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ABSTRACT

21cm observations have the potential to revolutionize our understanding of the
high-redshift universe. Whilst extremely bright radio continuum foregrounds exist at
these frequencies, their spectral smoothness can be exploited to allow efficient fore-
ground subtraction. It is well-known that–regardless of other instrumental effects–this
removes power on scales comparable to the survey bandwidth. We investigate associ-
ated systematic biases. We show that removing line-of-sight fluctuations on large scales
aliases into suppression of the 3D power spectrum across a broad range of scales. This
bias can be dealt with by correctly marginalizing over small wavenumbers in the 1D
power spectrum; however, the unbiased estimator will have unavoidably larger vari-
ance. We also show that Gaussian realizations of the power spectrum permit accurate
and extremely rapid Monte-Carlo simulations for error analysis; repeated realizations
of the fully non-Gaussian field are unnecessary. We perform Monte-Carlo maximum-
likelihood simulations of foreground removal which yield unbiased, minimum variance
estimates of the power spectrum in agreement with Fisher matrix estimates. Fore-
ground removal also distorts the 21cm PDF, reducing the contrast between neutral
and ionized regions, with potentially serious consequences for efforts to extract infor-
mation from the PDF. We show that it is the subtraction of large-scales modes which
is responsible for this distortion, and that it is less severe in the earlier stages of reion-
ization. It can be reduced by using larger bandwidths. In the late stages of reionization,
identification of the largest ionized regions (which consist of foreground emission only)
provides calibration points which potentially allow recovery of large-scale modes. Fi-
nally, we also show that: (i) the broad frequency response of synchrotron and free-free
emission will smear out any features in the electron momentum distribution and en-
sure spectrally smooth foregrounds; (ii) extragalactic radio recombination lines should
be negligible foregrounds.

Key words: cosmology:theory – diffuse radiation – methods: statistical – radio lines:
general

1 INTRODUCTION

21cm observations have the potential to revolutionize our
understanding of the high-redshift universe (for recent
reviews, see Furlanetto et al. (2006); Morales & Wyithe
(2009)). By examining the imprints of the first galaxies on
the intergalactic medium, they are complementary to (and
potentially much more powerful than) direct surveys for
proto-galaxies via Lyα and dropout techniques; furthermore,
they can survey the universe on much larger scales. More-
over, unlike Ly-series absorption studies of high-redshift

⋆ E-mail: petrovic@physics.ucsb.edu
† E-mail: peng@physics.ucsb.edu (corresponding author)

quasars, they constitute a fully three-dimensional probe
which is not subject to saturation effects, and require no
background sources. A host of upcoming low-frequency in-
terferometers aim to detect fluctuations in 21cm emission

http://arxiv.org/abs/1010.4109v2
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from the Epoch of Reionization as a key science goal, includ-
ing GMRT,1 MWA,2 LOFAR,3 21CMA,4 PAPER,5 SKA6.

One of the most difficult aspects of high-z 21 cm mea-
surements is the extreme brightness of the astronomical
foregrounds relative to the cosmological signal (which has
a brightness temperature δTb ∼ 20 mK): Galactic syn-
chrotron emission has (at best) Tgal ∼ 200–1000 K at
these frequencies (Shaver et al. 1999) Extragalactic fore-
grounds, including radio galaxies, free-free emitters, and
galaxy clusters (Di Matteo et al. 2002; Oh & Mack 2003;
Di Matteo et al. 2004), are also significantly brighter than
the 21 cm signal. Although these can be removed, the
residual noise is large and numerous practical difficul-
ties arise (see §9.3 of Furlanetto et al. 2006, and §3.4 of
Morales & Wyithe 2009). Outstanding amongst these are
terrestrial and satellite radio-frequency interference (RFI);
ionospheric refraction and scintillation; and calibration er-
rors in the direction-dependent gain and polarization re-
sponse of the antennae. A particularly worrisome problem
is the chromatic PSF of the instrument, which couples spa-
tial fluctuations of spectrally smooth point sources into
fluctuations in the frequency domain, an effect commonly
dubbed ”mode-mixing”. Studies of the latter (Liu et al.
2009; Bowman et al. 2009; Liu et al. 009b; Datta et al.
2010) show that while in principle this can be cleaned,
the required calibration accuracy is formidable. By con-
trast, once the bright point sources are removed and the
instrumental effects dealt with, removal of the spectrally
smooth confused foreground of faint sources and Galac-
tic emission is comparatively easy, and thought to be a
solved problem (Zaldarriaga et al. 2004; Morales & Hewitt
2004; Santos et al. 2005; Wang et al. 2006; Morales et al.
2006a; McQuinn et al. 2006). In this paper, we focus only

on this latter, comparatively ’easy’ stage of continuum fore-
ground removal. We show that there are systematic effects
and biases–generally associated with the loss of large-scale
power—which if not carefully taken into account, can lead
to spurious results.

The most widely discussed method for continuum fore-
ground removal involves fitting and subtracting a smooth
function to the data (Wang et al. 2006; Morales et al. 2006b;
McQuinn et al. 2006). This “trend removal” has a rigor-
ous statistical justication as a means of extracting a tiny
fluctuating signal from a huge, slowly varying background
(Rybicki & Press 1992). It corresponds to projecting out
low-order, slowly-varying modes in the data (McQuinn et al.
2006), with a price: cleaning also attenuates the signal by
removing its large-scale fluctuations. It therefore severely
restricts the spatial dynamic range of 21 cm observatories.
For instance, MWA measurements of the 21cm power spec-
trum will be limited to roughly a decade in scale, from
k ∼ 0.1 − 1hMpc−1 (Lidz et al. 2008). Recent simula-
tion studies have confirmed the efficacy of trend removal

1 Giant Metrewave Radio Telescope,
http://www.gmrt.ncra.tifr.res.in/
2 MurchisonWidefield Array, http://www.haystack.mit.edu/ast/arrays/mwa/
3 Low Frequency Array, http://www.lofar.org/
4 21 Centimeter Array, http://web.phys.cmu.edu/˜past/
5 Precision Array to Probe EoR,
http://astro.berkeley.edu/˜dbacker/eor/
6 Square Kilometre Array, http://www.skatelescope.org/

(Gleser et al. 2008; Jelić et al. 2008; Bowman et al. 2008;
Harker et al. 2010), and it is generally accepted as the best
(and only mainstream) means of removing foregrounds.

While the loss of large scale power is widely known and
accepted as unavoidable, the systematic biases introduced
by the process of foreground removal are much less well
known. In this paper, we examine the consequences of re-
moval of large-scale power in the line-of-sight direction in
three key measures: (i) power spectrum. Foreground clean-
ing is often incorrectly characterized as removing all modes
with k < kmin. In fact, it removes all line of sight modes with
k‖ < kmin. We find that the converse of well-known alias-
ing effects (Kaiser & Peacock 1991; Lidz et al. 2006) implies
that removing large-scale power in radial modes removes
small-scale power in transverse modes, creating an unavoid-
able bias across a range of scales (rather than just k < kmin)
in measurements of the 3D power spectrum. While this effect
has been noticed before in simulations (Bowman et al. 2009;
Harker et al. 2009), we provide a quantitative explanation
and calculation of this effect. We show that this bias can be
accounted for by correctly marginalizing over the large-scale
modes along the line of sight, but at the expense of increased
sample variance. We furthermore show that purely Gaus-
sian realizations of the recovered power spectrum provide an
accurate and extremely rapid means of generating Monte-
Carlo error estimates for the power spectrum: fully non-
Gaussian realizations are not necessary. (ii) PDF. The effect
of foreground cleaning on the PDF has not been explored,
apart from its effect on the skewness (Harker et al. 2009).
We find that foreground cleaning causes unacceptable dis-
tortion of the one-point function. The PDF has surprisingly
rich information about the progress and topology of reion-
ization (Furlanetto et al. (2004); Wyithe & Morales (2007);
Harker et al. (2009); Ichikawa et al. (2010)), but these will
be obscured unless these artifacts can be removed. (iii) To-
mography. Even the first generation of instruments will be
able to image the very largest HII regions ( ∼> 20 − 30 Mpc
comoving), perhaps sourced by high-redshift quasars similar
to those found by SDSS at z ∼ 6. In principle, this might al-
low us to measure the neutral fraction by simply measuring
the temperature contrast δTb between the HII region and
the rest of the survey area (which contains many unresolved
HII regions). We find that while the relative shapes of HII
regions are preserved by foreground cleaning, the tempera-

ture contrast is significantly distorted, bedeviling efforts to
measure δTb (see also Geil et al. (2008)).

