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Abstract

Dynamics of Immune System Vulnerabilities

by

Sean P. Stromberg

The adaptive immune system can be viewed as a complex system, which adapts,

over time, to reflect the history of infections experienced by the organism. Under-

standing its operation requires viewing it in terms of tradeoffs under constraints

and evolutionary history. It typically displays “robust, yet fragile” behavior,

meaning common tasks are robust to small changes but novel threats or changes

in environment can have dire consequences.

In this dissertation we use mechanistic models to study several biological pro-

cesses: the immune response, the homeostasis of cells in the lymphatic system,

and the process that normally prevents autoreactive cells from entering the lym-

phatic system. Using these models we then study the effects of these processes

interacting.

We show that the mechanisms that regulate the numbers of cells in the im-

mune system, in conjunction with the immune response, can act to suppress au-

x



toreactive cells from proliferating, thus showing quantitatively how pathogenic

infections can suppress autoimmune disease. We also show that over long periods

of time this same effect can thin the repertoire of cells that defend against novel

threats, leading to an age correlated vulnerability. This vulnerability is shown to

be a consequence of system dynamics, not due to degradation of immune system

components with age.

Finally, modeling a specific tolerance mechanism that normally prevents au-

toimmune disease, in conjunction with models of the immune response and home-

ostasis we look at the consequences of the immune system mistakenly incorpo-

rating pathogenic molecules into its tolerizing mechanisms. The signature of this

dynamic matches closely that of the dengue virus system.
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Chapter 1

Introduction

Observations of the adaptive immune system trace back to the Peloponnesian

war in the fifth century BCE. In his History of the Peloponnesian War Thucydides

describes in epic and gory detail, a plague that consumed nearly a third of the

population of Athens. In this plague the doctors were the first to die as they were

exposed to the disease most often. This left the population with the choice of

abandoning their sick loved ones, leaving them to face death on their own, or bring

them comfort and risk death themselves. At this time immunity was discovered

and so was the specificity of the protection it conferred (from the translation by

Richard Crawley):

“Yet it was with those who had recovered from the disease that
the sick and the dying found most compassion. These knew what it
was from experience, and had now no fear for themselves; for the same
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CHAPTER 1. INTRODUCTION

man was never attacked twice- never at least fatally. And such persons
not only received the congratulations of others, but themselves also,
in the elation of the moment, half entertained the vain hope that they
were for the future safe from any disease whatsoever.”

Figure 1.1: Tile Mosaic of Thucydides from the Altes Museum, Berlin

After the discovery of immunity in 430 BCE it took until the fifteenth century

before the first recorded attempts to exploit this dynamic with what we now call

vaccination. These vaccinations involved inhaling, or the rubbing into small cuts

in the skin, the dried crusts from pustules caused by smallpox infection. The

virus contained in the dried pustules was normally in an attenuated form yielding

less severe disease, an immune response, and immunity to future exposures of the
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CHAPTER 1. INTRODUCTION

disease... but not always. Frequently this type of vaccination would result in full

blown smallpox infection and death.

In 1798 Edward Jenner, having noticed that milk maids rarely contracted small

pox made the connection that their frequent exposure to cow pox provided them

with immunity to smallpox. He then inoculated an eight year old child with the

crust from a pustule of cow pox infection, and later intentionally infected him

with smallpox to prove the vaccine provided immunity. This is the origin of the

term vaccine coming from the latin word for cow, vacca. In the time since the

smallpox vaccine was developed there have been vaccines developed for 28 other

diseases1, the most recent being the human papilloma virus.

While this original technique of using attenuated or biologically inactivated

virus to stimulate a small immune response has proved an extremely useful tech-

nique, the development process has conceptually changed very little from Jenner’s

time. The method of guess and check for vaccine development is still the heart of

this science. With the addition of orphans’, prisoners’, and poor peoples’ rights

since Jenner’s time, this has made vaccine development a very slow and cautious

practice. While this procedure is fine for developing vaccines for many infectious

diseases, for critical disease epidemics such as swine flu, vaccine design would be

aided by theoretical methods.

1There are additional vaccines for subspecies of these viruses such as different strains of
influenza

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Edward Jenner administering first smallpox vaccine to James Phipps.
James’ father standing to his left was a servant of Jenner’s. Painting by Gaston
Melingue.

Electronics development provides an analogy showing the utility of mechanistic

theoretical models. In this field there is little guess work, and what guess work

there is, normally is performed with computer simulations aided by mathematical

models. Once a design satisfies necessary parameters a prototype is developed

and checked against the theory. Having theoretical models also aids in diagnosing

problems not realized until prototype construction.

Initially the mathematical models used in the design of electronics with tran-

sistors were based on very complex empirical models. Simulations using these

4



CHAPTER 1. INTRODUCTION

models were slow and the models could not be extended beyond the limits of the

experiments used to fit the empirical curves. Device physicists then began con-

structing mechanistic models based on the underlying physics of the transistor.

This solved both the problem of limits of experimental observation with empirical

models, as mechanistic models can be extended beyond data, but also the prob-

lem of slow simulations due to mechanistic models yielding approximations and

describing the limits of where these approximations are valid. The work of this

dissertation is an effort to increase the theoretical and mechanistic understanding

of how the immune system works.

Much of the mathematical modeling consists of systems of differential equa-

tions. The differential equation lets us describe how a physical system changes in

time. Formulating the dynamics of a system in terms of rules for how they change

rather than their specific behavior allows a single equation to describe many dif-

ferent types of phenomena. The differences between these phenomena arise from

varying initial conditions. Newton’s single differential equation for projectile mo-

tion describes both how an object falls to the ground and the orbital motion of

satellites, the difference in behaviors coming from the initial positions and mo-

menta of these objects. Likewise, the models of this dissertation show illness and

immune response, immunity, hemorrhagic fevers, and immunosenescence coming

from the same system with different starting conditions at the time of infection.

5



CHAPTER 1. INTRODUCTION

We also make use of some stochastic simulation techniques. Stochastic simu-

lation techniques are used in systems where large variability from system to sys-

tem even with identical starting conditions. In contrast to differential equations

which give a deterministic output, stochastic equations give a probabilistic one.

Stochastic simulations make use of pseudo-random number generators on comput-

ers. When the reactions of a system are characterized by statistical distributions,

or statistical properties like mean and variance, these simulation techniques ex-

trapolate from the individual reactions to variability of the system as a whole.

Developing theoretical models in this manner, either deterministic or other-

wise, for immune system behavior gives the ability to quantitatively calculate

dynamics that can not be easily observed. It generates ideas for new experi-

ments to help resolve ambiguity in the underlying mechanics. It makes explicit

the reactions that are taken into account allowing us to resolve the quantitative

importance of different mechanisms in system behavior. The development of theo-

retical models of immune system dynamics has also been used to generate optimal

treatment strategies for different diseases.

The immune system is an ideal example for the study of complex systems.

It offers adaptation and evolution on observable time scales and offers testable

hypotheses. In response to diseases the immune system is adapting to its environ-

ment. Molecular evolution of antibody molecules is approximately one-thousand

6



CHAPTER 1. INTRODUCTION

times faster than other genes in the body and can be observed during an immune

response.

Chapter 2 of this dissertation shows that responses to infectious diseases affect

immune system disorders such as allergies and autoimmune disease. It shows that

the mechanisms which prevent immune system cancers, when taken in conjunction

with pathogen exposure, also provide a mechanism to suppress autoimmune dis-

ease. This provides quantitative answers to common concerns regarding hygiene

in the home, and an explanation for the prevalence of autoimmune and allergic

disorders in developed nations that doesn’t exist in developing nations.

Chapter 3 looks at the same mechanisms from Chapter 2 and extrapolates over

very long times. This looks at the suppressive effect from Chapter 2 applied to

the small populations of cells that are needed to fight infectious diseases that the

system has never seen before. This shows a small number of cells left in old age to

fight new diseases but many memory cells left for fighting recurrences of common

diseases. This is an example of “Highly Optimized Tolerance” (HOT), and the

system is observed to over adapt with age to fighting common diseases leaving

an aged immune system vulnerable to rare and never before observed diseases.

This provides some explanation as to why the elderly can suffer symptoms like

encephalitis when exposed to west nile virus while others have asymptomatic

infections.

7



CHAPTER 1. INTRODUCTION

Chapter 4 also looks at the suppressive mechanisms from Chapter 2 and com-

bines them with another mechanism that eliminates autoimmune disease called

negative selection. Negative selection provides tolerance to the bodies own chem-

icals by eliminating lymphocytes (the cells of the immune system) that would

respond to these chemicals. We then look at what happens when the chemicals

from pathogen take place in the negative selection reaction thus tolerizing parts

of the immune system to future pathogenic infections. The signatures of this

mechanism are shown to be in close agreement with those of the dengue virus

system.

It is expected that this work and the work built on it will help fight pathogenic

diseases and aid in the prevention of the diseases the immune system itself causes.

These techniques provide a complimentary approach to classical immunology.

8



Chapter 2

The Suppression of Immune

System Disorders by Passive

Attrition

2.1 The Hygiene Hypothesis

The immune system provides protection from diseases ranging from intesti-

nal parasites to viruses and even cancers. The immune system is also the cause

of many other types of disease, like autoimmune diseases and allergies. There

is a large body of evidence, ranging from epidemiological to animal model ex-

periments, showing that exposure to the diseases that the immune system fights

9



CHAPTER 2. SUPPRESSION OF IMMUNE SYSTEM DISORDERS

provides protection from the diseases that the immune system causes. The para-

doxical protection conferred by pathogenic infections against immune system dis-

orders is often referred to as the “Hygiene Hypothesis” [1, 2]. Understanding the

mechanisms of this protection has important clinical consequences.
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Figure 2.1: Panel A shows data on infectious diseases. Panel B shows data on
immune disorders. The anti-correlation is shown to be causal. This figure was
reproduced with permission from Bach, J.F. The Effect of Infections on Suscep-
tibility to Autoimmune and Allergic Diseases(2002), N Engl J Med Vol. 347, No.
12 Copyright c©2002 Massachusetts Medical Society. All rights reserved.

Though some infectious diseases have been shown to cause autoimmune dis-

ease, this is not a general feature of infectious disease. The large body of evidence

showing the suppression of autoimmune and allergic disease by infection, is re-

viewed in Bach (2002) [2]. The evidence of this effect is seen in three major

categories:
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CHAPTER 2. SUPPRESSION OF IMMUNE SYSTEM DISORDERS

• The dramatic increase in incidence of autoimmune diseases over the last 50

years coinciding with a decrease in many infectious diseases. This is shown

in Figure 2.1 copied from Bach (2002)[2].

• A trend of higher incidence of autoimmune and allergy with higher incomes

and lower temperatures,1

• An anti-correlation between infection history and autoimmune incidence.

2.1.1 Alternate Hypotheses

One might consider hypotheses other than suppression by infections to ex-

plain observed regional trends in immune system disorders. These might include

regional differences in diagnostic capabilities, genetics, and other environmental

factors besides pathogen frequency.

While diagnostic capabilities can vary from region to region, two of the most

studied autoimmune diseases in this field are multiple sclerosis and type 1 dia-

betes mellitus. These diseases are not often misdiagnosed. Additionally it has

been observed that asthma and type 1 diabetes are more prevalent in first born

children unless the children attended daycare[3, 4]. There should be no diagnostic

1Bacterial proliferation is inhibited by lower ambient temperature decreasing the likelihood
of infection. Lower temperatures also prevent transmission of some tropical viruses, as the
mosquitos needed for transmission can not survive the cold climate. Increased income yields
stricter control of microbes in food and water and provides better housing conditions.
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CHAPTER 2. SUPPRESSION OF IMMUNE SYSTEM DISORDERS

difference in these groups, only a difference in exposure rates from other children.

It is possible that genetic factors may give some differences in incidence of

immune disorders, but these factors are unable to explain the rapid increase in

autoimmune diseases over the last 50 years. The increase is 3-4 fold over the last

50 years for type 1 diabetes, asthma, multiple sclerosis, and Crohn’s disease. A

more direct study of genetic factors looked at children of recent immigrants from

Pakistan to the United Kingdom. The study showed that the children of recent

immigrants have the same incidence of type 1 diabetes as non-immigrants, ten

times the incidence in Pakistan[5, 6].

Environmental factors other than infectious diseases are controlled for in the

study of first born children mentioned above. This assumes that the only environ-

mental difference is exposure to infection by older siblings. Another study that

controls for some regional environmental factors is a study of children in areas

where farmers and non-farmers both live. Here it was seen that children growing

up on farms are less likely to suffer from allergies than their non-farming neighbors

are[7].

Animal experiments directly control for these factors and show that exposure

to foreign antigen suppresses autoimmune disease. Non-obese diabetic (NOD)

mice are observed to be twice as likely to develop diabetes in isolated sterile con-

ditions than are genetically identical mice in a conventional environment[8]. A

12



CHAPTER 2. SUPPRESSION OF IMMUNE SYSTEM DISORDERS

similar result was obtained from studies of induction of experimental autoimmune

encephalomyelitis (EAE) in Lewis rats. The rats raised in a conventional envi-

ronment typically showed no response to the EAE priming agent[9]. The direct

effects of foreign antigen are also studied in animal models. Exposure of lupus

prone mice to either lactate dehydrogenase-elevating virus or malaria prevents

lupus, and treatment with killed bacteria offers protection from diabetes in NOD

mice.

