HFire as an efficient, mechanistic fire model for 551 

long-term fire regime studies. This paper examined steady state fire regimes for a range of values 552 

of the drivers. This provides an initial means to evaluate how fire regimes may change in 553 

response to changes in the drivers. More detailed studies of specific scenarios could be obtained 554 

by extracting estimates of time varying drivers from models of climate change or urbanization, 555 

which could provide projections for changes in weather parameters, fuel conditions, and 556 

ignitions, which could then be used as time varying inputs for HFire.  557 

Incorporation of possible vegetation type conversion (e.g., stochastically driven changes 558 

in PNV type based on fire frequency at a site) represents a top priority for the next stage of 559 

model development, and will aid in these studies of long term change. Additionally, more 560 

complex variations in fuel model pathways will be explored, involving more chaparral fuel 561 

models. Several dynamical upgrades are also of interest. Spotting can increase the overall spread 562 
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rate of a fire across a landscape, and this has been observed in fire simulation modeling studies 563 

(Hargrove et al. 2000). We expect spotting will play an important role in the dynamics of 564 

individual fires, including mechanisms for spread of fires into urban areas, but may not have a 565 

major impact on long term statistical metrics. Many potential spot fires are eventually overtaken 566 

by the main fire, so that the majority of short-range spotting may not have a major cumulative 567 

effect on final fire size (Rothermel 1983), and hence fire size distributions/fire regimes. In 568 

addition, upgrades which expand the range of fire regimes which can be investigated are of 569 

interest. HFire was developed to model stand-replacing fires in shrubland fuels and thus HFire 570 

does not currently model the local, vertical transition of surface fire to crown fire in a forest 571 

canopy. As such, the general relationships between physical parameters and fire regimes we 572 

observed may or may not hold in ecosystems where this local transition has a large effect on 573 

landscape-scale spatial fire patterns and long-term fire regime dynamics. 574 

Modeling is one of few approaches available for investigating fire regime dynamics 575 

under future climate change and WUI expansion scenarios.  New tools like HFire are useful for 576 

exploring sensitivities and possible future scenarios, where the physical parameters governing 577 

fire spread are expected to change. Detailed and physically-based fire growth algorithms are 578 

often considered too complex and computationally intensive for long-term simulations, but 579 

HFire’s implementation of the Rothermel (1972) equations allows for multi-century modeling of 580 

fire regimes, with simultaneous fires burning on a landscape and regrowth of vegetation between 581 

fires. 582 
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Table 1. Vegetation, regrowth characteristics, and associated fuel models. These classes represent the mapped PNV types 

within the study area and their simplified paths of fuel regrowth after a fire. For classes that are assumed to accumulate biomass with 

age, fuel models change with time since fire, and the relevant time periods for each stage are given in parentheses. Both standard 

(Northern Forest Fire Laboratory, NFFL (Albini 1976)) and custom fuel model parameter estimates are provided in Online Appendix 

table A1 (http://firecenter.berkeley.edu/hfire/). 

 
PNV vegetation type Area 

(ha) 
Immediately 
following fire 

Early 
stage 

Later 
stage 

Agricultural 1461 Not burnable Not burnable Not burnable 
Coastal dune scrub 844 Not burnable Not burnable Not burnable 
Coastal strand 295 Not burnable Not burnable Not burnable 
Riparian (NPS) 3431 Not burnable Not burnable Not burnable 
Rock outcrops 201 Not burnable Not burnable Not burnable 
Salt marsh 156 Not burnable Not burnable Not burnable 
Unknown 19 Not burnable Not burnable Not burnable 
Water 485 Not burnable Not burnable Not burnable 
Non-native annual grass 3421 NFFL 1 NFFL 1 NFFL 1 
Coastal cactus scrub 402 NFFL 1 NFFL 1 NFFL 1 
Valley oak 474 NFFL 1 NFFL 1 NFFL 1 
Walnut 127 NFFL 1 NFFL 1 NFFL 1 
Coast live oak 1742 NFFL 3 NFFL 3 NFFL 3 
Non-native conifer/hardwood 26 NFFL 9 NFFL 9 NFFL 9 
Riparian (sycamore/oak) 678 NFFL 9 NFFL 9 NFFL 9 
Chamise chaparral 1450 NFFL 5 (1-2 years) Custom 17 (3-15 years) Custom 15 (>16 years) 
Red shank chaparral 322 NFFL 5 (1-2 years) Custom 17 (3-15 years) Custom 15 (>16 years) 
Coastal scrub/chaparral mix 418 NFFL 5 (1-3 years) Custom 21 (4-12 years) Custom 16 (>13 years) 
Northern mixed chaparral 36737 NFFL 5 (1-2 years) Custom 18 (3-12 years) Custom 16 (>13 years) 
Coastal sage scrub 18922 NFFL 5 (1-3 years) Custom 21 (4-15 years) Custom 18 (>16 years) 
Development (WUI) 24241 Custom 20 Custom 20 Custom 20 



Table 2. Fire regime metrics for baseline parameter settings of HFire (aspatial ignitions, 4 ignitions per year, 4 Santa Ana events per 

year, wet LFM). Values for constant and dry LFM are also shown. Columns 2-7 indicate the following: number of actual ignitions 

simulated over the period analyzed; percentage of ignitions becoming fires; fire return interval, median fire size, mean fire size, and 

coefficient of variation (CV) in fire size.  