The outline of this paper is as follows. In §2, we describe
our methodology for generating 21cm boxes, telescope noise,
foregrounds, and removing foregrounds. In §3,4,5, we discuss
the effects of foreground removal on the power spectrum, to-
mography, and PDF respectively. In §6, we discuss possible
improvements to foreground removal methods, and summa-
rize conclusions in §7. In Appendix A, we discuss bounds on
the smoothness of the synchrotron and free-free continuum
foregrounds. In Appendix B, we discuss the integrated ex-
tragalactic radio recombination line background, and show
that it is unlikely to be a show-stopper.

http://www.gmrt.ncra.tifr.res.in/
http://www.haystack.mit.edu/ast/arrays/mwa/
http://www.lofar.org/
http://web.phys.cmu.edu/~past/
http://astro.berkeley.edu/~dbacker/eor/
http://www.skatelescope.org/
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2 METHOD

We now describe our simulations of 21cm signal, telescope
noise, foreground, and the foreground removal process. It
is important to note that this paper is squarely aimed
at studying the biases introduced by subtraction of large-
scale power which is ubiquitous to all foreground clean-
ing techniques. We do not aim at any advances in the
state-of-the-art with regards to simulation or the clean-
ing process (except where it pertains to loss of large-
scale modes; §6). Thus, our simulations and cleaning al-
gorithm are relatively simple. We do not consider ’mode-
mixing’ and the consequences of bright source subtrac-
tion (Liu et al. (2009a); Liu et al (2009b); Bowman et al.
(2009); Datta et al. (2010)); our foreground model is much
less sophisticated than others (e.g., Jelić et al. (2008)); we
largely ignore instrumental effects, such as leakage of po-
larized foregrounds to the total signal (Jelić et al. 2010;
Geil et al. 2010); and we do not examine the subtleties of
various foreground cleaning algorithms (e.g., (Harker et al.
2009)). Indeed, often to make clear the biases that cleaning
introduces, we omit noise from the plot, since many clean-
ing algorithms are linear processes (see discussion in §2.4).
At this point, there are many detailed, ’end-to-end’ simula-
tion pipelines which incorporate all of these effects, and we
have nothing to add to that literature. Rather, we aim at a
theoretical understanding of the impact of the loss of large-
scale power on various statistics, which can be understood
robustly, independent of these further complications. Whilst
many of these effects can be derived analytically, it is more
transparent to show their effects on simulated maps.

2.1 The 21cm Signal

To simulate 21cm signal, we use the semi-numeric simulation
DexM (Mesinger & Furlanetto 2007), which can efficiently
generate ionization maps of the IGM at high redshift far
more rapidly (and for much larger boxes) than full numer-
ical simulations, whilst showing excellent agreement with
N-body simulations with full radiative transfer7. To briefly
summarize their algorithm: 3D realizations of linear density
and velocity fields are first generated. Then, an excursion-set
approach (Bond et al. (1991), Lacey & Cole (1993)) is used
to filter the halos. The locations of the halos are adjusted us-
ing their first-order displacements obtained from the linear
velocity field. Finally, a similar filtering procedure is used
to obtain an ionization field. Unlike the halos, the bubbles
are allowed to overlap and the excursion set barrier depends
on ionization efficiency. The 21cm brightness temperature is
then computed as:

Tb(ν) =
TS − Tγ

1 + z
(1− e−τν0 )

≈ 9(1 + z)1/2xHI(1 + δnl)
H

dvr/dr +H
mK (1)

where TS is the gas spin temperature, τν0 is the optical depth
at the 21-cm frequency ν0, δnl is the physical overdensity, H
is the Hubble parameter, dvr/dr is the comoving gradient of

7 Recently, an even more rapid variant of this algorithm, 21cm-
FAST (Mesinger et al. 2010), has been introduced, which achieves
dramatic speed-ups by bypassing the halo finder.

the line of sight component of the comoving velocity, and all
the quantities are evaluated at redshift z=ν0/ν − 1, under
the approximations that TS >> Tγ and dvr/dr ≪ H (i.e.,
redshift space distortions are ignored). Our fiducial (200)3

pixel box–kindly provided to us by the authors—is 100 Mpc
on a side (resulting in a cell size of 0.5 Mpc) at z = 8 and
a neutral fraction xHI = 0.56. The bubble size distribution
can be seen in Fig 7. of Mesinger & Furlanetto (2007) and
is peaked at ∼ 8 Mpc, with a significant tail out to ∼ 30
Mpc.

We also generate 3D realizations of this box which have
the same power spectrum but are Gaussian random fields.
These realizations do not contain ionized bubbles and have
a different probability distribution function than the 21cm
box; in particular there is no delta function distribution
of fully ionized pixels. We found that the foreground sub-
traction affected the spherically averaged power spectrum
and the average line of sight power spectrum similarly for
both the initial 21cm box and the gaussian realization boxes.
Hence, we were able to use the realization boxes for Monte-
Carlo calculations where many realizations with accurate
power spectra are required, rather than repeating the entire
semi-numeric process described above many times. More de-
tails of this are in §3.2.

2.2 Telescope Noise

As explained in §2.4, in the most widely used variants such
as polynomial fitting, foreground cleaning is a linear oper-
ation. Thus, the impact of foreground cleaning on signal,
foregrounds and noise can be considered separately. For the
sake of clarity, we often do not simulate telescope noise, in
order to clearly see the systematic biases foreground cleaning
creates in the signal. Below, we describe how the telescope
noise is simulated when we do consider it, in §3.3.

For the sake of definiteness, we consider parameters ap-
propriate to MWA, as specified in Bowman et al. (2009).
The MWA consists of Na = 500 tiles, each with effective area
Ae ≈ min(16, 16(λ2/4m2)). We assume a smooth antenna
density profile na(r) ∝ r−2 within a 750m radius, with a core
density of one tile per 36m2. We assume the sky-dominated
system temperature to be Tsys ∼ 440[(1 + z)/9]2.6K, and
that a single field of view is observed for to = 1000hr (this
is somewhat optimistic, but does not affect our basic con-
clusions). The baseline number density is then:

nb(U, ν) = Cb

∫ rmax

0

2πrdrna(r)

∫ 2π

0

dφna(|r− λU|), (2)

where Cb is a frequency dependent normalization (since U ∝
ν) such that

∫

dUnb(U, ν) = Na(Na − 1)/2. The rms noise
per visibility per frequency channel is then:

∆VN(U, ν) =
λ2Tsys

Ae

√
∆νtU

K. (3)

where δν is the frequency bin width, and tU is the integra-
tion time for that visibility. The average integration time
that an array observes the visibility U is (McQuinn et al.
2006):

tU ≈ Ae

λ2
tonb(U, ν). (4)

For each frequency channel, we draw complex visibilities
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from Gaussian distributions with rms given by equation
(3), and respecting V (U, ν) = V ∗(−U, ν). We then inverse
Fourier transform each slice to obtain the noise cube.

2.3 Foregrounds

Foreground brightness temperature fluctuations will be
larger than the cosmological 21-cm signal by several or-
ders of magnitude. The three main sources of foreground
contamination of the 21-cm signal are Galactic synchrotron
(which comprises ∼ 70%), extragalactic point sources (27%)
and Galactic bremsstrahlung (1%) (Shaver et al. 1999). The
frequency dependence of these foregrounds can be ap-
proximated by power laws with a running spectral index
(Shaver et al. 1999; Tegmark et al. 2000). While the sum of
power laws is not in general a power law, over a relatively
narrow frequency range (such as that considered in this pa-
per where ∆ν/ν ≪ 1), a Taylor expansion around a power
law can be used to describe the spectral shape. We there-
fore also approximate the sum of foregrounds as a power
law with a running spectral index, and specialize to the case
of Galactic synchrotron emission, which dominates the fore-
grounds8. For more detailed foreground models including
synchrotron emission from discrete sources such as super-
nova remnants, and free-free emission from diffuse ionised
gas, see Jelić et al. (2008). We assume that the brightest
point sources have been removed and only consider unpo-
larised foregrounds.

The intensity of the Galactic synchrotron emission
varies as a function of both sky position and frequency. We
model the frequency and angular dependence of galactic syn-
chrotron foreground emission as follows. We first construct
a realisation of the angular fluctuations in the foreground
(around the mean brightness temperature) at a particular
frequency ν0 using the relation

l2Cl(ν0)

2π
=

(

l

l0

)2−β

T syn
l0

(ν0)
2, (5)

where the frequency dependence of the fluctuation ampli-
tude is given by

T syn
l0

(ν0) = Asyn
l0

(

ν0
150MHz

)−αsyn−∆αsynlog10[ν0/(150MHz)]

,

(6)
where αsyn,∆αsyn have mean values ᾱsyn = 2.55, ∆αsyn =
0.1, β = 2.5 and Asyn

l0
= 25K (Shaver et al. 1999;

Tegmark et al. 2000; Wang et al. 2006). The latter two val-
ues are extrapolated from 30 GHz CMB observations. To
model spatial variations, we draw the parameters αsyn and

8 The primary effect of other foregrounds will be to slightly alter
the spectral index and the frequency dependence of the spectral
index, and also (in the case of unresolved radio point sources) the
angular structure of the foreground at small scales. Neither of
these effects is important as our foreground removal technique is
not sensitive to the specific value of the spectral index we adopt.
As for angular fluctuations, these correspond to zero-point fluc-
tuations along different lines of sight, which are immediately re-
moved by foreground cleaning. We have experimented with in-
creasing angular fluctuations by a factor of 10, and found little
difference.