2.1.2 Proposed Mechanisms

There are many proposed mechanisms by which infections might suppress au-

toimmune disease. The hypotheses receiving the most attention are: Th1/Th2

balance, generation or activation of Regulatory T cells, and competition between

cells for homeostatic survival factors (the major study of this chapter).

It had been suggested that as Th1 cells and Th2 cells each have a suppressive

effect on each other, a system out of balance might result in one cell type being

unregulated by the other. Th1 cells are implicated in autoimmune diseases while

Th2 cells are a component of allergic disease. If Th1/Th2 balance is the mecha-

nism generating a suppression of immune system disorders, we expect allergy and

autoimmune incidence to be inversely correlated. This is not the case however.

Individuals with diabetes or rheumatoid arthritis have been observed to have a

13
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higher incidence of atopic disease[10, 11].

Bystander suppression by regulatory T cells in response to infections is a com-

pelling hypothesis. These cells have many possible mechanisms of suppression

and characterization of these cell types is still in its infancy. It has been shown

that the suppressive effects conferred by killed bacteria persist in IL-10 and IL-4

knockout NOD mice[12]. These suppressive cytokines are only two of the several

possible mechanisms that regulatory T cells may be using to suppress immune

system disorders.

In this paper we study the competition between cells for homeostatic survival

factors. Competition for survival factors has been previously studied in the context

of new memory cells being added to the memory population after infection. This

raises the total number of memory cells beyond what the niche can support.

With no cell having a competitive advantage with regard to homeostasis, all sub-

populations will decrease in number at the same rate until the system returns

to homeostasis. This is the mechanism for passive attrition of a clone of specific

memory cells to a non cross-reactive heterologous infection.

Infectious diseases have also been shown to directly trigger certain autoimmune

diseases [13]. This however is not a general feature of infectious diseases and we do

not consider this effect here. If this were a common feature the normal infection

rate of people getting sick once or twice a year would result in autoimmune disease

14
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being the norm and not the exception. It would also be in strong contradiction

to the observations of Fig. 2.1.

2.2 General Homeostatic Regulation

Homeostatic regulation in the immune system refers to the mechanisms that

control the number of cells in the system. Without homeostatic regulation cells

would either experience unconstrained growth (cancer), or decay to extinction.

We first present a general model of homeostasis without explicit definition of

the regulatory mechanisms. This technique was previously used by Antia et al.[14],

to show that passive attrition is a general property of homeostasis. We extend

this result to show that suppression of autoimmune disease by frequent infection

is also a general property of homeostasis. Under Quantitative Predictions in the

subsection Central T Memory, we model explicitly the regulatory mechanisms of

the niche of cells competing for interleukin 15 (IL-15), the niche that contains

central memory T cells. In the subsection following that titled The IL-7 Niche,

we model the niche of cells competing for interleukin 7 (IL-7). This niche contains

naive cells and CD4+ memory cells. These models are calibrated for both humans

and mice. Throughout we are modeling the average expected behavior, assuming

well mixed populations in the niches.
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Our general framework for homeostatic regulation does not consider systems

that have multiple stable values for total cell number. An example of such a system

would be long-lived, non-dividing cells, with number below the maximum popu-

lation size of the niche. Systems such as this are not homeostatically regulated,

and adding more cells to the niche has no effect on the cells already occupying it.

The mechanisms we consider include competition for cytokines and volume

constraints on a structural niche. These homeostatic mechanisms keep the total

number of cells relatively constant and controlled.

In general, a differential equation for the population dynamics of cells under

homeostatic regulation has the form:

dN

dt
= f(N)N + rh + re, (2.1)

where N is the total number of cells in the niche, all competing for the same

survival factors. The dynamics of this equation are pictorially represented in

Figure 2.2. The different colors of cells in Figure 2.2 represent different antigen

specificities.

The homeostatic influx rh and the pathogenic influx re represent influxes of

new cells, from homeostatic sources and antigenic stimulation, respectively. In the

absence of any antigenic stimulation it is assumed that re = 0. The influx from

antigenic stimulation typically equals the product of the infection rate and the
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S. F.
f(N)

Influx from 
Infections

re rh

Homeostatic
Influx

Figure 2.2: Illustration of the dynamics of Eq. 2.1. Cells enter the system
from either infections re or through homeostatic influx rh, which is zero for some
niches. Survival factors (S.F.) regulate the total number of cells in the niche by
either inhibiting cell death or inducing cell division. The rate of stimulation by
survival factor for each cell, f(N), is a function of the total number of cells in the
niche, N .

number of new memory cells per infection. The homeostatic influx rh represents

new cells which arise from homeostatic sources such as thymic output. For central

T memory, the niche is not likely shared with naive cells and rh ≈ 0, while for

CD4+ memory cells, there is competition with naive cells, and rh > 0 [15].

The rate f(N) in Eq. 2.1 gives the homeostatic regulation of death and division.

f(N) is called the attrition rate for reasons discussed below. This rate must be

a function of the total number of cells in the niche in order for the homeostatic

equilibrium to be stable. The more cells in the system the greater the level of
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competition for survival, and the lower the value of f(N). This gives us the

requirement:

df

dN
< 0. (2.2)

The homeostatic equilibrium κ is the limiting number of cells that the system

reaches when there is no antigenic stimulation, i.e. when re = 0. The homeostatic

equilibrium is defined mathematically as:

f(κ) = −rh
κ
. (2.3)

Substituting Eq. 2.3 into Eq. 2.1, along with re = 0 yields the stable (dN/dt = 0)

solution N = κ. When re > 0 the cells generated by antigenic stimulation bring

the total number above the homeostatic equilibrium, N > κ. This reduces the

homeostatic renewal, such that f(N) < −rh/κ. Except in lymphopenic conditions

(where homeostatic proliferation can occur to refill the system) the attrition rate

satisfies f(N) ≤ 0.

The dynamics in Eq. 2.1 are represented pictorially in Figure 2.2. Cells enter

the niche either from infections (rate re) or from homeostatic sources (rate rh) and

compete with each other and the cells already occupying the niche for the limited

amount of survival factors. The survival factors could either act by initiating cell

division or by inhibiting cell death.
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2.3 Passive Attrition

After the completion of an immune response there will be a sub-population

of memory cells belonging to the niche xi. Here xi is the number of cells of type

i. The different sub-populations are unique in their antigen specificity but not in

their ability to compete for survival factors. The negative value of f(N) under the

addition of new cells has consequences for the dynamics of these sub-populations.

Since these populations share the same niche they will have the same homeostatic

regulation term. However, these cells are not restimulated antigenically or added

to appreciably from homeostasis, so the equation describing the time evolution of

an individual sub-population lacks a source term:

dxi
dt

= f(N)xi, N = Σjxj. (2.4)

If there is no influx of new cells (rh = re = 0) then f(N) → 0 at equilibrium,

and the individual memory cell populations are sustained indefinitely (ignoring

stochastic effects, the subject of future research). With either rh > 0 or re > 0,

f(N) < 0 and the subpopulation will experience “passive attrition”[14, 16, 17],

an exponential decrease in cell number over time with the rate f(N), hence the

term “attrition rate” for f(N).

Typical memory scenarios are shown in Figure 2.3. Antigen specific cell num-

ber xi grows rapidly over the course of a few days in response to an infection (not
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modeled here). After the infection is cleared there is rapid cell death and memory

formation until the total number of cells N returns to a value near κ (at the time

indicated by the dashed black line). The cell populations will then experience

attrition with rate f(N).
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Figure 2.3: Memory formation with and without passive attrition. For
both scenarios the number of antigen specific cells quickly rises during an immune
response, then rapidly decreases until the total cell number is approximately at
equilibrium, N ≈ Neq, as indicated by the black dashed line. The blue curve
illustrates the case with no passive attrition, where Neq = κ, and re = rh = 0.
CD8+ memory in a sterile environment is representative of this (blue) scenario.
The red curve illustrates the scenario where new cells are frequently added to the
niche shared by the specific memory, causing the number of antigen specific cells
to decline over time.

The decrease of specific memory over time is a result of infections or influx of

new cells raising the total number of cells and hence the level of competition for

survival factors. Central T memory in a sterile environment can survive indefi-

nitely, as re = rh = 0, and therefore the rate of attrition f(κ) = 0[15]. However,
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for the IL-7 niche, the influx of new naive cells to the niche should contribute to

the passive attrition of CD4+ memory and may be responsible for the observed

bi-phasic decay[15].

2.3.1 Suppression of Autoreactive Cells

We refer to sub-populations of cells that respond to either native antigen or

allergen as simply autoreactive. In this case there will be an additional term (first

term on the right hand side) for antigenic stimulation:

dxa
dt

= γaxa + f(N)xa. (2.5)

The antigenic stimulation rate of these cells is a complicated function involving

competition for antigen, tolerance mechanisms such as regulatory T cells, and

physiological changes in antigen presentation from inflammation and tissue dam-

age.

We are interested in the behavior of a very small number of cells, before disease,

and specifically whether the cell population proliferates or is suppressed. The

antigenic stimulation rate γa, is the limiting value of this more complex rate, in

the low cell number limit. The antigenic stimulation rates of different clones of

cells will differ. The subscript on γa denotes the different growth rates for the

different clones, xa.
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There are two opposing rates for autoreactive cells, the rate of attrition f(N)

which acts to reduce their number, and antigenic stimulation γa which causes

proliferation and eventually disease. Depending on which of these rates is larger

there are two possible outcomes for populations of autoreactive cells:

γa < −f(N), γa > −f(N).

Suppression Proliferation

(2.6)

Suppression results in exponential decay of any new population of autoreactive

cells. Proliferation results initially in an exponential growth and could eventually

lead to disease.

In the absence of pathogenic influx (re = 0), autoreactive cells with γa < rh/κ

will be suppressed. Pathogenic influx decreases f(N), increasing the range of γa

that result in suppression. Figure 2.4 shows the possible scenarios for growth or

decay of a small population of autoreactive cells.

The likely scenario consists of first an autoreactive cell escaping negative selec-

tion by not experiencing all self and environmental antigens as an immature cell.

As this cell matures it enters the naive population where it may be stimulated by

self-antigen or allergen. The antigenic stimulation causes the cell to proliferate

into a small number of autoreactive memory cells. These autoreactive memory

cells may still require survival factors to persist or proliferate. If this is the case,

increasing the level of competition for survival factors can suppress this cell clone
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Figure 2.4: A schematic illustration of a small population of autoreactive
cells xa. These cells can either be suppressed if −f(N) is large enough (green
line) or experience exponential growth (black dashed line). If the cell population
becomes large other factors will alter the growth rate such as feedbacks from
inflammation and tolerance mechanisms, illustrated schematically in red.

and thereby prevent development of disease.

The suppression of autoreactive cells in this manner is accompanied by the

passive attrition of memory populations. Larger values of the attrition rate f(N)

both suppress populations with greater ranges of antigenic stimulation rates γa,

and causes more rapid loss of immunological memory. Conversely, for long-term

stable memory populations there must be a low value of the attrition rate f(N),

and thus populations with a greater ranger of γa values will proliferate.

The inequality in Eq. 2.6 defines a boundary between suppression and prolifer-

ation that is a function of the rate of infection. Figure 2.5 illustrates a pedagogical

example. The value of γa is a property of the cell and re is typically a property of
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the external environment. For a clone of autoreactive cells xa described by an anti-

genic stimulation rate γa, the boundary defines the minimum level of pathogenic

influx needed to suppress that clone. For clones with large values of γa it is possible

that there is no value of re large enough to suppress them. Similarly it is possible

that all γa values below a certain limit might be suppressed by homeostatic sources

of attrition, though this is not a common feature of all niches. Conversely, if we

are considering an external environment that is well characterized by a particular

value of re, the boundary in the figure defines the lower limit of autoreactivities

we are likely to find in that external environment. A low re value corresponds

to a more sterile environment while a large re value is associated with a “filthy”

environment. In Section 2.4 we fit curves to data for human and mouse CD4+

and CD8+ memory cells to make quantitative predictions for these boundaries.

The Low Infection Rate Limit

We can find the asymptotic behavior of passive attrition and autoreactive

suppression in the limit of infrequent infections, i.e. low re. The equilibrium total

number of memory cells for a given rate of infections is given by Neq(re). This is

simply the value of N for which the right hand side of Eq. 2.1 is equal to zero:

f(Neq(re)) = − re + rh
Neq(re)

. (2.7)
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Figure 2.5: Illustration of a boundary defined by Eq. 2.6 separating con-
ditions for suppression (green region) and proliferation (pink region) of
autoreactive cells. The vertical axis is the pathogenic influx re. This quantity
is typically controlled by the external environment and is expected to be propor-
tional to the infection rate. The lower portion of the figure represents cells in a
more sterile environment and the upper portion of the figure a filthy one with
frequent infections. The horizontal axis is the antigenic stimulation rate γa for
a small population of autoreactive cells xa. Cells with antigenic stimulation rate
less than rh/κ are always suppressed, though for some niches rh = 0. No popula-
tions with γa > δ (where δ is the apoptotic rate under high levels of competition
for survival factor) can be suppressed by passive attrition because the division
rates of these cells (from autoantigen exposure) are large enough to maintain the
population even in the absence of survival factors.