Live fuel 
moisture trend 

Total 
ignitions 
(#/1000 yr) 

Become 
fires 
(%) 

Fire return 
interval  
(yr) 

Median 
fire size 
(ha) 

Mean 
fire size 
(ha) 

CV  
fire size 
(ha) 

Constant 4014.2 44 49.2 53.4 1275.7 3.8 
Wet 4030.0 40 37.2 41.7 1770.2 3.9 
Dry 4003.1 48 21.4 116.7 2687.7 2.9 
 



 
Table 3. Sum of squares and R2 for the four independent variables (ig_pattern: categorical variable concerning ignition pattern, lfm: 

categorical variable concerning live fuel moisture trend used, sa: average annual number of Santa Ana events igpy: average annual 

number of ignitions) and the significant interactions on ln-transformed total area burned. All are significant at the .0001 level.  

Independent 
variable(s) 

Degrees of 
freedom 

Sum of 
squares 

R2 

ig_pattern 1 14.4 0.0075 
lfm 2 153.4 0.0801 
sa 1 625.6 0.3265 
igpy 1 757.4 0.3953 
lfm+sa 2 38.5 0.0201 
lfm+igpy 2 69.0 0.0360 
sa+igpy 1 3.4 0.0018 
lfm+sa+igpy 2 5.5 0.0029 
Residuals 1427 248.7  
 
  
 



Figure captions 

Figure 1. Study area.  The inset at top shows the location of the SMM study area along 

the coast of southern California.  Points C and M indicate the locations of Cheeseboro 

and Malibu weather stations from which hourly weather data were obtained.  Panel A 

demonstrates the patterns of topography in the study area.  Panel B indicates aggregated 

vegetation class patterns in SMM (see Table 1 for detailed breakdown). Panel C indicates 

the road network and associated probabilities of ignition.  

Figure 2. Polar plot showing historical (1997-2007) wind speed (miles per hour) and 

direction data under normal (black) and Santa Ana (red) conditions for the Cheeseboro 

and Malibu weather station, SMM. 

Figure 3. Live fuel moisture trends (LFM) used in the HFire model runs, data derived 

from the Los Angeles County Fire Department LFM monitoring program. 

Figure 4. Fire frequency for SMM, actual 1910-2007 (a), and the last 100 years of three 

randomly selected HFire runs (b-d) using baseline parameters (aspatial ignitions, 4 

ignitions per year, 4 Santa Ana events per year, wet LFM).  

Figure 5.  Historical LPNF (black) and historical SMM (dashed black) vs. simulated (10 

colored lines) HFire baseline parameterization fire size distributions. The historical LPNF 

dataset includes all chaparral fires in LPNF from 1911-1995 plus CAL FIRE data from 

1996-2007. The historical SMM dataset covers 1910-2008 and contains all known fires. 

The historical datasets were subset to only include fires larger than 2 ha, the minimum 

fire size generated by HFire. The data were sorted by fire size in descending order 

(largest fire has a rank of 1). 



Figure 6. Cumulative fire-size probability distributions, summing the 10 different random 

runs varying (a) the number of Santa Ana events per year (0, 1, 2, 4, 8, 16; red, green, 

blue, cyan, magenta, black), (b) the number of ignitions (1, 4, 8, 12; black, red, green, 

blue), (c) the Live Fuel Moisture (constant, wet, dry; black, red, green), and (d) the 

ignition pattern (no pattern, higher probability closer to roads; black, red). The data were 

sorted by fire size in descending order (largest fire has a rank of 1). 

Figure 7. Fire Return Interval maps for 1000 years of fires for SMM, showing the effect 

of increasing the number of Santa Ana (SA) events from 0 to 16 per year. Other 

parameters held constant were 4 ignitions per year, wet LFM, and uniform ignition 

probabilities. 

Figure 8. Fire Return Interval maps for 1000 years of fires for SMM, showing the effect 

of increasing the number of ignitions per year (igpy) from 1 to 12. Other parameters held 

constant were 4 Santa Ana events per year, wet LFM, and uniform ignition probabilities. 