∆αsyn from a gaussian distribution with standard deviation
∼ 10% of the mean.

We use the angular power spectrum to generate
a two-dimensional realisation of brightness temperature
fluctuations ∆T syn(θ) as a function of angular position
θ to which we add a mean sky brightness T̄ syn =
165(ν0/185MHz)−2.6 K (although interferometers will gen-
erally not be sensitive to the temperature zero-point). We
then extend this foreground plane into three dimensions by
extrapolating along each line of sight:

T syn(θ, ν) =
[

T̄ syn +∆T syn(θ)
]

(

ν

ν0

)−αsyn−∆αsynlog10[ν/ν0]

,

(7)
Our results are not sensitive to the details of the assumed
foreground model. For instance, an increase in the amplitude
of foreground brightness temperature fluctuations, by an or-
der of magnitude, results in no change to our results after
foreground cleaning. The foreground completely swamps the
HII region signal, which is not visible in the combined maps.
The mean and standard deviation of the foreground bright-
ness (at the central frequency 158 MHz of these cubes) are
2.5×105 mK and 1.4×104 mK respectively, which should be
compared to the ∼ 10mK 21-cm fluctuations. Note that our
simulations exclude the mean sky brightness, which cannot
be measured by an interferometer.

2.4 Foreground Removal

We employ here standard foreground cleaning tech-
niques which have been promulgated in the literature
(Wang et al. 2006; Morales et al. 2006b; McQuinn et al.
2006; Gleser et al. 2008; Jelić et al. 2008; Bowman et al.
2009): fitting a smooth function, such as a low-order poly-
nomial, to the data, and subtracting it off, under the im-
plicit assumption that the foreground along the line of
sight varies much more slowly than the cosmological signal.
There have been recent attempts to develop non-parametric
techniques (Harker et al. 2009), which show promise, but
at present yield no decisive advantage, whilst consider-
ably complicating error analysis. We therefore only dis-
cuss standard parametric techniques. We also only con-
sider foreground subtraction in image space, rather than
Fourier space, since the two processes have been shown
to yield fairly similar results (but note that such issues
become more subtle once the frequency dependence of
uv coverage is taken into account (Bowman et al. (2009);
Liu et al. (2009a); Liu et al (2009b)).

Let us write the measured brightness temperature fluc-
tuation in a pixel as:

x(θ̂, ν) = s(θ̂, ν) + n(θ̂, ν) + f(θ̂, ν) (8)

where s, n, f is the contribution from cosmological signal,
telescope noise, and foregrounds respectively. In principle,
our knowledge that the Galactic foreground is approxi-
mately a power-law might lead us to suppose that a fitting a
log(ν)-log(x) polynomial would be optimal, since that rep-
resents a Taylor expansion about a power law. In practice,
we find that a ν−x polynomial gives very similar results. As
in McQuinn et al. (2006), we therefore choose to work with
these functions, since this implies that foreground cleaning
is a linear process. We use a Gram-Schmidt procedure to
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form an orthogonal set of basis functions from the polyno-
mial basis 1, x, ...xn. Along each line of sight, our best fit to
the foreground is:

x̄ = Pq (9)

where x̄ = {x̄i} is an n-dimensional vector consisting of
the number of fitted frequency bins, P is an n ×m matrix
composed of polynomials of order {0, 1, ..., m} evaluated at
frequencies {i}, and q is the m-dimensional vector of param-
eters (polynomial coefficients) to be estimated. If we now
minimise χ2 = (x− x̄)T (x− x̄), we obtain the simple linear
estimator for the polynomial coefficients9:

q = (PT
P)−1

x. (10)

The fit to the foreground is then:

x̄ = P(PT
P)−1

x. (11)

which implies that the foreground cleaned data is:

x̃ = x− x̄ =
[

1−P(PT
P)−1

]

x ≡ Πx, (12)

i.e. foreground cleaning can be represented by a linear pro-
jection operator Π. In this case, x̃ = s̃ + ñ + f̃ , and the
covariance matrix of the cleaned data separates:

C̃ = 〈xT
x〉 = S̃+ Ñ+ F̃. (13)

This is an extremely convenient property we will exploit,
since it means we can consider the impact of foreground
cleaning on the boxes of the cosmological signal alone,
without worrying about interaction with the noise or fore-
grounds. We shall assume that the properties of the noise is
fully known, so that Ñ is fully specified a priori.

For a linear foreground cleaning process such as equa-
tion (12), there are two possible sources of systematic biases.
The first is that foreground cleaning is inefficient, and that
the requirement that 〈f̃ f̃†〉 ≪ 〈s̃s̃†〉 is not met; foregrounds
residuals are still a significant contaminant. However, the ex-
pected spectrally smoothness of foregrounds (see Appendix
A and B) makes this unlikely. For the foregrounds we simu-
lated, the cleaning procedure always left foregrounds residu-
als which were negligible compared to the signal. The second
is that the process of cleaning itself, s → s̃, introduces sys-
tematic biases in the signal. The latter is more serious, and
can bias astrophysical and cosmological inferences, unless it
is correctly understood.

Thus, we will generally illustrate the effects of fore-
ground cleaning on the signal alone, without showing its
impact on noise (note that foreground cleaning will have the
same effect on noise as the signal) or foregrounds (which are
always cleaned to a negligible level). We also do not depict
the finite angular resolution of the telescope in our simula-
tions. Whilst the effect of foreground cleaning remains the
same (since it is a linear process), its impact is more diffi-
cult to assess visually in smoothed maps, although it clearly
emerges in statistical measures such as the power spectrum.

9 Such a minimization implicitly assumes that the ’noise’ to the
fit–which is simply cosmological signal and telescope noise–is pro-
portional to the identity matrix. This is approximately true for
telescope noise–since different frequency slices are uncorrelated—
but a poorer assumption for the cosmological signal. We defer
further discussion of this issue to §6.
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Figure 1. Top panel: the 1D foreground cleaning window func-
tion, as given by equation (15). The wavenumber corresponding
to the box size is marked by the line labeled kmin. As the order of
the polynomial increases, power at progressively smaller scales is
subtracted from the box. Also shown is W 2

1D for a box which has
a bandwidth 3 times larger. It is identical to the window function

for the smaller box, except that k → k/3. Bottom panel: the 3D
foreground cleaning window function, as given by equation 18.
Aliasing from the line of sight means that power is subtracted
across a much wider range of scales. Otherwise, similar observa-
tions apply.

The effect of foreground cleaning and beam smoothing can
be thought as of as a series of linear operators which alter
the pristine signal; primarily on large scales and small scales
respectively. Here, we focus on the former.

3 EFFECT OF FOREGROUND REMOVAL ON

THE POWER SPECTRUM

3.1 Aliasing

Survey geometry and foreground cleaning modify the ob-
served power spectrum. A Fourier mode with wavevector
k will be convolved with a window function W(k,k′) =
WgeomWfg−rm, where Wgeom is the window function due
to the finite survey geometry, and Wfg−rm encapsulates the
effects of foreground removal. For a survey with cylindrical
geometry (L,R), where L is the depth of the survey (given
by the bandwidth B of the survey) and radius R is given
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by the field of view of the instrument, the survey window
function is:

Wgeom(q) =
2

qrR
j0(qzL/2)J1(qrR) (14)

where q = k − k′. This expression reflects the coupling be-
tween a wavevector k and all other wavevectors k′. In prac-
tice, survey geometry plays a much smaller role in modifying
the power spectrum than foreground cleaning.

What is the effect of foreground cleaning on Fourier
modes? Let us assume that foreground cleaning is done
on a voxel by voxel basis in the frequency direction, as in
equation (12), i.e. its effect is equivalent to a linear projec-
tion operator Π operating in the ẑ direction. This clean-
ing process eliminates the orthonormality of Fourier modes
µkz

∝ exp(ikzz). Following the notation of McQuinn et al.
(2006), the new Fourier basis is µ̃k = Πµkz

, and the 1D
window function is simply:

W 2
1D(kz, k

′
z) =

∫ L

0

dzµ̃kz
µ̃∗
k′
z
. (15)

We show this for foreground cleaning over an L=100 cMpc
interval at z=8 in the top panel of Fig. (1), for polynomi-
als of different order. Foreground cleaning causes a sharp
reduction of power at scales comparable to the bandwidth
over which the cleaning is done, kmin ≈ 2π/L. As the or-
der of the polynomial is increased, power on progressively
smaller scales is removed. Also shown is W 2

1D when fore-
ground cleaning is performed over a bandwidth three times
larger. It is identical to the window function for the narrower
bandwidth, except that k → k/3. Note that W 2

1D(kz, k
′
z) is

actually a matrix; here we only depict the diagonal terms. In
practice, the low sensitivity of first-generation experiments
requires that the power spectrum can only be computed in
a few large bins, and so the effect of mode-mode coupling is
negligible.