If the infection rate is zero then Neq(re) = κ, the homeostatic equilibrium. If we

consider the case where the infection rate is small enough that the correction to

Neq(re) is insignificant compared to κ we have Neq(re) ≈ κ. In this limit, Eq. 2.7

reduces to the form derived by Antia et. al[14]:

f(Neq(re)) = −re + rh
κ

. (2.8)
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This gives an exponential rate of decay of existing memory populations that is

proportional to the sum of the rates of new cell incorporation:

xi(t) ≈ xi(0)e−(re+rh)t/κ. (2.9)

We also have the condition for suppression in the limit of low pathogenic influx

re:

γa <
re + rh
κ

. (2.10)

As can be seen from this equation, clones with γa < rh/κ are always suppressed

(since re > 0).

For central memory T cells the homeostatic influx rh equals zero, and there is

no lower limit on ability of autoreactive cells to proliferate in sterile conditions.

The asymptotic behavior of the boundry separating the regions of suppression

and proliferation therefore follows approximately the curve re/κ then converges

to the vertical line of rh/κ. This asymptotic behavior can be seen in Figure 2.5

for the lower antigenic stimulation rate γa.

The asymptotic result shows that addition of new cells to a homeostatic niche

is a mechanism for suppressing or eliminating autoreactive cells with low antigenic

stimulation rate γa, and that it is a common feature of homeostatic regulation.

For larger values of γa it may not be possible to satisfy Eq. 2.6. This is shown

and discussed in Section 2.4 where we model the homeostasis of cells in the IL-
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15 regulated niche (central memory T cells), and cells in the IL-7 niche (CD4+

and naive cells) respectively. There we also give quantitative predictions for the

range of antigenic stimulation rates γa that will be suppressed in environments

characterized by the rate of pathogenic influx re.

2.4 Quantitative Predictions

2.4.1 Central T Memory

The best understood homeostatic regulation scheme in the mouse and human

immune systems are the CD8+ central memory T cell pools [18]. These cells are

differentiated from effector memory by the presence of high levels of CD122 on

the cell surface. The CD122 protein is part of a receptor for IL-15. In the absence

of IL-15 the central memory T cells can not survive. Other cell types are typically

unaffected in the IL-15 knockout mouse [19] showing that the niche is not shared

and that competition between the cells of this niche for IL-15 should have little

effect on other cell types. Additionally we know that in a sterile environment

memory populations in this niche are stable yielding rh = 0 [20].

At homeostatic equilibrium the total number of cells remains constant. Since

there is no homeostatic influx of new cells to this pool (rh = 0), both the homeo-

static division rate αh and the homeostatic death rate δh are therefore equal. With
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CSFE staining and other techniques it has been observed for mice that the home-

ostatic division rate is approximately once every 2-3 weeks, meaning αh = δh =

(2-3 weeks)−1 [21].

To discern whether IL-15 inhibits apoptosis or stimulates division, we consider

the two possible cases separately. Inhibition of apoptosis is described by:

dN

dt
= αhN − δ(L)N, (2.11)

where N is the population size, the first term on the right hand side represents

increases in the population due to division , and the second term represents de-

creases due to apoptosis. The quantity L is the concentration of IL-15 and the

apoptotic rate δ(L) decreases with increasing L. Judge et al. [19] placed central

memory T cells in an IL-15 saturated solution. In the saturated environment we

would expect δ(L) = 0, and if Eq. 2.11 were the correct description we would

see the proliferation rate of the population equal to αh = (2-3 weeks)−1. Instead

the population was observed to double in less than three days which rules out

Eq. 2.11 as a valid model. From this we conclude that IL-15 does not simply

inhibit apoptosis.

Next we consider the stimulation of division by IL-15, described by the equa-

tion:

dN

dt
= α(L)N − δhN. (2.12)
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Now the division rate α(L) is a function of IL-15 concentration L, and increases

with increasing L. Another experiment by Judge et al.[19] transplanted central

memory T cells into IL-15 knockout mice. In the absence of IL-15 and stimulat-

ing antigen, α(0) = 0, Eq 2.12 predicts a decay in cell number with rate δh =

(2-3 weeks)−1. The observed decay took place over approximately 2 weeks [19]

in agreement with the model. This implies that to a first approximation IL-15

stimulates division.

We can compare the homeostasis expressed in Eq. 2.12 with our general model

of suppression to obtain asymptotic behavior of the boundary separating sup-

pression from proliferation, described by Eq. 2.6. Our previous requirement that

f(N) be a decreasing function of N , requires that α(N) also be everywhere de-

creasing. Physically, this corresponds to the concentration of L being lower the

more cells there are competing for it. This gives us (from Eq. 2.6) the conditions

for suppression:

γa < δh − α(N), with
dα

dN
< 0. (2.13)

There can therefore be no suppression by passive attrition for cells with γa > δh.

Physically, this corresponds to cells that can sustain their number through anti-

genic stimulation alone (characterized by large γa) and do not require homeostatic

signals for survival. The condition for suppression of autoreactive cells, as γa → δh,

requires that re → ∞. This asymptote is drawn explicitly in Figure 2.5 and is
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evident in the plots of Fig. 2.6.

The asymptotic behavior for the condition of suppression of autoimmune dis-

ease by passive attrition is given by only two parameters, κ the homeostatic equi-

librium number of cells in the niche, and δh the homeostatic division rate of

the population. Connecting the low re behavior, Eq. 2.10, with the behavior as

γa → δh requires a more detailed model of the competition for IL-15.

Biologically, IL-15 is typically presented to central memory T cells by dendritic

cells. The IL-15Rα receptor on dendritic cells binds to IL-15 and presents it to the

central memory cells where it binds to the CD122 molecule initiating signaling.

A rate equation that captures the correct asymptotic behavior in both limits

and has an interpretation relating to competition for growth factor is a saturating

function:

α(N) =
1

ω0 + ω1N
. (2.14)

This rate equation has the physical interpretation that the inverse of the rate,

α−1, is the expected waiting time for stimulated division, and the waiting time is

a linear function of N . The shortest possible physiological waiting time is given

by ω0, and in a system with more cells, the waiting time increases linearly as

the competition for growth factor among cells increases. (The denominator in

Eq. 2.14 can be viewed as the first order approximation of a more complicated

function of waiting time ω(N).)
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Inserting this into the population dynamics equation (Eq. 2.1 with rh = 0)

yields the homeostatic equation:

dN

dt
=

N

ω0 + ω1N
− δhN + re. (2.15)

This equation is functionally equivalent to the equation used by Utzny and Bur-

roughs [22]. The homeostatic equilibrium (dN/dt = 0, re = 0) value κ is given

by:

κ =
1

ω1

(
1

δh
− ω0

)
, (2.16)

and the equilibrium total number of memory cells in the presence of infections,

Neq(re) is given by:

Neq(re) =

(
κ+

re
δh

)1

2
+

1

2

√√√√1 +
4ω0

ω1

re
δh(

κ+ re
δh

)2

 (2.17)

≈ κ+
re
δh
. (2.18)

The approximate form is valid when the expected lifetime of a cell is much larger

than the shortest time to division: δ−1
h � ω0. Experimentally δ−1

h is on the order

of weeks while ω0 is approximately a day. The approximation is therefore a good

one.

This gives us a functional form for the condition for suppression of autoreactive

populations:

γa <
re

Neq(re)
≈ re
κ+ re

δh

. (2.19)
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This relation for autoreactive suppression by passive attrition relies on just two

parameters: the homeostatic equilibrium κ, and the homeostatic death rate δh.

The right hand side of Eq. 2.19 is equal to the attrition rate f(N) of the vari-

ous memory populations in the niche, not being re-stimulated. This provides an

observable quantity to test the model.

The conditions for suppression of autoreactive cells with stimulation rate γa,

with respect to new memory incorporation re, is plotted in Figure 2.6 for humans

(solid lines) and mice (dashed lines). The parameter values for central T memory

are found in Table 2.1. If the initial growth rate of an autoimmune disease is

measured, these charts will tell if the autoreactive population can be suppressed,

and if so, what rate of new central memory incorporation is required. Alterna-

tively, if an environment is characterized by measuring passive attrition rates, this

chart will show what autoreactivities will be suppressed by those environmental

conditions.

2.4.2 The IL-7 Niche

The niche for CD4+ T cells is more complex than that for central T memory.

The Th1 and Th2 CD4+ memory cells share their niche with naive CD4+ and naive

CD8+ cells. While cells in this niche may require both IL-7 and MHC contact,

competition for MHC contact is not likely a limiting factor in homeostatic survival
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Parameter Values
Para- Human Mouse
meter Units

IL-15 IL-7 Refs IL-15 IL-7 Refs
δh day−1 1/102 1/68 [20] 1/17 1/10 [21]
κ cells 25× 109 268× 109 [23] [20] 9× 106 7.6× 107 [20]
rh cells/day 0 1.7× 108 [15] [20] 0 7.3× 104 [20]

Table 2.1: Numerical values for memory cells in mice and humans. The values
of κ for IL-7 are the sum of naive and memory CD4+ and naive CD8+ cells. For
humans the fraction of cell types in the blood was taken from Vrisekoop [20] and
extrapolated to the total body using total cell numbers from Ganusov [23]. For
mice, cell numbers in the spleen were taken from Vrisekoop [20] and extrapolated
to whole body based on estimates of 3× 107 naive CD8 T cells in the whole body.
The rh value for mice is taken from measurements of specific memory attrition,
while for humans it is estimated from thymic output. Because we are interested
in attrition rates the indirect measure provides better modeling accuracy.

due to its ubiquity.

Assuming that the action of IL-7 is similar to that of IL-15 we have an equation

similar to Eq. 2.15, but with an additional term for homeostatic influx of cells

entering the niche from the thymus, rh:

dN

dt
=

N

ω0 + ω1N
− δhN + re + rh. (2.20)

The values of κ, ω0, ω1, and δh are different for the cells belonging to the niche

competing for IL-7, than they were for central memory T cells. In this niche the

total number of cells at homeostatic equilibrium κ, is the sum of the number of

CD4+ memory, CD4+ naive, and CD8+ naive cells at homeostatic equilibrium,

since they are all competing for IL-7.
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Figure 2.6: Boundaries discriminating between autoreactive cell popula-
tions that are suppressed vs. those which proliferate, for humans (solid
lines) and mice (dashed lines). The condition for suppression is given by
Eq. 2.19 and 2.25 and the numerical values of the parameters are found in Table
2.1. The features of these curves are discussed in the caption to Fig. 2.5. Central
T memory cells belong to the IL-15 niche (red lines). The model predicts that
for CD4+ T cells which are in the IL-7 niche (black lines), all autoreactive pop-
ulations xa with antigenic stimulation rates γa below rh/κ are suppressed by the
homeostatic influx of naive cells. Passive attrition can not suppress autoreactive
cells with γa > δh.

The rate of homeostatic homeostatic influx rh leads to passive attrition of

CD4+ memory cell populations, even in sterile conditions. For mice the rate

of attrition of CD4+ memory populations in a controlled environment has been

measured to be around −f(κ) =(450 days)−1 [15]. We know from Eq. 2.1 and

2.4, that the rate of attrition in the absence of pathogenic influx re is given by

−f(κ) = rh/κ, so:

rh = −f(κ)κ. (2.21)

The numerical values for mice and humans are presented in Table 2.1. For humans
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the value of rh is taken from the thymic output of patients in their early 20s [20].

The formula for the homeostatic equilibrium κ in the IL-7 niche is more com-

plicated than for central memory due to the homeostatic influx rh. The total

number of cells based on the parameters of the model is:

κ =

[
1

δhω1

− ωo
ω1

+
rh
δh

]1

2
+

1

2

√√√√√1 +
4ω0

ω1

rh
δh[

1
δhω1
− ωo

ω1
+ rh

δh

]2
 (2.22)

≈ 1

δhω1

− ωo
ω1

+
rh
δh
, (2.23)

where the approximate form is valid if the expected life time is greater than the

fastest possible time to division, δ−1
h � ω0. These two terms are observed to be

approximately 10 days[21] and 12 hours, respectively[22].

We also have the form for the expected number of cells in the niche when the

pathogenic influx re is non-zero:

Neq(re) ≈ κ+
re
δh
. (2.24)

This gives us the conditions for the suppression of autoreactive CD4+ memory.

From Eq. 2.1:

γa <
re + rh
κ+ re

δh

. (2.25)

Figure 2.6 shows the values of γa that are suppressed at a range of re values for

for CD4+ T cells (black curves) for both humans (solid curve) and mice (dashed

curve).
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There are two additional effects which arise from the shared niche between the

naive and Th1 and Th2 memory populations: the attrition of naive populations by

inclusion of new memory, and a uniform suppressive effect, rather than a delicate

balance of the Th1/Th2 ratio. The delicate balance for Th1/Th2 ratio is another

proposed mechanism to explain the hygiene hypothesis.