Figure 9. Fire Return Interval maps for 1000 years of fires for SMM, showing the effect 

of changing LFM from constant (a), to average dry trend (b), to average wet trend (c). 

Other parameters held constant were 4 Santa Ana events per year, 4 ignitions per year, 

and uniform ignition probabilities. Image (d) shows the effect of using correlated ignition 

probabilities where all other parameters are the same as (c).  

Figure 10. Boxplots for number of ignitions per year, LFM trend, number of Santa Ana 

events per year, and spatial ignition pattern.  

Figure 11.  Contour plot of percentage area burned during Santa Ana events, generally 

showing more sensitivity to the number of Santa Anas as opposed to the number of 

ignitions. 



Figure 12. Boxplots for the interaction of LFM and number of Santa Ana events per year. 

X-axis refers to 0-16 Santa Anas and constant (c), dry (d), and wet (w) LFM. For 0 Santa 

Anas, the dry LFM trend burned a much larger area than the other trends. At higher 

numbers of Santa Anas, the weather dominates, and all three LFM trends produce similar 

total area burned. 

Figure 13. Boxplots for the interaction of LFM and number of ignitions per year. X-axis 

refers to 0-12 ignitions and constant (c), dry (d), and wet (w) LFM. For 0 ignitions, the 

constant LFM trend burned a much smaller area than the other trends. At higher numbers 

of ignitions, the weather dominates, and all three LFM trends produce similar total area 

burned. 
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Online supporting materials: Appendix Table and Model Descriptions 
 
 
Table A1. Standard Northern Forest Fire Laboratory (NFFL, Albini 1976) fuel model and custom fuel model (Weise and Regelbrugge 

1997; Morais 2001) characteristics. 

Fuel Model Description 

Dry 
Biomass 
of Dead 
Fuels 

(<0.635 
cm) 

Mg/ha 

Dry 
Biomass 
of Dead 
Fuels 

(0.635-
2.54 cm) 
Mg/ha 

Dry 
Biomass 
of Dead 
Fuels 
(2.54-

7.62 cm) 
Mg/ha 

Dry 
Biomass 
of Live 
Herb. 
Fuels 
Mg/ha 

Dry 
Biomass 
of Live 
Woody 
Fuels 
Mg/ha 

Surface 
Area-to-
Volume 
Ratio of 

<0.635 cm 
Dead Fuels 

(1/cm) 

Surface 
Area-to-
Volume 
Ratio of 

Live 
Herb. 
Fuels 
(1/cm) 

Fuel 
Bed 

Depth 
(cm) 

Dead Fuel 
Moisture 

of 
Extinction 

(%) 

Dead 
Fuel 
Heat 

Content 
(J/kg) 

Live 
Fuel 
Heat 

Content 
(J/kg) 

NFFL 1 short grass 1.66 0 0 0 0 105.98 0 30.48 12 18608 18608 
NFFL 3 tall grass 6.75 0 0 0 0 45.42 0 76.20 25 18608 18608 
NFFL 5 brush 2.24 1.12 0 0 4.48 60.56 0 60.96 20 18608 18608 
NFFL 9 hardwood litter 6.55 0.92 0.34 0 0 75.7 0 6.10 25 18608 18608 

Custom 15 old chamise 4.48 6.73 2.24 1.12 4.48 19.37 66.61 91.44 13 23260 23260 
Custom 16 ceanothus 5.04 10.76 4.04 6.73 6.28 15.14 45.42 182.88 15 18608 18608 
Custom 17 young chamise 2.91 2.24 2.24 4.48 4.48 19.37 66.61 121.92 20 18608 18608 

Custom 18 sagebrush and 
buckwheat 12.33 1.79 0.22 1.68 5.6 19.37 45.42 91.44 25 21399 21399 

Custom 20 WUI 1.66 4.19 3.36 0 0.83 105.98 45.42 53.34 40 18608 18608 
Custom 21 SMM CSS 5.5 0.7 0 1.6 3 19.37 45.42 91.44 25 21399 21399 

 
 
 
Model Name:  "Short Grass" 

Fuel Model Number: 1 

Source:  Albini 1976 



Description: 

This model corresponds to stands where the Potential Natural Vegetation (PNV) and cover was identified from Franklin, 1997 as consisting of:  

• dominated by exotic annual grasses  

• Valley Oak (Quercus lobata) savanna  

• open Walnut (Juglans californica) woodlands  

• coastal cactus scrub consisting of Prickly Pear (Opuntia oricola) and exotic annual grasses  

 

Model Name:  "Tall Grass" 

Fuel Model Number: 3 

Source:   Albini 1976 

Description:  