How is the 3D angle-averaged power spectrum affected
by foreground cleaning? It is worth reviewing some basics
of power spectrum aliasing (Kaiser & Peacock 1991). The
1D power spectrum is simply a projection of the 3D power
spectrum:

P1D(kz) ∝
∫

P3D(k)dkx dky ∝
∫

P3D(
√

k2
z + k2

⊥)k⊥dk⊥

(16)
Thus, we obtain:

∆2
1D(kz) ∝ kz

∫ ∞

kz

∆2
3D(k)k

−2dk (17)

where ∆2
1D(kz) = kzP1D(kz)/π, and ∆2

3D(k) =
k3P3D(k)/(2π

2). Thus, 1D modes receive contributes
from all wavenumbers with k > kz. So small kz modes
can receive contributions from modes with large k (which
are oriented almost perpendicular to the line of sight).
Conversely, power which is subtracted from small kz modes
can affect the 3D power spectrum at large k.

If we define µ = kz/k, then the window function for the
3D angle-averaged power spectrum is simply given by:

W 2
3D(k) =

∫

W 2
1D(kµ) dµ. (18)

This is shown in the bottom panel of Fig. (1), for our box of
100 cMpc (results corresponding to the flattened geometry
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Figure 2. The increase in the 1 σ error on a power spectrum
measurement, when foreground cleaning is performed, relative
to an ideal measurement without foregrounds). For increasingly
agressive foreground cleaning (i.e., a higher order polynomial),
the number of measurable modes falls, and the variance of the
measurement increases. The wavenumber corresponding to the
box size is marked by the line labeled kmin. Also shown is the
increase in 1 σ error for a box which has a bandwidth 3 times
larger.

of surveys will be shown in §3.3). The scaling properties are
very similar to those ofW 2

1D, except that power is subtracted
across a much wider range of scales, as expected from the
discussion above.

Thus, foreground cleaning causes suppression of power
across a wide range of scales in the angle-averaged 3D
power spectrum. We will see how this can be dealt with in
§3.3. However, even if the systematic bias can be appropri-
ately dealt with, the elimination of low-wavelength modes
in the radial direction unavoidably reduces the number of
modes available to measure the power spectrum at a given
wavenumber. The fraction of measurable modes is given by
W 2

3D(k); hence, sample variance is increased by foreground
cleaning by a factor 1/

√

W 2
3D(k). We show this in Fig. (2).

As expected, for increasingly agressive foreground clean-
ing (i.e., a higher order polynomial), the number of mea-
surable modes falls, and the variance of the measurement
increases. Thus, in order to measure a given wavenumber
k, one would have to perform foreground cleaning over a
bandwidth corresponding to a significantly larger length-
scale than L = 2π/k. This increase in sample variance due
to foreground cleaning is also evident in the Fisher matrix
formalism of McQuinn et al. (2006).

How accurate are these analytic expectations? In Fig
3, we compare the power spectra predicted by these formu-
lae (lines), to the power spectra measured directly from the
box after foreground cleaning (points). For completeness,
we also show the impact of foreground cleaning on the 2D
power spectrum in the plane of the sky. The analytic and
measured power spectra show good agreement. In particu-
lar, whilst foreground subtraction only affects large scales in
1D, aliasing results in broad suppression of power across a
range of scales in 2D and 3D.

Note that in making these comparisons, no foreground
has been previously added to the 21cm box. If foregrounds
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Figure 3. The 1D, 2D and 3D power spectra after foreground
cleaning by n = 2, n = 3 polynomials. The lines are the analytic
calculation P̃1D(k) = W 2

1DP1D(k), P̃3D(k) = W 2
3DP3D(k), where

W 2
1D, W 2

3D is given by equation (15), (18) respectively. The points
are the power spectra measured from the foreground subtracted
box. The two show good agreement. Whilst foreground subtrac-
tion only affects large scales in 1D, aliasing results in broad sup-
pression of power across a range of scales in 2D and 3D.
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Figure 4. The effect of foreground cleaning on the power spec-
trum of the foreground itself. Unlike for the signal (and noise)
power spectra, fitting a smooth function such as a polynomial
suppresses power on all scales for the smooth foreground. These
effects also carry on to 3D (not shown).

are initially added, the power spectrum for n = 3 polyno-
mial subtraction is unchanged, but for n = 2 polynomial
subtraction, the power spectrum blows up at large scales:
foreground cleaning is insufficiently aggressive. As empha-
sized by McQuinn et al. (2006), one always chooses the low-
est order polynomial that is able to remove foregrounds well
below the cosmological signal.

Given these considerations, one might be tempted to
foreground clean by applying a sharp step function in kz
space, rather than fitting a polynomial. The sharp decay
in power at low wavenumber due to foreground cleaning by
a polynomial might more simply be accomplished by ex-
cluding all modes with kz < kz,cut, where kz,cut is some
critical wavenumber above which the foreground has little
power. Indeed, we shall shortly see that marginalizing over
modes with kz < kz,cut can eliminate systematic bias in
power spectrum estimation. However, we should keep two
facts in mind. Firstly, the (close to power-law) foreground
power spectrum cannot be fully represented by a few Fourier
modes in the line of sight; there is still power at high kz.
Secondly, the effect of foreground cleaning can be repre-
sented by a window function ˜Pclean(k) = W 2(k)P (k) only
for a field which is reasonably close to random phase; ap-
plying a ’matched filter’ such as a smooth polynomial to
spectrally smooth foregrounds brings about a much greater
reduction of power on all scales. These effects are shown in
Fig 4. Note that foreground cleaning can be represented as
P̃clean(k) = W 2(k)P (k) for the noise, which is a Gaussian
random-phase field.

3.2 Insensitivity to Non-Gaussianity of Signal

The best means of performing error analysis for the com-
plex data analysis pipeline in 21cm experiments is to per-
form Monte-Carlo simulations; in this way both systematic
and statistical errors introduced at various stages can be
fully understood. It is time-consuming to produce a new
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simulation box of 21cm signal for each Monte-Carlo real-
ization, as is necessary to take cosmic variance into ac-
count. While extremely fast means of creating approximate
21cm realizations for a given ionization parameter now exist
(Mesinger et al. 2010), these cannot be tuned to accurately
represent different realizations of some specified underlying
power spectrum, rather than the power spectrum of the par-
ticular theoretical model used to generate the box. The easi-
est way to go about this would be to simply create Gaussian
realizations of a given power spectrum.

However, it is not clear whether foreground cleaning will
have the same impact on the power spectrum of a Gaussian
and non-Gaussian field (such as a 21cm box). Least squares
is an optimal means of fitting a parametric function when
the residuals are Gaussian; however, it can be sub-optimal
when residuals are non-Gaussian (for instance, when there
are outlier data points which are highly unlikely in a Gaus-
sian distribution; these will disproportionately affect the fit).
In this case, the residuals, which constitute the 21cm signal
itself, are non-Gaussian. In particular, there is strong phase
coherence across ionized regions, and sharp features due to
the boundary between ionized and neutral regions.

In Fig 5, we compare the effect of foreground subtrac-
tion on the power spectrum of the full 21cm box with non-
Gaussian signal and on Gaussian realizations of this box,
which have identical power spectra. For the Gaussian case
the power spectrum is averaged over 10 realizations, to re-
duce sample variance. Foreground subtraction has identical
impact on the power spectra of the full 21cm box and Gaus-
sian realizations, which implies that Gaussian realizations
can be used for rapid Monte-Carlo simulations. The reason
for this identical impact is likely because non-Gaussianity
is important on scales smaller than those affected by fore-
ground cleaning. This is also the reason why the analytic
calculation P̃clean(k) = W 2

3D(k)P (k), where W 2
3D(k) is given

by equation (18), closely corresponded to the box simula-
tions in Fig 3.