The naive population typically contains many clones of small number. In a

niche shared with memory cells, naive cells experience passive attrition. This

results in the elimination of some naive sub-populations. This thinning of the

naive repertoire has previously been studied [14, 24], is a major contribution to

immunosenescence and is studied in detail in Chapter 3. The separation of the

memory and naive niches, as in the case of CD8+ cells, prevents this effect.

We have assumed here that the action of IL-7 stimulates division in the same

was as IL-15. This assumption is based on the similarity and commonality between

the receptor molecules for both interleukins. However, if IL-7 acts by inhibiting

apoptosis, the boundary between suppression and proliferation (Eq. 2.19 and 2.25

and Fig. 2.5 and 2.6 ) will have the same low γa behavior but will have a vertical

asymptote at the faster rate δm, the rate of cell death in the absence of IL-7.
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2.5 Experimental Predictions

We have shown the conditions for suppression of immune system disorders by

passive attrition for central memory CD8+ and (under the assumption that IL-

7 has an effect similar to IL-15) CD4+ memory. We have also shown that this

mechanism is not unique to these cell types but that it applies to any cell type

under homeostatic regulation.

Autoreactive cells with γa > δh (right hand side of Figure 2.6) would receive

antigenic stimulation at a rate rapid enough to maintain the population in the

absence of homeostatic survival factors. Passive attrition would not be able to

suppress these cells for this reason. Presumably, these cells are removed by neg-

ative selection as they are the most autoreactive, and if they were not removed

autoimmune disease would be much more common. Negative selection provides

tolerance to autoimmune diseases by removing the most autoreactive lymphocytes

before they mature. If all cells with autoreactivity above a threshold value γc are

removed by negative selection, this model would tell us the influx of new mem-

ory (i.e. infection rate) required to suppress all autoreactivities less than γc, the

autoreactive cells that may escape negative selection. In this manner the two

tolerizing mechanisms in combination can cover the entire spectrum of γa values.

This quantitative model makes experimentally testable predictions. We pro-
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pose the following experiment illustrated in Figure 2.7. Experimental Protocol:

1. Create an antigen specific memory population. This will be used for a direct

measurement of the attrition rate f(N).

2. Active transfer of a small population of autoreactive cells. This population

should be large enough to induce autoimmune disease in an animal in a

sterile environment.

3. Time-series of new memory inclusions. Active transfer of non-autoreactive

memory cells, not specific for the antigen used in Step 1, or induction of

new memory cells to create a range of re values.

4. Repeated measurements during time-series of new memory inclusions. Count

how many of the initial specific memory population xi are present, to mea-

sure the attrition rates. Count the autoreactive cell number xa. In the case

of re = 0 the measurement of autoreactive cell number will allow calculation

of γa for that autoreactive clone.

5. Examine animals for pathology of transfered autoimmune disease.

Measuring the passive attrition rate by a time series count of the specific memory

population created in step 1 will eliminate any uncertainties associated with the

active transfer process. Inducing passive attrition through infection or immuniza-
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tion could also complicate the experiment by activating other inflammatory and

tolerizing aspects of the immune response. It would be best therefore, to first per-

form the experiment with active transfer of memory cells in Step 3 to eliminate

the possibility of these complications.

1. Innoculate
to Create
Memory

2. Autoreactive
Transfer

3. Sequence of
Healthy Memory

Transfers

5. Examine for
Pathologies

4. Sequence of
Measurements
of          and     

Figure 2.7: Schematic of proposed experimental protocol. Individual steps
1-5 are described in more detail in the corresponding enumerated list in the text.

Active transfer of memory cells eliminates other possible suppressive mecha-

nisms. Performing the above experiment using infections will show the extent to

which other mechanisms may suppresses autoimmune disease through pathogenic

infection. Similar results for the active transfer and infection experiments would

indicate that passive attrition is the dominant mechanism in nature for suppres-

sion of immune disorders by pathogen.

Measuring passive attrition rates presents a method of characterizing an envi-

ronment. Though performing the above experiment for humans may be difficult,

looking at regional trends in passive attrition rates and comparing them with

prevalence of autoimmune disorders should yield an anti-correlation between the
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two quantities. The passive attrition rates in humans in different regions could

most easily be measured by looking at the numbers of cells specific to smallpox

vaccines, as this sub-population of cells is not likely to have been re-stimulated.

The attrition rates of smallpox immunity have been measured for vaccinia virus

[25]. To our knowledge a regional study has not been performed.

It has also been suggested that the beneficial effects of exposure to infectious

diseases are most important for children [2]. There are two effects that may

contribute to this: the expansion of the niche may favor autoreactive growth, and

the higher flux of new cells from the thymus increases the rate of new autoreactive

cells entering the niche. Mathematical modeling of the effects of passive attrition

on autoreactive populations under these conditions is the subject of current work.

The competition for survival factors (i.e. passive attrition) is one of several

proposed mechanisms by which infectious diseases may confer protection from

immune system disorders. Other proposed mechanisms include Th1/Th2 balance,

and generation or activation of regulatory T cells by infection.

Th1 and Th2 cells each have a suppressive effect on the other. A system out

of balance in population numbers might result in one cell type being unregulated

by the other. Th1 cells are implicated in autoimmune diseases while Th2 cells are

a component of allergic disease. If Th1/Th2 balance is the mechanism generating

a suppression of immune system disorders, we expect allergy and autoimmune
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prevalence to be inversely correlated. However, this is not the case[2]. It has

also been observed that individuals with diabetes or rheumatoid arthritis have a

higher incidence of atopic disease [2, 11, 10], in contradiction to the hypothesized

Th1/Th2 balance dynamic. This observation is in agreement with the predictions

of passive attrition. Suppression by passive attrition is independent of the method

of new cell introduction, whether it is from a Th1 or a Th2 response. It only

depends on the number of new cells created that are competing for IL-7.

Bystander suppression by regulatory T cells in response to infections is a com-

pelling hypothesis. These cells have many possible mechanisms of suppression,

and characterization of these cell types is still in its infancy. It has been shown

that the suppressive effects conferred by killed bacteria persist in IL-10 and IL-4

knockout NOD mice [2, 12]. These suppressive cytokines however are only two of

the several possible mechanisms that regulatory T cells may be using to suppress

immune system disorders so this mechanism can not currently be ruled out.

Mathematical models of the expected level of protection conferred by each of

these mechanisms will give rise to insight testable predictions that will reveal which

mechanisms are dominant. Passive attrition should be capable of suppressing

small populations of autoreactive cells, but it comes with the price of accelerated

loss of immunity. This tradeoff is one of many the immune system must balance.
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Chapter 3

Robustness and Fragility in

Immunosenescence

This chapter develops a model of the adaptive immune response. It looks at

what immunity means and how it is acquired. It then looks at the effects of

immunity acquisition over a life time in a niche shared by both naive and memory

cells. This could be the IL-7 niche discussed in the previous chapter or possibly

the B-cell niche which little is known about. This long term memory acquisition

causes attrition of the naive cells in the niche. We use an approximate form of the

homeostasis model discussed in the previous chapter, keeping the total number of

cells in the niche constant over long times, and see a shift from a naive dominated

niche in adolescence to a memory dominated niche in the elderly. The constraint
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on the number of cells implies that memory, which is specific to infections the

system has seen, comes at a price for unseen infections [26]. This illustrates

how the immune system initially increases in effectiveness but eventually becomes

overspecialized with age. This has correspondence with a class of complex systems

referred to as “Robust yet Fragile.” This chapter also introduces the modeling of

the diversity of the lymphocyte repertoire.

3.1 The Adaptive Immune System

The adaptive immune system [27] of vertebrates has evolved in a manner which

enables adaptation to the history of infections over the lifetime of each individual

organism. It consists of a complex, heterogeneous collection of cells that is derived

from stem cells in the bone marrow, and proliferates in the lymph nodes. These

cells are endowed with the remarkable ability to discriminate between self and

non-self agents within the body and remove the non-self elements [28, 29, 30]. B

and T cells are the white blood cells (i.e. lymphocytes) that constitute the adap-

tive components of the immune system. They derive their ability to discriminate

self from non-self with the binding specificity of their receptors: T cell receptors

for T cells, and membrane bound antibody for B cells. These receptors are assem-

bled randomly from gene segments, producing a population of naive cells, in which
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each individual combination has a different binding specificity (VDJ recombina-

tion). The random combinations of genes gives the immune system the ability to

produce diverse cells capable of responding to many pathogens. During an infec-

tion, the cells whose receptors recognize the antigen proliferate and differentiate

into antigen removing effector cells and long-lived memory cells. The memory

cells give rise to a more rapid and efficient response to a secondary exposure to

the same antigen. However, due to homeostatic regulation of the lymphocyte pop-

ulation, the growth of memory cells reduces the naive cell population size. Over

time, this has the effect of increasing sensitivity to novel infections.

The process in this chapter can be broken down into three stages on differ-

ing time scales: (i) antigen proliferation and immune response in an individual

infection, (ii) recovery and stasis between infections, (iii) long term adaptation

of lymphocyte populations over the lifetime of the individual. We assume that

rates of infection are small enough that the immune system completely eliminates

one pathogen, and relaxes to the uninfected state long before the next infection

occurs. This allows us to introduce our model in three stages, corresponding to

the increasing time scales (i)-(iii) above, beginning with an individual infection.
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3.2 Model of Immune Response

The immune response model consists of coupled differential equations for im-

mune system cell populations, defined in terms of their primary immunological

function and their binding characteristics. The relative population sizes evolve in

time, stimulated by episodic infections. Antigens are drawn from a probability

distribution on their characteristics, which enables estimation of the binding affin-

ity of lymphocytes. We include a constraint on the total number of immune cells

in the system, and define an immunological loss function that quantifies disease

severity.

Characteristics of the distinct populations in our model are summarized in

Table I. Note that in our simplified model, as in Segel and Pereleson [30], lym-

phocytes (memory, naive and effector cells) are not specifically T or B cells, but

a generalization having properties common to both types. We have also omitted

helper T cells (that help to stimulate the immune response), as well as the com-

plex germinal center reaction and somatic hypermutation (processes involving the

proliferation and development of lymphocytes), assuming these features are not

limiting factors in immunosenescence.
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Species Symbol Primary Function

Antigen A(~x, t) Chemical that stimulates an immune response, which
acts to remove it from the body.

Effector E(~y, t) Short lived cells that remove antigen from the body.

Naive N(~y, t) Short lived detector cells generated in the bone marrow
with randomly assembled receptors. When stimulated
these divide into memory and effector cells.

Memory M(~y, t) Long lived detector cells having exactly the same re-
ceptor as the parent. Like naive cells, when stimulated
these also divide into more memory and effector cells.

Dendritic F (t)
and
F ∗(t)

Antigen presenting cells which act as catalysts. F traps
antigen, converting to F ∗. F ∗ facilitates the stimulation
of naive and memory cells, which converts it back to F .

Table 3.1: Immune system model ingredients. Population sizes are functions of
time t, and evolve as defined below. Aside from the dendritic cells, all populations
have binding characteristics represented as vectors in an abstract shape space.
Increasing proximity between an antigen and effector corresponds to increasing
effacacy of the immune response.
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Shape Space

In our model, A, E, N , and M are all fields on a generalized shape space,

introduced by Oster and Perelson [31] to represent the lock-and-key type speci-

ficity of antigen-receptor binding. The dimensions of the generalized Euclidean

shape space correspond to quantities such as size, charge distribution, and hy-

drophobicity. This differs from other Hamming type shape space models where

each dimension pertains to a particular amino acid in the binding region sequence

[32]. The binding sites on the antigens and receptor proteins are described by

the position vectors in the shape space, ~x and ~y, respectively. The binding of

antigen to dendritic cells as described in Table I, is not shape space dependent.

All antigens in this model bind to dendritic cells with the same affinity. Recent

calculations indicate that the shape space is best described with between five and

eight dimensions [32]. We use two dimensions here for visualization. Using higher

dimensions in the model changes the distribution of affinities, but does not dra-

matically effect the results of the chapter. Extensions to higher dimensions, as

well as the more complex interactions listed above, will be considered in future

work.

Vector values of the antigen ~x and immune cells ~y describe complementary

binding characteristics, so that the binding affinity for A(~x) and a receptor at ~y,
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given by γ(~x, ~y), is maximal for ~x = ~y. For ~x 6= ~y the binding affinity is a decaying

function of the distance from ~x to ~y in the shape space γ = γ(|~x− ~y|). Following

Segel and Pereleson [30], we take the affinity function to be a Gaussian:

γ(~x, ~y) = γmaxe
−(~x−~y)2/(2b2), (3.1)

where γmax sets the overall scale for the strength of the immune response, and b

sets the mismatch tolerance between antigens and receptors. Replacing γ with

different decaying functions of distance (e.g. exponential) does not significantly

alter the results of this work.

Periods of infection are associated with introduction of antigen. Different

diseases are associated with different shape space coordinates ~x, and have different

rates of infection. Upon infection, a pathogen proliferates at an exponential rate

so that the antigen population grows at a rate βA(~x) (Eq. (2)). In our model,

t = 0 marks the time when the pathogen is mixed into the lymph and begins to

stimulate an immune response. We assume a finite value of A(~x, 0) at this onset

to account for the delay in the start of the immune response. This represents how

once a small amount of the pathogen bypasses the physical barriers of the innate

immune system it will proliferate until it finds its way into the blood and then

lymph nodes, at which point the immune response is triggered.