This model corresponds to stands where the Potential Natural Vegetation (PNV) was identified from Franklin, 1997 as consisting of:  

• Coast Live Oak (Quercus agrifolia) woodland  

 

Model Name:  "Brush" 

Fuel Model Number: 5 

Source:   Albini 1976 

Description: 

This model corresponds to stands where the Potential Natural Vegetation (PNV) and cover was identified from Franklin, 1997 as consisting of: 



• dominated by northern mixed chaparral AND less than or equal to 2 years maturity  

• > 80% cover of Chamise (Adenostoma fasciculatum) AND less than or equal to 2 years maturity  

• dominated by Redshank (Adenostoma sparsifolium) chaparral AND less than or equal to 2 years maturity  

• dominated by coastal sage scrub AND less than or equal to 3 years maturity  

• dominated by a mixed coastal sage scrub and northern mixed chaparral community AND less than or equal to 2 years maturity  

 

Model Name:  "Hardwood Litter" 

Fuel Model Number: 9 

Source:   Albini 1976 

Description: 

This model corresponds to riparian areas identified from a 1997 National Park Service field-based inventory as well as the following subclasses in Franklin, 

1997:  

• riparian corridors  

• non-native conifers and hardwoods  

 

Model Name:  "Old Chamise" 

Fuel Model Number: 15 

Source:   Weise and Regelbrugge 1997 

Description:  



This model corresponds to stands where the Potential Natural Vegetation (PNV) was identified from Franklin, 1997 as consisting of:  

• > 80% cover of Chamise (Adenostoma fasciculatum) AND greater than 15 years maturity  

• dominated by Redshank (Adenostoma sparsifolium) chaparral AND greater than 15 years maturity  

 

Model Name:  "Ceanothus" 

Fuel Model Number: 16 

Source:   Weise and Regelbrugge 1997 

Description:  

This model corresponds to stands where the Potential Natural Vegetation (PNV) was identified from Franklin, 1997 as consisting of:  

• dominated by northern mixed chaparral AND greater than 12 years maturity  

• dominated by a mixed coastal sage scrub and northern mixed chaparral community AND greater than 12 years maturity  

 

Model Name:  "Young Chamise" 

Fuel Model Number: 17 

Source:   Weise and Regelbrugge 1997 

Description:  

This model corresponds to stands where the Potential Natural Vegetation (PNV) was identified from Franklin, 1997 as consisting of:  

• > 80% cover of Chamise (Adenostoma fasciculatum) AND greater than or equal to 3 years maturity AND less than or equal to 15 years maturity  

• dominated by Redshank (Adenostoma sparsifolium) chaparral AND greater than or equal to 3 years maturity AND less than or equal to 15 years maturity  



 

Model Name:  "Sagebrush and Buckwheat" 

Fuel Model Number: 18 

Source:   Weise and Regelbrugge 1997 

Description:  

This model corresponds to stands where the Potential Natural Vegetation (PNV) was identified from Franklin, 1997 as consisting of:  

• dominated by coastal sage scrub AND greater than 15 years maturity  

• dominated by northern mixed chaparral AND greater than or equal to 3 years maturity AND less than or equal to 12 years maturity  

 

Model Name:  "Wildland Urban Interface" 

Fuel Model Number: 20 

Source:   Morais 2001 

Description:   

This model corresponds to stands where the cover was identified from Franklin, 1997 as consisting of:  

• rural residential or urban land use  

This fuel model is meant to mimic the exotic landscape vegetation commonly surrounding homes in the Santa Monica Mountains. The grass component of the 

wildland urban interface fuels is represented by values of D1H and DSAV taken from NFFL 1. The exotic landscaped vegetation component of the wildland 

urban interface fuels is represented by values of D10H, D100H, LH, LW, LHSAV, and LWSAV taken from NFFL 7. The fuel bed depth is the numerical 

average of NFFL 1 and NFFL 7.  



 
Model Name:  "Santa Monica Mountains Coastal Sage Scrub" 

Fuel Model Number: 21 

Source:   Morais 2001 

Description:  

This model corresponds to stands where the Potential Natural Vegetation (PNV) was identified from Franklin, 1997 as consisting of: 

• dominated by coastal sage scrub AND greater than 3 years maturity AND less than or equal to 15 years maturity  

• dominated by a mixed coastal sage scrub and northern mixed chaparral community AND less than or equal to 12 years maturity  

Fuel biomass data collected from destructive sampling of coastal sage scrub sites in the Santa Monica Mountains displayed much lower loading values as 

compared to model 18 developed by the US Forest Service.  The values used for fuel biomass in this fuel model represent values closer to what was recorded 

from the destructive samples taken in the Santa Monica Mountains. 

 

 
 