3.3 Eliminating Systematic Bias; Error Estimates

As previously discussed, excising modes with k < kz,crit will
have a similar effect on the signal and noise power spec-
tra (though not on the foreground power spectrum) as fore-
ground cleaning via fitting and subtracting a polynomial. In
this case, W 2

1D will simply be a step function: W 2
1D = 0 for

k 6 kz,crit, W
2
1D = 1 for k > kz,crit. From equation (18),

this implies that W 2
3D(k) ≈ 1− µcrit = (1− kz,crit/k). For a

judiciously chosen kcrit, this approximates the effect of poly-
nomial fitting quite well. In Fig 6, we show the effect of mode
excision for modes with kz 6 0.15Mpc−1 on our 21cm box;
from Fig 3, this is the wavenumber at which the 1D power
spectra starts plummeting rapidly after foreground cleaning,
for an n = 3 polynomial. As can be clearly seen, a sharp k-
space cutoff mimics the broad suppression of power in 2D
and 3D extremely well. Thus, if after foreground cleaning
we simply use uncontaminated modes with k > kz,crit to es-
timate the power spectrum (i.e., we marginalize over modes
with k ∼< kz,crit), we should have an unbiased estimator of
the power spectrum, even at low k. At the same time, as
seen in Fig. 2, there will be unavoidably larger variance in
the power spectrum estimate, since there are fewer indepen-
dent modes sampling a given wavenumber.
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Figure 5. The effect of foreground subtraction on the power spec-
trum of the full 21cm box with non-Gaussian signal and on Gaus-
sian realizations of this box, which have identical power spectra.
For the Gaussian case the power spectrum is averaged over 10 re-
alizations, to reduce sample variance. Foreground subtraction has
identical impact on the power spectra of the full 21cm box and
Gaussian realizations, which implies that Gaussian realizations
are adequate for rapid Monte-Carlo simulations.

We test these ideas out on a simulated field of view
appropriate to the MWA, which is much more extended in
the plane of the sky than in redshift space. We consider an
MWA field which is ∼ 800 deg2 and ∼ 6 MHz at z = 7.3;
this corresponds to a rectangular box 4350 cMpc by 4350
cMpc by 100 cMpc. To generate the simulated field, we
use the fact that foreground cleaning is insensitive to the
non-Gaussianity of the signal (§3.2), and simply generate
a Gaussian random realization of a given power spectrum.
We use the power spectrum of Lidz et al. (2008) at z = 7.32,
xHI = 0.46, which is derived from radiative transfer simu-
lations in a 130 Mpc h−1 box. MWA will only be sensitive
to power spectrum measurements over roughly a decade in
scale, k ∼ 0.1 − 1hMpc−1. Measurements even over this
limited wavenumber range are valuable, since the redshift
evolution of the amplitude and slope of the power spectrum
contains valuable information (Lidz et al. 2008). The lower
limit is given by foreground cleaning considerations. The
upper limit is given by telescope resolution: on small scales,
the telescope samples relatively few modes (mostly along the
line of sight) due to finite angular resolution, and the noise
blows up. Given these considerations, we divide our box into
512 by 512 by 32 cells, which corresponds to cells of size 8.5
by 8.5 by 3.1 cMpc. Finer resolution is unnecessary over this
range of wavenumber.

We divide the wavenumber range into 5 logarithmically
spaced bins. In Fig. 6, we show how the systematic suppres-
sion of power due to foreground cleaning can be correctly
accounted for by marginalizing over the appropriate modes,
i.e., only including modes with kz > kz,crit in the calculation
of the power spectrum. In the top panel, we marginalize
over the first kz bin; much of the systematic bias is elimi-
nated. In the lower panel, we marginalize over the first two
kz bins. Although all of the systematic bias is removed, the
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Figure 6. The 2D and 3D power spectra after all modes with
kz 6 0.15Mpc−1 are set to zero; from Fig. 3, this is the wavenum-
ber at which the 1D power spectra starts plummeting rapidly af-
ter foreground cleaning, for an n = 3 polynomial. Indeed, such
a sharp k-space cutoff mimics the broad suppression of power in

2D and 3D extremely well.

power spectrum is measured over a somewhat smaller range
of scales.

Let us now run more detailed calculations to confirm
that such a marginalization procedure is able to return unbi-
ased power spectrum estimates with the minimum variance
error bars expected from a Fisher matrix calculation. For
the latter, we use the expressions derived by McQuinn et al.
(2006). For wavenumbers kz, k

′
z at which the foregrounds can

be cleaned well below the signal, the Fisher matrix is:

F k⊥

kz,k′
z

≈ w2

[

µ̃†
kz
µ̃k′

z

T 2
N

− (µ̃†
kf)(f

†µ̃k′)

T 2
N(T 2

N + f̃2)

]2

(19)

where w = λ2B2/(AeD
2∆D), D is the comoving distance

to the center of the survey at redshift z, ∆D is the comov-
ing depth of the survey, and TN = ∆VN(U, ν) as given by
equation (3). This expression assumes that foregrounds are
cleaned well below the signal, and that detector noise dom-
inates over the signal, which is true for the first generation
of instruments. The variance in a power spectrum estimate
for a single k mode, with line of sight component kz = µk,
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Figure 7. Removing the systematic effects due to foreground
cleaning by marginalizing over modes which have kz < kz,crit.
The calculation is performed for survey geometry appropriate to
the MWA, in 5 logarithmically spaced bins, and only modes with
kz > kz,crit are included in the calculation of the power spectrum.
In the top panel, we marginalize over the first kz bin; much of the
systematic bias is eliminated. In the lower panel, we marginalize
over the first two kz bins. Although all of the systematic bias is
removed, the power spectrum is measured over a smaller range of
scales.

is then:

σ2
P(k, µ) =

(

F
k⊥

−1
)

ii
. (20)

Note that this effectively marginalizes over modes removed
by foreground cleaning, since for such modes µ̃†

kz
µ̃k′

z
→ 0,

and hence σ2
P(k, µ) → ∞. The variance on the angle-

averaged power spectrum over a spherical shell of logarith-
mic width ǫ = d ln k is then given by adding the error for
individual k-modes in inverse quadrature:

1

σ2
P(k)

=
∑

µ

ǫk3Vsur

4π2

∆µ

σ2
P (k, µ)

(21)

where Vsur = D2∆D(λ2/Ae) is the effective survey volume,
and the sum over µ is over all modes in the upper half plane
permitted by survey volume. The lower bound is set by the
survey depth, while the upper bound is set by the telescope
resolution. In practice, we do not sum over all Fourier cells
in an annulus of constant (k, µ), but instead discretize k
and physically count all modes within a given bin k−∆k <
|k| < k + ∆k. This gives more accurate results in mode-
counting, particularly at low wavenumber when the number
of available modes is small. Note that the effective number of
sampled modes is reduced at low k after foreground cleaning
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(since modes with kµ ∼< kz,crit have σ2
P (k, µ) → ∞), and so

σ2
P increases at low k, as was shown in Fig. 2.

We compare these Fisher matrix estimates against
Monte-Carlo simulations. We first generate a Gaussian re-
alization of MWA 21cm signal boxes, as described above.
We also add telescope noise, as described in §2.2, and fore-
grounds, as described in §2.3. We foreground clean with an
n = 3 polynomial, and then perform a maximum likeli-
hood estimate of the power spectrum Pi in 5 logarithmi-
cally spaced bins from k = 0.1 to k = 0.7, the approximate
range of wavenumbers accessible by MWA. The Gaussian
likelihood is:

L(Pi|d) =
exp( 1

2
dTC−1d)

(2π)N/2(detC)1/2
, (22)

where d = δ(k) is the data in Fourier space, and the covari-
ance matrix C = S + N is assumed to be diagonal, where
S(ki,kj) = P21cm(ki)δij , and the noise covariance matrix is:

N(ki,kj) =

(

λ2

Ae

)2
T 2
sys

Bto

D2∆D

n(k⊥)
δij . (23)

In order to marginalize over modes which have been fore-
ground cleaned, we set Nii to a very large number, for modes
where µki < kz,min. Since they are assigned a large variance,
these modes are then given virtually no weight in the likeli-
hood minimization. We set kz,min to the first bin of kz, as in
the top panel of Fig.6.10. We perform the multi-dimensional
minimization of the negative log likelihood, f ≡ −2lnL, via
a Neder-Simplex algorithm. We perform 200 Monte-Carlo
simulations, and compute the mean and variance of our de-
rived maximum-likelihood estimates, comparing them to the
true input power spectrum and the Fisher matrix estimates
for the variance respectively.

The results are shown in Fig. 8. The mean of the max-
imum likelihood estimates for the power spectrum shows
excellent agreement with the input power spectrum. This
implies that our marginalization procedure enables unbiased
estimates of the power spectrum, despite the fact that unfet-
tered foreground cleaning suppresses power across a broad
range of scales. The variance of the power spectrum esti-
mates also shows good agreement with Fisher matrix esti-
mates, implying that we have a minimal variance estima-
tor of the power spectrum which respects the Cramer-Rao
bound. Note that we plot an asymmetric error bar on the
final data point to avoid an error bar depicting negative
power. Overall, mode marginalization is able to robustly
handle the broad suppression of power due to foreground
cleaning, which should therefore not be a problem.