Next the unoccupied dendritic cells, F , begin to trap antigen and become
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activated to F ∗ at a rate ρFA(~x) (Eqs. (2-3)). The activated dendritic cells F ∗ now

present antigen to the naive and memory cells stimulating them to divide (Eqs.

(3-5)). Overall, the stimulation occurs at a rate αγ(~x, ~y)F ∗(N +M)(~y). Here the

factor of γ(~x, ~y) gives the highest affinity lymphocytes the most rapid stimulation.

The daughters of the cellular division of either N(~y) or M(~y), are E(~y) cells with

fraction f , or M(~y) cells with fraction (1-f) (Eqs. (4-6)). Several generations

of memory cells may therefore be produced through an immune response. In

stimulating naive and memory cells F ∗ reverts back to F (Eq. (3)) keeping the

total F + F ∗ = H constant. This rate is the integral of the rate of N and M

stimulation over the entire shape space. Effector cells eliminate antigen from the

system with rate A(~x)γ(~x, ~y)E(~y). The total rate of antigen removal is the integral

of this rate over the shape space of effector cells (Eq. (2)). Effector cells are short

lived and die with rate δE(~y) (Eq. (6)).

These short time scale reactions are described by the following system of equa-
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tions (we drop the explicit t dependence in all populations to simplify notation):

∂A(~x)

∂t
= βA(~x)− A(~x)

∫
γ(~x, ~y)E(~y)d~y − ρFA(~x) (3.2)

∂F ∗

∂t
= ρFA(~x)− α

∫
γ(~x, ~y)F ∗(M +N)(~y)d~y (3.3)

∂N(~y)

∂t
= −αγ(~x, ~y)F ∗N(~y) (3.4)

∂M(~y)

∂t
= (2− 2f)αγ(~x, ~y)F ∗N(~y) +

(1− 2f)αγ(~x, ~y)F ∗M(~y) (3.5)

∂E(~y)

∂t
= 2fαγ(~x, ~y)F ∗(M +N)(~y)− δE(~y) (3.6)

Here α is an affinity independent factor that accounts for the difference in γ(~x, ~y)

dependent rates of lymphocyte stimulation and removal of antigen. Note that

our model does not include any spatial variables for position of antigen and lym-

phocytes in the body, which corresponds to assuming a well mixed system. This

system of equations exhibits many features we expect from an immune system

model, such as rapid secondary response and affinity selection.

During the immune response the naive and memory cells are indistinguish-

able. In our model their difference becomes apparent on intermediate time scales.

Therefore, we consider their combined effect using a single variable D(~y) =

N(~y) + M(~y). Figure 3.1 shows a typical response to a repeated inoculation

with antigen ~x. Although other lymphocytes also bind less effectively to the anti-

gen, for illustrative purposes we plot only populations E(~y) and D(~y) for ~x = ~y,
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Figure 3.1: Immune responses to two sequential inoculations by the same antigen.
Results are shown for maximum binding affinity pairs ~x = ~y. The rapid response
to the secondary inoculation (represented by the smaller size of the second peak)
is due to the elevated number of memory cells. The immunological loss Eq. (3.15)
is defined to be the area under the antigen population peak. For the primary
and secondary peaks the values are 8,860 and 1,525, respectively. The model
parameters used in this and all simulations in this chapter are as follows: α =
1.5, β = 0.083, f = 0.38, δ = 0.01, ρ = 1, φ = 10−4, H = 10, γmax = 0.005, b = 2.
These parameter values give typical behavior for the model.

as well as F ∗ (for which binding is independent of shape space characteristics).

Initially there are 15 memory cells with ~x = ~y, D(~y, 0) = 15δ(~x− ~y), F = H,

E = 0, and an antigen inoculation A(~x, 0)=110. After the first immune response is

complete, there is a second identical inoculation at a later time. In each exposure,

the population size of the antigen increases, until a sufficient number of effector

cells are created from the memory and naive cell populations to eliminate the

infection. The total number of lymphocytes N + M + E, increases during an
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immune response, corresponding to swelling of the lymph nodes. As the effectors

die and the memory and naive cells are no longer stimulated, the swelling subsides.

Additionally, this model predicts that symptoms associated with elevated E levels

peak just as the pathogen is cleared. The more rapid secondary response is due to

the elevated number of memory cells. (The initial steep decline in the secondary

response is due to the trapping of antigen by the dendritic cells.) All other model

parameters remain the same from the first exposure to the second. Between

infections all short lived effector cells die, and the F ∗ cells all revert to F .

To quantify the severity of an individual infection we define a loss function

L(~x) as the integral of the antigen population size with respect to time:

L(~x) =

∫
A(~x, t)dt. (3.7)

While physiologically severity of disease depends on many factors, we believe that

this is a simple natural choice, as it is a rough measure of the amount of the body’s

resources a pathogen may consume and the amount of toxin the pathogen may

secrete. This immunological loss function serves as a tool for quantifying statis-

tics of infection size, and provides a meaningful target for sensitivity analysis. In

the context of this investigation and immunosenescence, it allows us to quantify

fitness and monitor how it changes over the development of the immune system.

Additionally, loss can be used to compare the effects of additional immune sys-
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tem components and reactions in more detailed immune system models, and to

quantify the efficacy of drugs and therapies based on their effect on loss.

We can obtain analytic estimates for loss as well as memory cell population

growth as functions of pre-infection memory and naive cell population sizes based

on several simplifying approximations to Eqs. (3.2-3.6). For ρA � αγ, F ∗ is ap-

proximately equal to the total number of dendritic cells H, F ∗ ≈ H and F ≈ 0.

Since A levels will be high when an immune response is initiated this approxima-

tion is reasonable. Equations (3.2-3.6) with M and N replaced with D = M +N ,

and the approximation F ∗ ≈ H, reduce to:

∂A(~x)

∂t
= βA(~x)− A(~x)

∫
γ(~x, ~y)E(~y)d~y, (3.8)

∂E(~y)

∂t
= 2fαγ(~x, ~y)HD(~y)− δE(~y), (3.9)

∂D(~y)

∂t
= (1− 2f)αγ(~x, ~y)HD(~y). (3.10)

These equations can be easily integrated yielding solutions which approximate the

antigen population size during an infection. The complete expression for A(~x, t)

is tractable, but cumbersome, and takes the form

A(~x, t) = A(~x, 0)eβt−
R
d~yS(~x,~y,t). (3.11)

A simple expansion of the function S(~x, ~y, t) to second order in t yields a Gaussian

approximation for the A(~x, t) peaks (e.g., in Fig. 1):

A(~x, t) = A(~x, 0)eβt−B(~x)t2 (3.12)
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where,

B(~x) = fαH

∫
d~yγ2(~x, ~y)D(~y, 0). (3.13)

This approximation describes the A(~x, t) pulse as a function of the initial value

of D.

Using this approximate solution forA(~x, t), we estimate the increase in memory

cell population values after the infection is cleared. We take the value of M(~y, t)

to be constant after time te when A has been reduced to half its initial value, in

the tail of the pulse, and we round it to integer value.

M(~y, te) = D(~y, 0)e(1−2f)αγHte −N(~y, 0)e−γαHte (3.14)

This analytical result gives close agreement with memory cell growth levels given

by our original model.

We estimate loss by integrating our analytical solution for the antigen popu-

lation peak from −∞ to ∞ (rather than starting at t = 0) to obtain:

L(~x) ≈ A(~x, 0)

√
π

B(~x)
exp

[
β2

4B(~x)

]
. (3.15)

Note that extending the range of integration to −∞ makes a relatively small

difference in the result and simplifies this expression. Furthermore, it may in

a certain sense be more accurate, as it accounts for the proliferation of antigen

before it enters the lymph nodes.
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3.2.1 Relaxation

On intermediate time scales the system relaxes, homeostasis adjusts naive

cell number, and the naive cell population is turned over. These processes are

considered fast enough to reach a steady state during the time between infections,

but not so fast as to be a factor during an immune response. In the absence of

antigen, the populations of effector and activated dendritic cells (which are both

responsible for removing antigen from the body) relax back to zero (E(~y) = 0,

F ∗ = 0 and F = H), as illustrated in Fig. 3.1. Though during an immune

response N and M cells play an identical role (represented as D in Fig.3.1),

during the homeostatic period, their differences become important. The memory

cells are long lived and in the absence of antigen their population is static. Naive

cells have a shorter lifetime than memory cells and die by apoptosis. As the

naive cells die, homeostatic mechanisms stimulate the cells of the bone marrow

to randomly repopulate the system with new naive cells. The repopulation is

constrained by the total number of D cells, R:

R =

∫
[M(~y) +N(~y)] d~y = Mtot +Ntot (3.16)

This constraint is violated during an immune response as the lymphocytes rapidly

proliferate, corresponding to the swelling of the lymph nodes. Once the antigen

is cleared the total relaxes back to R. Thus, as memory cell populations rise,
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homeostasis effectively depletes the naive cell population. The replacement of

naive cell populations with memory cells with increasing age is described by Linton

and Dorshkind [33].

3.3 Long Term Development

Next, using Eqs. (3.14,3.15,3.16) and simulated naive cell recycling, we study

the long term adaptation of lymphocyte populations over the lifetime of the in-

dividual. Using these approximations, our model reduces to a cellular automaton

describing the population changes of lymphocytes on the shape space after each

infection under our homeostatic constraint, Eq. (3.16). Initially the system is

composed of R naive cells. The naive cells randomly populate the shape space

with uniform probability. The system is then inoculated with antigen at position

~x with probability P (~x). The corresponding loss is computed Eq. (3.15), as well

as the change in the memory cell population Eq. (3.14). The naive cells are then

redistributed with their number adjusted to satisfy Eq. (3.16). A subsequent in-

oculation of the same antigen will make use of these memory cells for a more rapid

response, but an inoculation at another point in shape space will have a reduced

number of naive cells with which to respond and the loss will be higher.

We monitor the evolution of loss on long time scales by considering a 70× 70
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lattice with n = 36 possible infections, at sites evenly distributed, indexed i,

occurring with probability pi. The infections are far enough apart that cross-

reactivity is not a factor. The probabilities of infection are taken to have a few

chronic infections that are very likely to recur, and many small rare infections.

The probabilities are given by an exponential distribution:

pi = ζe−i/ξ, (3.17)

where we set ξ = 20/3 and ζ =
∑n

j=1 e
−j/ξ normalizes the distribution over

the discrete set of n infections. We choose a distribution of this form to have

a mix of frequent and rare infections. We have used other distributions as well

(e.g. a power law distribution), and obtain similar results. Different distributions

alter the memory cell population growth rate, which effects the time scale for the

onset of immunosenescence. Realistically the distribution of diseases and their

respective infection probabilities is itself a dynamic coevolving system with new

diseases constantly arising. In such a dynamic disease distribution, when the

naive cell population is depleted there will be fragility similar to the observations

reported here. With the kind of static distribution we consider here, in order for

fragility to develop the rare diseases must have low enough probability that one

of them is likely to be experienced for the first time once the naive cell population

is depleted. Changing the numerical values of parameters in the model will in
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general change the rate at which the naive cell population is depleted. We run

the simulation for 400 infections drawn at random from the above distribution.

Figure 3.2a (top) shows the loss L(~x) for each event in a representative sequence.

3.4 Immunosenescence

Figure 3.2b (top) illustrates the corresponding lymphocyte populations (D(~y) =

M(~y) + N(~y)) on the shape space at three stages in the adaptive development:

initial, after 250 infections, and after 400 infections. The corresponding loss fields

are illustrated below (these illustrate the loss which would be incurred for a sub-

sequent infection as a function of the antigen characteristics ~x). In the left figure

D is strictly composed of naive cells. In the middle figure, D includes a mix of

memory cells which form in the neighborhood of the inoculations, and the recy-

cled naive cells. The right most figure is almost entirely depleted of naive cells.

The bottom images show L(~x) for the naive state and after inoculations. These

figures illustrate what the loss would be, given the D values in the figure above,

for an inoculation at each point on the lattice (though we only consider the 36

points to be possible infections). Initially there are few vulnerabilities, associated

with potentially large losses (red), in the system. Instead the system is uniformly

protected. However, after 250 infections, the system develops structure and has
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Figure 3.2: One realization of system development for 400 infections on a 70×70
lattice. There are 36 possible infections evenly distributed throughout shape space
with R = 33000. The distribution of probabilities for the infections approxi-
mates an exponential, Eq. (3.17). In (a) the top curve illustrates the actual losses
based on the history of infections. For most of the simulation, expected loss J ,
Eq. (3.18), tends to decrease, yet rare events are increasing in size resulting in
increased variance σ Eq. (3.19). Eventually this results in catastrophic failure.
Figure (b) illustrates the shape space representation of populated receptor sites
in the immune system initially, after 250 infections, and after 400 infections (top),
and the corresponding distributions of losses for subsequent infections (bottom).
The initial configuration (left) is randomly populated by naive cells. After each
infection there are elevated populations of memory cells in the vicinities of the
infection site. The bottom figures illustrate how the immune system becomes
skewed in favor of rapid response to repeated exposures at the expense of novel
infections, by illustrating the immunological losses, Eq. (3.15), that would be in-
curred by inoculations at each lattice point before and after building up memory
cell populations.
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areas of high potential loss around the rare antigens. The points around the most

common infections are well protected after 250 infections, indicating low values

of loss (dark blue) in subsequent infections. However, because of the overall con-

straint on the number of cells, many outlying areas are left more vulnerable than

they were initially.

Based on the probability distribution of infections, we calculate the expected

loss J at each stage of the system’s adaptation. Here J corresponds to the average

value of L(~x) computed over the full spectrum of possible infections, and weighted

according to the probability of each infection:

J =

∫
P (~x)L(~x)d~x. (3.18)

The standard deviation σ gives a measure of the corresponding variation in the

possible loss values:

σ =

√∫
P (~x)L(~x)2d~x− J2 (3.19)

The expected loss J Fig. 3.2a (middle) initially decreases from the starting value,

associated with random population of shape space. As the system adapts, J takes

its minimum value at roughly 250 infections, which we refer to as the “optimal”

state. In later stages J begins to rise, due to overspecialization. It is this increase

which we associated with immunosenescence. Throughout the simulation adapta-

tion is accompanied by a steady increase in the variability σ (Fig. 3.2a (bottom)),

60



CHAPTER 3. ROBUSTNESS AND FRAGILITY IN IMMUNOSENESCENCE

associated with increasing breadth in the distribution of losses as the system be-

comes increasingly specialized. At the latest stages of the simulation the increase

in σ sharpens, which is indicative of extreme vulnerability to rare events.

Figure 3.3 illustrates the cumulative statistical distribution of loss sizes ob-

tained by combining data from 600 simulations of the form illustrated in Fig. 3.2.

The initial state is characterized by a narrow (note the logarithmic axes) and flat

distribution, which reflects the uniform coverage of shape space by the random

population of naive cells. The blue curve corresponds to the optimal state, where

the expected loss J takes its minimum value. Compared to the initial state, here

the distribution of losses is both broader, and more variable, indicative of adapta-

tion which optimizes the inherent tradeoff between reducing loss sizes for frequent

events, at the cost of larger losses for less frequent infections, which arises because

of the overall resource constraint (Eq. (3.16)). The red curve shows the result at

the end of our simulation, when the system has overspecialized, and exhibits im-

munosenescence. In this case, the distribution of losses is extremely heavy tailed,

corresponding to the increase in J . Any distribution containing very rare events

leads to heavy tailed loss statistics as the naive cell population becomes depleted.

This heavy tailed distribution of loss shows immunosenescence in the increased

fragility of an aged immune system to as yet unseen diseases.
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Figure 3.3: Distribution of losses over 600 realizations of the system. Results are
shown after the first infection, after 250 infections (when J is at its lowest value,
corresponding to the optimal state), and after 400 infections (corresponding to
immunsenescence), in black, blue, and red respectively. The infection probabilities
have the same distribution as in Fig. 3.2.
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3.5 Connection to other Complex Systems

Our model is representative of the HOT mechanism [34, 35], in which robust-

ness tradeoffs provide a mechanism for complexity and power laws through either

deliberate design or biological evolution, both of which favor configurations which

minimize loss, Eq. (3.18), subject to resource constraints, Eq. (3.16). The sim-

plest examples are referred to as “Probability Loss Resource” (PLR) HOT models

[36, 37, 38], which incorporate physically motivated relationships between resource

allocations and loss sizes of individual events to define a constrained resource op-

timization problem involving a set of events with prescribed probabilities. In the

cases which have been studied to date, resources have acted as barriers to prop-

agation of cascading events, such as wildfires [39] or power outages [40]. In our

case, the analogy is more akin to a sprinkler system, populated by lymphocytes,

in the shape space of possible pathogens. Over time, adaptation leads to spe-

cialized states, through replacement of naive cells with memory cells, which are

tuned to the history of past exposures. This results in a system which is increas-

ingly robust to common disturbances, yet increasingly fragile to rare events–a key

signature of HOT. In our model, this age correlated effect is a result of over spe-

cialization rather than an accumulation of defects. Other possible factors, such

as deterioration, may contribute to immunosenescence as well, though it has been
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experimentally observed that some symptoms are due to system dynamics [41].

Consequences of overspecialization were studied previously in a HOT model of

evolution, based on Darwinian mechanisms [42, 43], leading to extreme vulnera-

bility, similar to our observations here. In that case, offspring of lattice organisms

evolved through random mutation relative to their parent lattice, and fitness was

based on disturbances over the lifetime of individual lattices. Competition resulted

in development of generalists and specialists. While specialists flourished during

common circumstances, they experienced episodic extinction during rare events,

which parallels the extreme fragility in our model associated with immunosenes-

cence. In that case, the mutation rate itself was subject to mutation, and high

mutation rates played an important role in rapid diversification and evolution

following an extinction of the specialists. In the immune system, rapid mutation

is associated with somatic hypermutation, which gives the daughter cells of lym-

phocyte stimulation a receptor that is a mutation of the parent’s corresponding

receptor. This gives rise to higher affinity, more efficient responses [44] and will

be considered in future work.

While we have focused on immunosenescence, there are numerous additional

robustness tradeoffs associated with the immune system. For example, the im-

mune system has the ability to attack and remove non-self elements from the

body with no prior knowledge of non-self features. Normally this is done with
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little harm to the body itself. However, the immune system can make mistakes in

recognition, leading to autoimmune disease, a fragility which would not be present

if an organism had no immune system to begin with. In addition, on adaptive

time scales, the ability to retain memory of past exposures enables development

of effective vaccines, and reduces the severity of outbreaks of communicable dis-

eases within populations. However, in some instances vaccinations may also lead

to increased susceptibility to similar diseases [45, 44]. This “Robust Yet Fragile”

behavior is a key feature of HOT, a statistical theory for complexity in designed,

evolved, or adaptive systems. The immune system can be viewed as a complex

system in which robustness tradeoffs play a central role in evolution of the basic

operating mechanisms as well as adaptation of cell populations within an indi-

vidual. We emphasize the importance of tradeoffs associated with a spectrum of

possible events. Evolution and adaptation favor increased robustness to common

disturbances, but this is inevitably paired with increased fragility, both to rare

events as well as new opportunities for diseases and disturbances to hijack the

system which would not be available were the system not in place.
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Chapter 4

Pathogen Induced Tolerance

The response of the adaptive immune system of vertebrates [46] is a func-

tion of past infectious disease exposures. An immune response can have several

different effects on future exposures: immunity for identical or nearly identical

diseases, some amount of cross-reactive protection for similar diseases, no effect

for unrelated diseases, and in exceptional cases an increased vulnerability. Cross-

reactive protection is conferred when a secondary infection has chemicals with

characteristics similar to those of the primary infection.

The adaptive immune system derives the ability to respond to new infections

through a diverse population of cells, each having a distinct set of chemicals to

which it can respond [28, 30, 29]. The mechanisms that generate this diversity

also generate cells that will respond inappropriately to inert environmental chem-
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icals (allergens), or even the body’s own chemicals, thereby causing autoimmune

disease. The mechanisms that generate the cellular diversity of the adaptive im-

mune system need to be balanced with mechanisms of tolerance that prevent these

inappropriate immune responses.

The dengue viruses are a disease system with the unusual property of increased

vulnerabilities after the first exposure to dengue. Exposure to one of the dengue

viruses primes the immune system to be vulnerable to a more severe form of

the disease upon future exposure to the other dengue viruses. To explain this

unusual dynamic we present and study a novel mechanism, “Pathogen Induced

Tolerance,” (PIT). In this mechanism the antigens from a primary infection also

participate in the immune system tolerance mechanisms. The antigens of the

primary infection bear chemical resemblance to the chemicals of the other dengue

viruses and thereby tolerize the system to those viruses. Tolerizing the system in

this way reduces the ability of the system to respond to the other viruses leading to

a more severe disease states of either dengue hemorrhagic fever (DHF) or dengue

shock syndrome. The PIT mechanism is shown to reproduce in a straightforward

manner the key signatures of the dengue system.

In this chapter we use the dynamical model of the adaptive immune response

developed in Chapter 3 and [24] to study the effects of cross-reactivity in a pair

of infections (termed primary and secondary). The PIT dynamic is robust with
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respect to the choice of immune response model. The use of a dynamic model pro-

vides a tool not only for illustration of the dynamics, but also makes explicit the

reactions we are considering, can lead to quantitative predictions, and suggest ex-

periments. This model uses differential equations to model the behavior of antigen

proliferation, lymphocyte stimulation, antigen removal by effector lymphocytes,

and effector death. Our model includes the dynamics of the diverse population

of lymphocytes which we organize using generalized shape space models [31]. We

introduced and studied the model previously in the context of immunosenescence,

focusing on long term robustness and fragility tradeoffs associated with the natu-

ral adaptive mechanism assuming negligible interactions between infections [24].

This study focusses on fragilities induced by cross-reactivity on short-time scales.

4.1 Negative Selection

The adaptive immune system is composed of B and T white blood cells (i.e.

lymphocytes). These cell types derive their self, non-self discrimination ability

from the binding specificity of their receptors: T cell receptors for T cells, and

membrane bound antibody for B cells. These receptors are assembled randomly

from gene segments (VDJ recombination), producing a population of pre-naive

cells, in which each individual combination has a different binding specificity.
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Figure 4.1: Negative and positive selection under primary, heterologous secondary,
and heterologous secondary with PIT phenotype infections. Colored circles rep-
resent lymphocytes. The colors in the circles represent what colors of antigen
will stimulate the lymphocytes, the greater fraction of matching color the higher
affinity for that color antigen. In the left box representing the thymus or bone
marrow the diverse population of pre-naive cells is shown containing some au-
toreactive cells that will bind to self-antigen shown in blue. The mature naive
cells in the right do not contain any cells that recognize blue antigen. The system
then experiences an infection with a disease whose antigens are represented as red.
The lymphocytes with high affinity for red antigen multiply most rapidly, remove
the antigen from the body and leave behind a population of memory cells (large
spheres). The influx of naive cells from the thymus and bone marrow causes a
turnover and replenishment of the naive population. For a secondary heterolo-
gous infection with an disease whose antigen is represented in green, having some
crossreactivity with the red antigen the response should involve the high affinity
cells for green and some of the memory cells that have a low affinity for green.
This secondary response should be less severe than the primary infection. The
bottom diagram in the left box shows the case if the antigen from the primary
infection is also presented in negative selection. In that case only cells that have
no affinity, high or low, for self antigen or antigen from the first infection, enter
the naive pool. No high affinity naive cells will be entering the lymphatic system
creating the PIT phenotype where only low affinity cells will be available to fight
the heterologous secondary infection.
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This population having randomly arranged receptors contains a large fraction of

cells which bind to the body’s own chemicals.

These autoreactive pre-naive cells are triggered to die by apoptosis when they

recognize antigen (Negative Selection). This maturation and selection process

takes place in the Thymus for T cells and in the bone marrow for B cells. Fig. 4.1

illustrates the negative selection process in the left hand box. As many as 90% of

the pre-naive cells are removed in this manner [47]. Negative selection is facilitated

by dendritic cells which present the native antigens to the pre-naive cells. The pre-

naive cells that are not triggered to die, mature to become short-lived naive cells.

This diverse population, having receptors composed of random combinations of

genes, gives the immune system the ability to respond to many pathogens. The

roll of negative selection in the immune system is shown pictorially in the top

right image of Fig. 4.1.

4.2 Crossreactivity

In addition to immunity for a homologous secondary infection, the memory

cells can have a positive effect on heterologous secondary infections depending

on how strongly they bind to the new antigen. There are numerous examples of

diseases that have such a cross-reactivity for each other [48] including cowpox and
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smallpox, influenza A and hepatitis C, rotavirus and HIV-1, and choriomeningitis

virus and pichinde virus. This crossreactive effect typically results in a shorter

disease with fewer symptoms. This crossreactive infection is shown pictorially in

Fig. 4.1 in the middle of the right hand box. Here the memory cells from the

previous infection are low affinity and provide some additional protection.

4.3 Pathogen Induced Tolerance

In some disease systems a negative effect on heterologous immune responses

has been observed [49, 50]. Dengue is an example of such a disease system. There

are four dengue virus serotypes. A primary exposure to one typically results in

dengue fever and a long lived immunity to that serotype. For a period of a few

months [51, 49] there is also an observed beneficial immunity to heterologous

infections with the other dengue serotypes. This cross-reactive protection is short

lived and eventually the system is left in a fragile state, vulnerable to dengue

hemorrhagic fever (DHF) [49, 52]. DHF is primarily a disease afflicting children.

The dengue virus also is able to penetrate and infect dendritic cells, raising the

possibility that dengue epitopes could be presented to pre-naive cells.

Typically between infections the populations of naive cells are replaced by the

constant influx of new naive cells. This turnover of naive cells can take several
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months, the time scale being set by the influx of new cells. The naive influx is

highest in children and decays with age.