4 EFFECTS OF FOREGROUND REMOVAL

ON TOMOGRAPHY

3D tomography is precluded for the noise levels and angular
resolution of the first generation of instruments, except for
perhaps the exceptionally large bubbles blown by quasars;

10 Note that using the first bin leaves us still with a very slight
systematic bias, as is evident in the top panel of Fig.6. This is
of course unnecessary and could have been avoided by a more
judicious choice of kz,min.
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Figure 8. The input power spectrum with error bars computed
from the Fisher matrix, compared against the derived mean and
standard deviation of the maximum likelihood solution of 200
Monte Carlo simulations of an MWA field. The two show ex-

cellent agreement. In particular, the fact that the mean derived
power spectrum equals the true input power spectrum implies
that our marginalization procedure enables unbiased estimates
of the power spectrum, despite foreground cleaning, whilst the
close correspondence with Fisher matrix error bars implies that
we have a minimum variance estimator.

Slice in Plane of Sky

Slice Perpendicular to Plane of Sky

Frequency

Figure 9. Top panel shows the effect of foreground cleaning on a
slice in the plane of the sky, while bottom panel shows the effect
of foreground cleaning on a slice perpendicular to the plane of the
sky. For both panels, left is true signal, center is n = 3 polynomial
fit, right is n = 2 log fit. For a slice in the plane of the sky, the
contrast between the bubbles and the neutral IGM appears to be
reduced, although the topology of ionized regions is preserved.
For a slice perpendicular to the plane of the sky, the reduction
of contrast is also present, but to a lesser degree. Striae in the
frequency direction become apparent.
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(Geil & Wyithe 2008). Nonetheless, the origin of the sys-
tematic artifacts introduced by foreground subtraction can
perhaps best be understood in the image plane. We once
again use the fact that polynomial fitting and subtraction
can be represented by a linear projection operator (§2.4),
and we therefore consider the impact of foreground clean-
ing on boxes of cosmological signal and foreground, without
noise. Even in the presence of noise, the systematic artifacts
due to the suppression of power in the cosmological signal
will still be there (it will just be more difficult to pick out
by eye).

In Fig. 9, we show the effect of foreground cleaning on a
slice of the box both parallel and perpendicular to the plane
of the sky, for both a third order polynomial in ν and a
second order polynomial in log(ν) (we perform the latter to
show that its effects are very similar to those of a polynomial
in ν. Of course, its use is deprecated since it cannot be rep-
resented as a linear projection operator). For a slice in the
plane of the sky, the contrast between the bubbles and the
neutral IGM appears to be reduced, although the topology of
ionized regions is preserved. This reduction of contrast due
to foreground cleaning will bedevil attempts to measure the
’step’ in brightness temperature across an ionization front
and hence potentially measure the neutral fraction, a fact
which we previously pointed out in Geil et al. (2008). For
a slice perpendicular to the plane of the sky, the reduction
of contrast is also present, but to a somewhat lesser degree.
Instead, striae in the frequency direction become apparent.
These are obviously due to inaccuracies in the fit to the
foreground in the frequency direction.

These systematic artifacts are more apparent if we con-
sider the residual errors in the foreground fit, or δfg =
fgtrue − fgfit, which we show in Fig. 10. From the top panel,
which shows residuals in the plane of the sky, we see a strik-
ing result: foreground fitting errors are not random, but in-

stead highly correlated with the topology of ionized regions.
In fact, errors in foreground fitting trace out the distinctive
structure of HII regions remarkably well. Note that δfg rep-
resents the difference between a (close to) power-law and a
low order polynomial, so there is very little small scale power
in the frequency direction, as can clearly be seen in the lower
panel, which shows residuals perpendicular to the plane of
the sky. However, closer examination of the bottom panel re-
veals that errors in foreground subtraction along the line of
sight in fact also correlate with large scale HII regions. The
foreground fit is ’pulled down’ or ’pushed up’ by large scale
HII regions: ionized pixels are a source of highly correlated
noise, since they tend to cluster together, and the polyno-
mial fit to the foreground responds by curving incorrectly.
We show an example of this along one line of sight in Fig.
11. This small error in the foreground fit in the frequency
direction occurs with sufficient consistency to produce the
high correlated residuals we see in the plane of the sky in
the top panel. Indeed, we see that that a substantial part
of the signal has been subtracted off: the residuals show
greater fidelity to the true signal (and the ionized regions
have more correct contrast with the neutral regions) than
the foreground subtracted box.

There are two lessons for us from this. Firstly, it is the
presence of large HII regions which cause curvature in the
foreground fit. In a sense, this is unsurprising, since it is
the large HII regions which induce large scale power. If HII

Residuals in Plane of Sky

Residuals Perpendicular to Plane of Sky

Frequency

Figure 10. Error in foreground subtraction (δfg = fgtrue − fgfit
in the plane of the sky (top panel) and perpendicular to the panel
of the sky (bottom panel). As in Fig. 9, left is true signal, center is
n = 3 polynomial fit, right is n = 2 log fit. In the plane of the sky,
the errors in foreground subtraction are highly correlated with HII
regions. Perpendicular to the plane of the sky, long wavelength
errors in foreground subtraction create striation in the frequency
direction, which is also correlated with large HII regions.
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Figure 11. The effect of foreground subtraction on a single line of
sight. Errors in foreground subtraction are highly correlated with
HII regions, which create downward curvature in the subtracted
signal.

regions were small compared to the bandwidth we fit over,
then there will be little distortion due to foreground fitting.
Thus, as reionization progresses, and the typical bubble size
increases, we need to fit over progressively larger and larger
bandwidths. We discuss this further in §6.1. Secondly, if we
could identify the largest HII regions and use them as cali-
bration points (we know that there is no 21cm signal there,
so after foreground subtraction δTb = 0; in particular, all
HII regions should be renormalized to the same level after
foreground subtraction), this could greatly attenuate the dis-
tortions introduced by foreground cleaning. We discuss this
possibility further in in §6.2.
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Figure 12. Left Panel: The original signal PDF, and the PDF
after foreground subtraction with an n=3 polynomial. Note that
the mean temperature (which is not observable by an interfer-
ometer) has been subtracted from the signal PDF. Foreground
cleaning considerable distortion of the PDF. Right panel: com-
parison of the foreground-cleaned PDFs for two different sets of
basis functions. Both introduce comparable amounts of distortion.

Figure 13. Left: the original box of 21cm signal. Right: the
scrambled box obtained by bootstrap resampling from the PDF
of the original box. Such a box has an identical PDF, but a very
different power spectrum.

5 EFFECT OF FOREGROUND REMOVAL ON

PDF

In principle, the 21cm PDF — and in particular its redshift
evolution — contains a wealth of information about reion-
ization (Furlanetto et al. 2004; Wyithe & Morales 2007;
Harker et al. 2009; Ichikawa et al. 2010). In the left panel
of Fig. 12, we show our original signal PDF in blue, before
foreground subtraction. A striking feature of the 21cm PDF
is its bimodality: there is a delta function spike of ionized
voxels, and a broad clump of neutral voxels, which is pri-
marily due to density fluctuations. If one can measure the
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Figure 15. Left panel: The original PDF of the scrambled box,
and the PDF after foreground subtraction with an n = 3 polyno-
mial. Note that there is considerable less distortion of the PDF,
compared to Fig 12; in particular, the distribution of neutral pix-
els is almost perfectly preserved, whilst the distributed of ionized
pixels is slightly broadened. Right panel: comparison of the fore-
ground subtracted PDFs of the original (from Fig 12) and scram-
bled boxes. The PDF of the scrambled box is significantly less
distorted.

relative number of voxels in each distribution, it might be
possible to measure the ionized fraction of the IGM. By do-
ing this as a function of redshift, it would then be possible
to chart the progress of reionization. In practice, this signal
PDF will be convolved with telescope noise as well as the ef-
fects of finite telescope resolution (which then creates a long
tail of partially ionized voxels). Since both of these effects
are well understood, it is still possible to use maximum-
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likelihood mixture modeling to extract the cosmological sig-
nal (Ichikawa et al. (2010); Oh et al, in preparation). This
is despite substantial telescope noise; by eye, after the PDF
appears perfectly Gaussian after it has been convolved with
telescope noise (which is why we plot the noiseless distribu-
tion here). But the huge number of voxels means that small
deviations from Gaussianity are detectable and have strong
statistical significance.

However, all this assumes that there are no systematic
(rather than statistical) sources of noise. No work to date
has consider the effects of foreground subtraction on the
21cm signal PDF; all have implicitly assumed perfect fore-
ground subtraction. In fact, the distortions introduced by
foreground cleaning are severe, and may preclude detail-
ing modeling and statistical inferences from the measured
PDF. The left panel of Fig. 12 shows the foreground sub-
tracted signal PDF in green. The bimodality of the signal
is clearly reduced, and the PDF is strongly distorted. In
the right panel, we should that the distorted PDFs which
emerge from cleaning with a third order polynomial in ν or
a second-order polynomial in log ν are comparable. In retro-
spect, these strong distortions could have been anticipated
by the results of §4, where we saw the sharp reduction in
contrast between neutral and ionized regions.