The central hypothesis of this chapter is that dendritic cells infected with

dengue virus may be presenting pathogenic antigen during negative selection.

This is pictorially represented in Fig. 4.1 in the left box at the bottom. The naive

cells that would be high affinity for the secondary infections are now absent from

the naive influx due to their crossreactivity with the antigens from the primary

infection. As the naive population turns over the naive cells that would have

provided a high affinity response to the secondary heterologous infection decay

in number leaving the system vulnerable to a more severe form of disease. This

“Pathogen Induced Tolerance” (PIT) is a vulnerability that may also be present

in other disease systems.

4.4 Cross-Reactive Dynamics

We use the mathematical model of the immune response developed in Chapter

3 and [24]. In that chapter we considered a sequence of 400 unrelated infections

[24] with no cross-reactivity. In this study we look at the effects of a sequence of

two infections that have a chemical similarity.

In this study we look at the effects of a sequence of two infections that have
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a chemical similarity. We ignore the long term repertoire thinning discussed in

Chapter 3 as it is relevant for memory accumulation over a lifetime of infections.

Here we are interested in a sequence of only two infections that have some degree

of cross-reactivity. We also assume that the primary immune response completely

ends before any secondary infection begins.

The reactions considered in this chapter are shown diagrammatically in Fig. 4.2.

From the left: pre-naive cells P can be stimulated by antigen presented on den-

dritic cells (H) to apoptose. This negative selection reaction acts to remove au-

toreactive cells. If a pre-naive cell survives negative selection it will mature to

a naive cell (N). Naive cells can be stimulated in the same way by H but pro-

liferate into memory (M) and effector cells (E). Naive cells that do not bind

antigen must compete for limited survival factors with the constant influx on new

naive cells coming from the bone marrow and thymus and will eventually die by

apoptosis. The naive population is turned over in this manner every few months

[47]. Memory populations are long-lived but otherwise identical in our model to

naive cells. The memory cells can be stimulated in the same manner as naive

cells, proliferating into more memory cells and effector cells. The effector cells are

short-lived and do the work of removing the antigen (A) from the body. Antigen

growth via reproduction of the associated pathogen is also shown on the far right

of Fig. 4.2.
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The model equations describing these populations and the illustrated reactions

are presented in Eqs. 3.2-3.6. Parameter estimations for this chapter are listed in

Appendix A.

P

H H

H

N

M

E A

Immune Response

Figure 4.2: This flowchart summarizes the reactions considered in our model. The
leftmost reaction shows pre-naive cells (P) subjected to negative selection. Those
pre-naive cells that survive negative selection become short-lived, continuously
recycled naive cells (N). The red box surrounds reactions taking place during an
immune response and modeled with differential equations. The reactions shown
in orange are affinity dependent.

As the reactions considered here are common to both T-cells and B-Cells, we

do not make a distinction between them in our model. This technique has been

used in past generalizations [29]. Additionally, we do not consider many immune

system effects such as T-help, somatic hypermutation [44], or the complexities of

germinal center reactions [53, 54]. Including T-help would if anything make the

consequences of the PIT phenotype more severe as helper T-cells could also suffer

the PIT phenotype. The variations in the dynamics of germinal center reactions
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are considered to be primarily a function of the affinity of cells for antigens and

thus the effects of the germinal center reactions are implicitly assumed in the

model. Somatic hypermutation could lessen its effects on PIT for B cells by

evolving low affinity B cells to become high affinity, but the reaction will still be

worse for PIT phenotype than for a primary infection. T cell responses do not

utilize somatic hypermutation.

In order to model an immune response with a large diversity of lymphocytes

we again use the generalized shape space technique of Oster and Perelson [31].

We again use only two dimensions for illustrative purposes and consider a very

small region of the total shape space in the neighborhood of the antigen vector for

the primary infection. Here we also are not concerned with the stochastic effects

associated with rare naive cells in immunosenescence and use a flat continuous

distribution of naive cells. The degree of cross-reactivity of two infections is de-

scribed in this chapter in units of b the term that sets the shape space scale in

Eq. 3.1. The simulations in this chapter were performed on a 96×96 lattice.

4.4.1 Primary Infection

The basic behavior of the model for a single infection is shown with the dashed

black curve in Fig. 4.3 and the memory accumulation shown in Fig. 4.4. Fig. 4.3

shows the antigen response curve A(~x, t) for the primary infection where the initial
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conditions are a uniform field of naive cells and no memory cells, Fig. 4.4 (left).

Initially there are no effector cells the antigen growth is approximately exponen-

tial. This curve turns over however as the effector cell population increases.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7
x 106

 

 
Primary
Immune
Crossreactive
PIT

Pa
th

og
en

 C
ou

nt

Days

Figure 4.3: Antigen response curves A(~x, t) for four scenarios of the model. The
dashed black curve shows the response curve for the initial exposure (Primary),
while the solid black curve shows the response to a second exposure of the same
antigen (Immune). The green curve shows the response to a related disease (Cross-
reactive) following the initial exposure. The shape space position in relation to
the primary antigen is shown with the green marker in the shape space drawn in
4.4 and 4.7. The red curve corresponds to the same cross-reactive infection as the
green curve but with the PIT phenotype, where the antigens from the primary
infection have acted in negative selection. The red curve is a more severe disease
state, with greater magnitude and longer infection.

When the immune response has cleared the antigen from the system, long-

lived memory cells are left behind. Figure 4.4 shows the distribution of naive and

memory cells around the pathogen in shape-space, before and after the immune
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response. Before the infection the distribution of lymphocytes is a uniform low

level (all blue) field consisting only of naive cells. After the immune response

there is an accumulation of memory cells that will survive indefinitely. This peak

is centered on the antigen vector of the primary infection, as naive and memory

cells with receptor vectors close to that proliferate most rapidly.
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Figure 4.4: The density of naive and memory lymphocytes in the shape space
before and after an infection. The vector ~x for the primary infection is shown as a
red x in the center of the left figure. Initially the distribution is uniform consisting
of only naive cells. After the immune response the memory cell population survives
indefinitely. The memory cells are peaked around the antigen vector as the closest
naive and memory cells have the highest proliferation rate. The green circle marks
the locations of secondary infection in Fig. 4.4. Only a small portion of the total
shape space, in the neighborhood of the primary infection, is shown. The shape
space distance is measured in units of b the length scale for the function of affinity
given shape space distance.

4.4.2 Immunity

When the system is re-inoculated with the exact same antigen (center of

Fig. 4.4), the memory cells provide an enhanced response. In Fig. 4.3 the solid
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black line shows the response to a homologous secondary infection, where the

initial memory and naive cell populations are shown in the right hand image in

Fig. 4.4. The antigen pulse in Fig. 4.3 is shorter and lower in magnitude, a less

severe disease for a shorter period of time. This is due to the much faster effector

cell response.

It should be noted that our model approximates the short term dynamics

of memory cells and naive cells as being identical. The more rapid response in

Fig. 4.3 is due to the larger initial number of high affinity memory cells rather

than an intrinsic difference in stimulation rate for memory cells versus naive cells.

To quantify the severity of an infection we use the loss measure defined in [24].

This quantity is the integral over the A(~x, t) pulse:

Loss =

∫ ∞
0

A(~x, t)dt. (4.1)

The Loss is proportional to the resources the pathogen consumes, and the total

amount of toxin the pathogen secretes over the course of the infection. For the

primary and secondary infections in Fig. 4.3, the loss was 4.9× 106 and 1.5× 105

respectively with units of antigen × days. The presence of memory cells at the

start of the second infection reduced the severity of that infection.
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4.4.3 Cross-Reactivity

The memory cells left after the primary infection can have some affinity for

heterologous secondary infections. This phenomenon is known as cross-reactivity

or polyspecificity [55]. Cross-reactivity of memory cells is typically beneficial, such

as the historic practice of vaccinating against smallpox with inoculation of the

virus that causes cowpox. (Memory cells can have a negative cross-reactive effect

if the antigen from the primary infection bears similarity to the self-antigens of the

body, thereby inducing autoimmune disease [56]. We do not consider autoimmune

effects here.)

To study the effects of cross-reactivity in the shape space picture, the vec-

tors for the antigens of the primary and secondary infections must be similar.

Mathematically the distance between the two shape space vectors must be within

several b, the term that sets the shape space scale. We look at a range of degrees

of similarity for heterologous secondary infections.

The green circle drawn on the memory and naive distribution of Fig. 4.4 cor-

responds to the location of the cross-reactive curve in Fig. 4.3. This antigen

response curve is less severe than the primary infection due to the presence of the

low affinity memory cells left from the primary infection.

As the shape space position of the secondary antigen moves away from the
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primary antigen, the infection becomes more severe. The antigen pulses are pro-

gressively longer in time and with larger maxima until the secondary antigen is

far enough away that the curve is equal to the curve for the primary infection.

The blue dashed curve in Fig. 4.5 shows the loss as a function of antigen

position for a range of similarities for heterologous secondary infections. This

curve asymptotically and monotonically approaches the loss of the initial infection

as the secondary antigen moves away from the primary antigen in shape space. In

the limit of zero antigenic difference we see the result discussed in Section 4.4.2

for a homologous secondary infection. Cross-reactivity provides some immunity

to diseases closely related to ones we have previously encountered.

4.4.4 PIT Dynamics

Here we show the expected effects of dendritic cells presenting pathogenic anti-

gen to pre-naive cells: pathogen induced tolerance (PIT). This provides a mech-

anism by which a primary infection can leave the repertoire in a state vulnerable

to heterologous infection.

To describe PIT we include negative selection in our model. We model neg-

ative selection in the shape space as a perfect process removing all immature

lymphocytes within a radius rn of the presented antigen. Figure 4.6 shows this

effect on the distribution of naive cells. The pre-naive cells are derived from stem
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Figure 4.5: The loss for secondary infections as a function of shape space distance
from the primary infection to the secondary infection. The blue dashed curve
illustrates the losses on the naive and memory distribution in the right hand
image of Fig. 4.4. The blue curve shows the loss monotonically converging to the
value for the primary infection (grey dashed line) as the distance increases. The
solid black curve shows losses for the negatively selected PIT phenotype naive
and memory cell distribution shown in the right hand image of Fig. 4.7. The PIT
vulnerability is seen on the black curve when the loss for a secondary infection
exceeds the loss for a primary infection. The circles on these plots correspond to
the markers for shape space positions for the secondary epitopes in Fig. 4.4 and
Fig. 4.7 .

cells in the bone marrow, uniformly populating the shape space with their ran-

dom receptors shown pictorially on the left. An antigen presented during negative

selection is shown as a red x at the center of this distribution. The right hand

image shows the naive cells that have matured. This distribution has a hole with

radius rn around the presented antigen where pre-naive cells were prevented from

maturing.
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Treating negative selection as a perfect process gives a hard edge in the lym-

phocyte density profile. This is in contrast to the smooth memory profile shown at

right in Fig. 4.5. This contrast is due to multiple factors. Pre-naive cells are con-

tinuously in the thymus or bone marrow being repeatedly presented antigen while

naive cells spend a large fraction of their time in the periphery. The continual

presentation makes negative selection a more efficient selection process. Second,

the smoothness of the memory profile is due to multiple divisions of lymphocytes

with low affinity cells dividing less rapidly when presented antigen. For PIT phe-

notype to occur the approximation of a perfect process need not be completely

accurate, autoimmune disease though rare, does occur. All that is required is

significant depletion.

In order for negative selection to provide a protection against autoimmune

disease the radius of cells that are positively selected rp, must be smaller than rn:

rp < rn. (4.2)

If this were not the case, cells on the edge of the hole generated by negative se-

lection, Fig. 4.6 would be positively selected by self-antigens once mature. This

would generate an immune response against those antigens, thereby generating au-

toimmune disease. Insuring that rp < rn prevents the maturation of autoreactive

lymphocytes and autoimmune disease.
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Figure 4.6: Before and after negative selection: The left hand image shows the
source of pre-naive cells. This is a uniform distribution. The shape space vector
of antigen presented during negative selection is shown with the red x. The
population of naive cells that emerge after surviving negative selection is shown
at right. We have modeled this process as being perfect, eliminating all cells
within radius rn that are likely to be positively selected by that antigen were it
encountered in the body.

The signature of an infectious disease whose antigens are presented to not only

naive and memory cells, but to pre-naive cells as well is shown in Fig. 4.7. This

figure shows the naive and memory cell population development for an infection

that is incorporated into negative selection. This may happen from an infectious

disease whose antigens persists for long periods in the body, such a virus with a

long latent phase, a chronic bacterial infection, a pathogen that infects dendritic

cells, or frequent re-exposure to the initial infectious agent.

The antigens from such an infection would not only be presented in the lymph

nodes to stimulate a response, but also to the pre-naive cells. The two left images

in Fig. 4.7 repeat the reactions in Fig. 4.4 as the primary infection would not
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Figure 4.7: The development of vulnerability after an infection whose antigen is
incorporated into negative selection. The initial response to the primary infec-
tion is shown in the first two images. When the antigen participates in negative
selection over the time scale of naive turnover, the lymphocyte density shown
in the middle image will progress to the image at right. As the naive popula-
tion is turned over, the replacement naive cells have a hole around the antigen
from the first infection. The radius of the hole rn must be larger than the radius
of positively selected cells in order for negative selection to aid in prevention of
autoimmune disease.

differ. The middle distribution in this case however is short-lived. As the naive

cell population is turned over the replacement naive repertoire has a hole centered

on the antigen from the infection.