One could imagine at least two possible sources of this
distortion. One is that least-squares regression is an opti-
mal foreground estimator when noise is Gaussian. In this
case, the ’noise’, or the 21cm signal we are trying to recover,
is highly non-Gaussian, and perhaps least-squares regression
breaks down (as it does when there are significant outliers in
the data). Least-squares regression might be trying to find
the solution which has maximally Gaussian residuals, and
thus destroys the very non-Gaussian signature we seek. In
this case, we would want to use robust regression, minimiz-
ing some functional other than the sum of squares. Alter-
natively, the distortion could be due to the removal of large
scale power, as we have seen previously. This would require
a different damage control strategy.

To distinguish between these possibilities, we create a
new signal box. We bootstrap resample (with replacement)
from the original signal box, but impose no spatial correla-
tions between voxels. The result is the box on the right panel
of Fig. 13, which clearly has no large scale features, but by
construction the same PDF as the original signal box. As
can be seen in Fig. 14, the scrambled box has a white noise
power spectrum, P (k) ≈const⇒ ∆2 ∝ k3, which implies
that it has much less large scale power, and hence the fluctu-
ation spectrum is much less affected by foreground removal.
Indeed, the rms temperature fluctuations (which are dom-
inated by small scales) are scarcely affected by foreground
removal, unlike the original signal box. The left panel of
Fig. 15 compares the PDF of the original and foreground
subtracted boxes; notice that the PDF is only slightly dis-
torted. In particular, the distribution of neutral pixels is
almost perfectly preserved, whilst the distributed of ionized
pixels is only slightly broadened; the bimodality of the pixel
distribution is still strongly apparent. In the right panel,
we overlay the foreground subtracted PDFs of the original
(from Fig 12) and scrambled boxes. The PDF of the scram-
bled box is significantly less distorted. This shows that the
distortion of the PDF during foreground removal must be
due to the suppression of large power, since only the orig-
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Figure 16. Foreground subtraction in a 4003 (cMpc)3 box where
xHI = 0.3. Here, the characteristic bubble size is much smaller
than the comoving width of the slice, and hence there is little
fluctuation power on the large scales over which foreground sub-
traction suppresses power (top panel). Hence, as in the ’scrambled
box’ of §5, there comparatively little distortion of the 21cm PDF
(bottom panel); in particular, the distribution of neutral pixels is
almost perfectly preserved.

inal box has significant large scale power. Non-Gaussianity
must play only a small role, since both boxes have identical
non-Gaussian PDFs.

In summary, foreground removal causes significant dis-
tortion of the PDF, and it is directly linked to the removal
of large scale power from the signal. Any detailed modeling
of the 21cm PDF must find a way to overcome this; oth-
erwise, inferences about reionization will be systematically
biased. Furthermore, the degree of distortion will be red-
shift dependent, increasing as reionization progresses, and
the characteristic bubbles size (and hence amount of large
scale power) increases.

6 POSSIBLE IMPROVEMENTS TO

FOREGROUND REMOVAL METHODS

We have seen that distortion of the measured power spec-
trum can by treated by marginalizing over the appropriate
modes with kz ∼< kz,min; we can then recover an unbiased
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estimator of the power spectrum, albeit with increasing vari-
ance at small wavenumber, as shown in Fig. 2. On the other
hand, there is no analogous marginalization procedure which
can recover the undistorted PDF and (in the future) 21cm
tomographic images. Here, we suggest two ways in which
these distortions can potentially be overcome, which can be
applied at the early and late stages of reionization respec-
tively. This is fertile ground for future work.

6.1 Maximizing the ratio of Bandwidth to Bubble

Size

Figures 14 and 15 show that if the signal has relatively little
large scale power to begin with, then foreground subtraction
will produce little distortion of the PDF. Large scale power is
generally a function of HII bubble size; the larger the bubbles
are, the more large scale power there will be. The character-
istic bubble size increases continually throughout reioniza-
tion; there is less large-scale power during the early stages
of reionization. Thus, PDF distortion should be less severe
earlier on. On the other hand, Fig. 1 shows that foreground
cleaning suppresses power on the characteristic lengthscale
of the frequency slice over which the cleaning is done; if we
can clean over larger lengthscales, then the modes we are
interested in may be preserved (McQuinn et al. (2006) have
also made the latter point).

These considerations suggest that PDF distortion will
be smaller if we maximize the ratio of bandwidth to bub-
ble size. Thus, the earlier stages of reionization will be less
susceptible to PDF distortion, and we should use as large a
bandwidth as possible to do the cleaning11 . Fig. 16 shows
the power spectrum and the PDF of a 4003 (cMpc)3 box at
z = 8 with xHI = 0.3 (note that out fiducial 1003 (cMpc)3

box at x = 8 has xHI = 0.56). As expected, the power spec-
trum has little power on large scales; thus, there is indeed
little distortion of the PDF due to foreground cleaning. We
can likely measure the PDF fairly accurately during the ear-
lier stages of reionization; however, during the later stages,
we must use a different strategy.

6.2 Large HII regions as Foreground Calibrators

In §4, we saw that large HII bubbles were the primary rea-
son for errors in foreground fitting. The foreground fit is
pulled down or pushed up by large scale HII regions: ion-
ized pixels are a source of highly correlated noise, since they
tend to cluster together, and the polynomial fit to the fore-
ground responds by incorrect curvature. Examination of Fig.
11 suggests a solution: if we could ’renormalize’ the ionized
HII regions all to the same level (since there is no 21cm sig-
nal there), then the incorrect curvature would vanish, and
the large scale power incorrectly subtracted from the box
would be restored. In practice, this can be accomplished by

11 Note that it is not optimal to analyze the PDF over large
bandwidths when cosmic evolution can be important. Rather, one
should clean the data over larger frequency slices, and then an-
alyze it over narrower slices, within which the neutral fraction
is relatively constant. Over a broader bandwidth, the foreground
shows greater curvature, and eventually one cannot clean the fore-
ground well below the signal with a given polynomial fit.
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Figure 17. Comparison of the customary foreground cleaning
method (’Regular’) and cleaning with an additional step when
the positions of bubbles are known (’Optimal’), for our usual
1003 (cMpc)3 box. Foregrounds are fit in the presence of noise,
with S/N∼ 1. Top panel: large scale power is correctly recovered
with the optimal algorithm. The bias at small scales is due to
errors in the foreground fit due to noise. Middle panel: the distor-
tion of the PDF is far less severe with the optimal algorithm, since
large scale power is correctly preserved. Bottom panel: a slice in
the plane of the sky of the original box (left), regularly cleaned
(middle), and optimally cleaned box (right). Large bubbles have
all been set to the same zero-point in the right panel, compared
to the varied contrast in the middle panel.

a second stage after the initial round of foreground clean-
ing: fitting a polynomial only to the voxels in ionized regions.
Subtracting off this polynomial ensures that all HII regions
will be ’renormalized’ to the same zero-point, as required.

Applying this to a noiseless box with foregrounds re-
sults in perfect recovery of the original signal box! Of course,
in a realistic scenario, there are two problems: (i) we will
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not know a priori the positions of fully ionized voxels; fur-
thermore, finite telescope resolution will ’mix’ neutral and
ionized voxels, producing voxels with effective partial ion-
ization, and reducing the number of fully ionized calibration
points. (ii) We fit to foregrounds in the presence of noise, and
so even if we knew where all the ionized voxels were, they
scatter about the true zero-point. This scatter produces fit-
ting errors in the second cleaning stage. Regarding (i), note
that even if direct imaging of bubbles is difficult in the first
generation of instruments, it is possible to classify voxels
as belonging to ionized or neutral regions in a probabilistic
fashion, via mixture model or tesselation algorithms. Image
segmentation and/or edge detection in the presence of noise
is a classic image processing problem, and there are many
possible methods (e.g., Canny algorithm, Voronoi teselation,
void-finding algorithms (e.g., see Colberg (2008)), etc). Note
that the impact of both (i) and (ii) are reduced when bubbles
are large, in the later stages of reionization: the HII regions
are easier to detect, and also the noise is averaged over more
voxels. Fortunately, this is the regime in which this second
cleaning step becomes necessary, since large bubbles are the
ones to destabilize the foreground fit.