The right image in Fig. 4.7 shows the memory cells accumulated during the

immune response in the center, with a naive cell distribution having a hole centered

on the antigen from the primary infection giving the ring surrounding the memory

cells.

A heterologous infection with antigen in the region where there are no memory

cells and no naive cells in the right hand image of Fig. 4.7 will cause severe disease

as the system is now unable to produce any high affinity effector cells. The
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immune system has become more tolerant to a subset of secondary infections due

to the primary infection. This will lead to more severe disease from that subset

of infections. The antigen response curve for an infection of this type is shown in

red in Fig. 4.3. This curve has a far greater amplitude and lasts for a much longer

period.

The loss as a function of the shape space distance between the primary and

secondary infections for the PIT phenotype is plotted in black in Fig. 4.5. As

can be seen in the figure, for parameters used in this study, the loss exceeds the

primary loss by as much as four times for serotypes with shape space distance

greater than 2.25b.

This behavior is summarized in Table 4.1. Note from Table 4.1 that this

dynamic is symmetric. Primary inoculation with A or B induces tolerance and

hence vulnerability to B or A respectively.

Immediately following the primary infection the curve describing loss as a

function of antigen similarity is given by the blue curve in Fig. 4.5. In the case of

PIT this blue curve is short-lived and develops into the black curve as the naive

cell population is turned over and the repertoire progresses from the middle image

of Fig. 4.7 to the right hand figure.
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Time Scale of PIT Development

The time scale of this PIT formation is set by the rate of influx of new cells

(I). The rate of exponential decay (d) for populations not being added to (naive

cells with affinity for the primary antigen) is given by:

d =
I

κ
, (4.3)

where κ is the equilibrium number of cells in the system [14]. Normally the influx

replaces the cells lost to attrition. However, with the antigen from the infection

being presented in negative selection there will be no replacement. The time scale

for PIT generation is therefore set by 1/d.

Thymic influx has been show to decay exponentially with age [57]. This gives

us an age dependent PIT development time scale:

1

d(a)
=
κeca

Im
. (4.4)

where a age, Im is the maximum influx of new naive cells, and the constant c

is the rate of decay of output of new naive cells with age (about 3% a year for

thymic output). This age dependent effect indicates children will tend to develop

the PIT phenotype more rapidly. Naive turnover in a young person takes place

over a period of several months. Thus the antigen from the primary infection

must be presented in negative selection for at least this long in order for the hole
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Primary Primary Secondary Infection
Antigen Infection Before Turnover After Turnover

Aa Ab Aa Ab Aa Ab
Aa - + + + - -
Ab - + + - - +

Table 4.1: Phenomena predicted by model. Aa and Ab separated by a distance
of around 3b in shape space. Normal infection and response (-), Immunity (+),
Severe infection (- -).

to form. In the elderly where 1/d(a) is much longer, if the antigen presentation is

temporary, the PIT is much less likely to form.

Pathogen Induced Tolerance (PIT) is a mechanism that can lead to heterol-

ogous secondary infections being more severe than primary infections. The de-

velopment of the PIT phenotype consists of an infection and normal immune

response, followed by the presentation of antigen from that infection to pre-naive

cells. Initially heterologous secondary infections show no vulnerability but as the

naive pool is turned over with the influx of new cells, naive cells with affinity

for the primary antigens are lost. This turnover time is set by the influx of new

cells, is given by Eq. 4.4, and is expected to be on the order of a couple months

for children. The influx of new naive cells declines rapidly with age. The loss of

naive cells with affinity for the primary infection thus is most rapid in children.

For heterologous secondary infections, if an infection has antigens that have an

intermediate cross-reactivity with the primary infection, where the memory from
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the primary infection is low affinity for the second infection and the naive cells

that would be high affinity are absent, the secondary infection can be very severe.

This vulnerability is a consequence one of many tradeoffs in the adaptive im-

mune system. Here the necessity of a diverse naive population requires tolerance

mechanisms to prohibit inappropriate responses to self. These tolerance mech-

anisms can then also act inappropriately, creating vulnerabilities such as PIT.

There is no vulnerability to the original pathogen with the PIT phenotype be-

cause even without the high affinity naive cells there are high affinity memory

cells left that provide immunity, Fig. 4.7 (right).

The characteristic behavior of PIT is robust to our choice of immune response

model and requires only that negative selection is more efficient than positive

selection. This is represented mathematically by Eq. 4.2. Biologicaly we know

this must be true for negative selection to help prevent autoimmune disease. If

pathogenic antigen can stimulate these low affinity cells in positive selection, then

the ubiquitous self antigens should also stimulate low affinity cells, leading to

autoimmune disease. Additionally, the requirement in Eq. 4.2 also selects the

highest affinity naive cells in an immune response. Quantitative predictions will

become more accurate as measurements are made on the degree of cross-reactivity

for different disease epitopes, and there is better characterization of the immune

response and lymphocyte repertoire.
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The lasting effects of pathogen induced tolerance (PIT) could vary widely. For

an antigen that is unable to grow, such as a biologically inactive vaccine, or an

antigen whose associated pathogen has been completely removed from the body,

the PIT phase will be short-lived. The remaining antigen may degrade before the

naive turnover is complete and the PIT vulnerability may never develop in this

case. However, many viruses continue to live in the body, asymptomatically, at

low levels indefinitely after the immune response [58, 59]. This is known as the

asymptomatic or latent phase of the infection. If a virus is living in the body at

low levels its antigens should be active in negative selection. Additionally, in areas

where reinfection is common there could be a prolonged presentation of antigen

even with immunity.

4.5 Dengue

While the PIT mechanism could be active in a number of disease systems

the dengue system matches the signature of PIT. There are four closely related

dengue virus serotypes. Infection with one serotype generates dengue fever and

immunity to subsequent homologous infections. For a period of a few months

[51, 49] there is also an observed beneficial immunity to heterologous infection

with the other dengue serotypes. As predicted by our model this beneficial effect
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is observed to be short-lived and the system is observed to subsequently evolve

to a state where infection with another serotype can progress to a more severe

Dengue Hemorrhagic Fever (DHF) [49, 52]. DHF like the PIT phenotype is also

observed to affect children disproportionally [60].

Two additional factors increase the likelihood that dengue may be an example

of Pathogen Induced Tolerance. One, dendritic cells are highly permissive to the

dengue virus. Since dendritic cells present self-antigen during negative selection

this enhances the likelihood of dengue antigens taking place in negative selection.

The second factor is that dengue is a constant endemic threat in many of the areas

it is found, increasing the likelihood of re-exposure to antigens that can maintain

the PIT phenotype, even for short lived antigens.

While there are many proposed mechanisms for the dengue pathogenesis [61],

the PIT mechanism is unique in that it matches all the signatures of the dengue

system described here and provides simple explanations for much of the observed

behavior. The absence of high affinity naive cells in the PIT phenotype could be

responsible for the difference between dengue fever and dengue hemorrhagic fever.
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Conclusions

Study in theoretical immunology can be viewed broadly in three categories:

• Quantitative modeling

• Creating mathematical tools immunologists need to measure the parameters

for quantitative models

• Explaining the system architecture1 of the immune system.

Quantitative models can be used in medicine to reduce the amount of guess

and check needed in development. Departure from the predictions of quantitative

models can help biologists and immunologists make new discoveries. Quantita-

tive models can also be used to suggest new experiments that can be done to

1the word design in biology now has a different meaning
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discriminate between two different theoretical models that yield similar results.

To properly calibrate quantitative models, quantitative experiments are needed.

This is uncommon in immunology. The most quantitative measurements in im-

munology are typically given as a percent change from a control, leaving the results

open to interpretation. Making quantitative measurements in immunology can be

more easily accomplished with the aid of models, fitting data to a model. The

immunologist also needs statistical tools for fitting parameters.

The most ubiquitous tool in immunology is flow cytometry. It gives informa-

tion on the simultaneous expression levels of different biological chemicals. It is

presently used most often for counting the number of cells with florescence levels

above or bellow thresholds. Applying structured population dynamics tools would

allow connecting the molecular systems biology of these cells with the population

dynamics of the system.

Theoretical modeling allows the scientist to ask questions of what the system

would do if it operated differently, yielding insight into how and why it came to

act the way it does. With so many tradeoffs and constraints this area of research

in system architecture is quite complex. Scaling laws for example in the immune

system have identified the smallest immune system possible given the specificity

of antibody-antigen binding. This matches with the size of the adaptive immune

system of a tadpole. Smaller than this and the system has a low probability of
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being able to discriminate between self and non-self.

While UCSB’s commitment to interdisciplinary studies has made this work

possible, the lack of a medical school or immunology department has made it

difficult to obtain the experimental results needed for calibrated models. In a

research environment where the theoretician and the experimentalist interact there

can be much more rapid progress made toward alleviating the pain and deaths

associated with immune system disorders and the diseases the immune system

fights.

At the moment only four of the world’s immunology research centers have

established theory groups. The cost of a theory group is likely miniscule in com-

parison to maintaing an animal lab. Society at large would benefit from every

immunology research center having a theoretician. Unfortunately there are not

yet many qualified researchers in the field and there is not a well defined pathway

for training new PhDs. The NIH however has a funding initiative Mentored Quan-

titative Research Development Award (K25) to train researchers in the physical

sciences to perform research in biology.

There is an abundance of work to be done in this field, so far we have only

scratched at the surface, and the effects should improve the quality of lives of

people ranging from the affluent Northern Europeans suffering from autoimmune

diseases due to their lack of exposure to pathogens, to children in equatorial
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regions suffering from dengue hemorrhagic fever.2

2One symptom of dengue hemorrhagic fever is “coffee ground vomit.” Obviously we need to
prevent that from happening.
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Appendix A

Calibration Information for

Chapter 4

Here we present equations for estimating seven of the model parameters given

in Table A.1. These equations are derived from seven related quantities which

can be approximated from the model equations. Those approximations are then
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inverted to solve for the model parameters:

N(~y, 0) =
NtF

ld
; (A.1)

rn =

[
pNt

N(~y, 0)

Γ(d/2 + 1)

πd/2

]1/d

; (A.2)

b = rn
1√

2ln
(
EDT
MDT

) ; (A.3)

β =
2

te
ln

(
Am

A(~x, 0)

)1 +

√√√√1 +
ln(2)

ln
(

Am

A(~x,0)

)
 ; (A.4)

f =
1

2
− MDT

ln(4)te
ln

(
∆mem[2 ln( EDT

MDT
)]d/2

pNt

)
; (A.5)

γmax =
MDT β2[2 ln( EDT

MDT
)]d/2

4fln(2)pNtΓ(d/2 + 1)ln
(

Am

A(~x,0)

) ; (A.6)

αH =
ln(2)

MDT γmax
. (A.7)

The input parameters are:

• p, The specificity of the adaptive immune system is the probability that a

randomly chosen lymphocyte and antigen bind strongly enough to stimulate

the lymphocyte. We set p equal to 10−5 [62].

• Nt, the total number of naive lymphocytes. We set Nt equal to 2 × 107,

which is the value for a mouse [63]. This value will be higher in a human

making the PIT effect more severe.

• MDT , the doubling time for the highest affinity lymphocytes. We set MDT
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equal to 6 hours, a standard estimate [46].

• EDT , the doubling time for the highest affinity self reactive lymphocytes,

the lymphocytes on the edge of the sphere of negative selection. This must

be at least as large as the naive cell lifetime. Incorporating T-help might

relax this condition. We used EDT equal to 15 weeks.

• te, the length of time it takes to clear an infection. We used te equal to

10 days.

• Am, the highest concentration of antigen during the primary infection. We

set Am equal to 107 [64].

• ∆mem, the accumulated memory cells from a primary infection. We used

∆mem equals 5000. The approximation for ∆mem is order of magnitude.

The parametersMDT,EDT, te, Am, and ∆mem are approximated from the model

using a Gaussian approximation for the A(~x, t) pulse. The approximate equations

(not shown here) for these parameters are then inverted to obtain the above

equations. Additionally, the equations contain computational parameters d the

dimension of the shape space, F the fraction of the total shape space we simulate,

and ld the number of lattice sites in the simulation. In the simulations of Chapter

4 d = 2, F = 8.1× 10−5, and ld = 96× 96. We expect the qualitative behavior of
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Parameter Value

N(~y, 0) 0.3 cells per lattice site
A(~x, 0) 105 cells
b 4 lattice sites
β 1.9 day−1

αH 255 cells
γm 0.01 cell−1 day−1

δ 0.01 day−1

f 0.397
rn 13.9 lattice sites

Table A.1: Values of parameters used in PIT model simulations. Note that
the product αH is listed rather than listing the parameters individually. Only
the product arises in this model. H is the number of sites occupied by antigen
during an immune response and α is a factor accounting for the difference in rates
for the two affinity dependent processes: stimulation and antigen removal. The
qualitative behavior of the model is not especially sensitive to precise parameter
values.

the model to not be sensitive to precise values.
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