We leave detailed quantitative investigation of such a
cleaning algorithm in a realistic setting in conjunction with
an image segmentation algorithm to future work. Here, we
simply illustrate its potential. We consider an idealized case
where we know the positions of all ionized voxels (in fact,
only knowing the voxels in large HII regions gives compa-
rable results), and add Gaussian noise such that S/N ∼ 1
for each voxel; this is less noise than is realistic for a first-
generation instrument. We then fit for foregrounds in the
presence of noise, performing the second ’renormalization’
step as described. We subtract the imperfectly fitted fore-
ground from a box with signal and foreground only, so that
any errors in foreground subtraction are evident. The re-
sults are in Fig. 17. We see from the top panel that the
large scale power spectrum is correctly recovered with the
optimal algorithm. Thus, using this cleaning procedure, we
may not have to marginalize over modes with low kz, and
pay the price in increased sample variance at low k. The bias
at high k is due to errors in the foreground fit due to noise;
in practice, these will be correctly handled when solving via
a maximum likelihood scheme. In the middle panel, we see
that the distortion of the PDF is far less severe with the op-
timal algorithm, and the intrinsic bimodality more correctly
preserved. In the bottom panel, we compare a slice in the
plane of the sky of the original box (left), a box cleaned with
the regular algorithm (middle), and a box cleaned with the
optimal algorithm (right). Note that large bubbles have all
been set to the same zero-point in the right panel, compared
to the varied contrast in the middle panel. This directly re-
sults in the reduced distortion of the PDF.

7 CONCLUSIONS

In this paper, we focus on the removal of large scale
power along the line of sight by foreground cleaning al-
gorithms for upcoming 21cm surveys of the high-redshift
universe. Whilst the subtraction of large scale power is
well-known, the systematic biases it induces in the cleaned
data, and how this propagates into various statistics, has

not been well-understood. We emphasize that there are
many aspects of the foreground removal problem that we
do not address. For instance, we do not consider ’mode-
mixing’ and the consequences of bright source subtrac-
tion (Liu et al. (2009a); Liu et al (2009b); Bowman et al.
(2009); Datta et al. (2010)); our foreground model is much
less sophisticated than others (e.g., Jelić et al. (2008)); we
largely ignore instrumental effects, such as leakage of po-
larized foregrounds to the total signal (Jelić et al. 2010;
Geil et al. 2010); and we do not examine the subtleties of
various foreground cleaning algorithms (e.g., (Harker et al.
2009)). Such issues have been dealt with by other authors.
However, the removal of large scale power along the line
of sight is to date common to all foreground subtraction
schemes. We specialize to the case of linear subtraction
schemes, and use the fact that the impact of foreground
cleaning on the signal can therefore be considered in isola-
tion, without considering its interaction with noise.

Our principal conclusions are as follows:

• Removal of large scale power along the line of sight
aliases into suppression of power across a broad range of
scales in 3D, an effect which can be understood analytically.
We compare analytic expectations to foreground cleaning
simulations and find excellent agreement. This systematic
underestimate of the true power spectrum can be correctly
accounted for by marginalizing over all modes with kz 6

kz,crit. However, the reduction in the number of measurable
modes at a given wavenumber unavoidably increases sample
variance.

• We show that foreground cleaning has the same effect
on Gaussian realizations of the power spectrum as it does
on fully non-Gaussian boxes. This allows for rapid Monte-
Carlo simulations. We perform maximum-likelihood Monte-
Carlo simulations of power spectrum estimation with real-
istic noise, where we correctly marginalize over foreground
cleaned modes, and show that we are able to recover unbi-
ased power spectrum estimates, with the minimum variance
given by Fisher matrix estimates.

• To date there have been no studies of the impact of fore-
ground cleaning on the PDF.We show that in fact significant
distortion of the PDF occurs, which would compromise at-
tempts to mine the 21cm PDF for astrophysical information.
By comparing two boxes with the same non-Gaussian PDF
but very different power spectra, we show that the distor-
tion is due to the removal of large scale power, rather than
errors in least-squares regression due to the non-Gaussian
PDF.

• Foreground cleaning will also distort tomographic im-
ages, by reducing the contrast between neutral and ionized
regions. However, the topology of ionized regions is pre-
served. The reduction in contrast is because errors in fore-
ground cleaning strongly correlate with the presence of ion-
ized regions, which lead to artificial curvature in the fore-
ground fit.

• Whilst the effect of foreground cleaning on the power
spectrum is easily dealt with, correcting distortions in the
PDF and tomographic images is more difficult. We make two
suggestions. The first is to foreground clean over the largest
feasible bandwidth over which the effects of evolution can
be neglected. Since foreground cleaning removes power on
the scale of the cleaning bandwidth, if there is little power
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on these scales, there will be little distortion of the PDF or
reduction of contrast between neutral and ionized regions.
Essentially, the slice width must be significantly larger than
the characteristic bubble size. Early in reionization, this con-
straint will be easy, but more difficult in the late stages,
as bubbles grow. For these later stages, identification of the
largest ionized regions (which consist of foreground emission
only) provides calibration points which potentially allow re-
covery of large-scale modes. Detailed exploration of this is
an obvious avenue for future work.

• In the Appendices, we put to rest two concerns which
have been raised from time to time, but never been calcu-
lated in detail. One is that because of the extremely bright
nature of continuum foregrounds, even very slight deviations
from spectral smoothness could introduce frequency struc-
ture which would swamp the 21cm signal. We show that
synchrotron and free-free emission for even a single elec-
tron has such a broad frequency response that tempera-
ture fluctuations over the small measured frequency inter-
vals are negligible; averaging over a huge number of electrons
of course damps any fluctuations even further. Another con-
cern is that the integrated extragalactic radio recombination
line background might constitute a formidable foreground.
We show that even with aggressive estimates for stimulated
emission from star-forming galaxies—where RRL luminos-
ity is ∼ 10% of the radio continuum luminosity–the RRL
background is unlikely to prove a problem. The reason is
the small comoving volume probed: whereas all continuum
sources along a line of sight contribute, for a specific recom-
bination line, RRL emitters from only a tiny redshift slice
contribute.
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APPENDIX A: FOREGROUND

FLUCTUATIONS IN FREQUENCY SPACE

The generic property that all foreground cleaning algorithms
use is that foregrounds should be spectrally smooth, allow-
ing the line features of 21cm emission to be picked out.
However, given that foregrounds can exceed the signal by
∼ 4 − 5 orders of magnitude, it is not immediately obvi-
ous that tiny spectral variations in the foreground will not
mask the 21cm signal. In this section, we quantify the re-
quired level of smoothness, and show that synchrotron and
free-free emission from our Galaxy and extragalactic sources
indeed satisfy it.

If the foreground is a perfectly smooth power-law Tb ∝
ν−α, then the 21cm forest can be extracted, since it consists
of narrow line features. However, there are inevitable varia-
tions in the spectral index with position in the sky as well
as frequency, and our ability to subtract the galactic syn-
chrotron foreground is dominated by the uncertainty in the
spectral index. This dispersion is of order ∆α ∼ 0.03 − 0.1
at ∼ 200 MHz (Lawson et al. 1987; Banday & Wolfendale
1991). The required smoothness of the foreground in fre-
quency space is therefore often characterized by uncer-
tainty in the spectral index ∆α (e.g., Shaver et al. (1999);
Di Matteo et al. (2002); Gnedin & Shaver (2004)). The tem-
perature uncertainty due to an uncertainty in the spectral
index ∆α is (∆T/T ) ≈ (ν/νo)

∆α − 1 ≈ ∆α(∆ν/ν). The
21cm fluctuations occur over a frequency interval (∆ν/ν) ∼
rion/lH ∼ 10−2, where rion is the characteristic size of ion-
ized/neutral patches and lH is the Hubble length. These
correspond to a variation in the spectral index of:

∆α(reion) ≈ 5× 10−3

(

∆T/Tb

5× 10−5

)(

δν/ν

10−2

)−1

. (A1)

Given the large ∆α ∼ 0.03 − 0.1 variations in the spectral

index observed in our Galaxy observed from point to point
and over fairly large frequency intervals, δν/ν ∼ few × 0.1,
it is not clear that the spectral index can be constrained to
the ∼ 10−3 accuracy required.

How strong will the deviations from power law emis-
sion be? Synchrotron emission is a power law because the
electron momentum distribution is a power-law (which is
generically true, for instance, for Fermi acceleration). An
electron momentum distribution N(γ)dγ ∝ γ−pdγ will pro-
duce a synchrotron emission spectrum Fν ∝ ν−(p−1)/2. How-
ever, the shorter lifetimes of high-momentum electrons will
introduce curvature even for an initially perfect power law.
Moreover, turbulence, non-linear scattering, magnetic field
strength fluctuations and plasma effects could introduce
fluctuations in the momentum distribution. Will this trans-
late into sufficiently large spectral index fluctuations so as
to swamp the 21cm signal?

It is easiest to think directly in terms of temperature
fluctuations, rather than the spectral index. In order for
galactic foregrounds not be a significant source of contam-
ination, we shall simply require that the rms temperature
fluctuations smoothed on δν ∼ 0.1− 1MHz intervals be sig-
nificantly less than the expected 21cm signal:

〈∆T 2
fg〉1/2 ≪ 10−2K. (A2)

The observed emission as a function of frequency T (ω),
is the convolution of the electron momentum distribution
N(γ) with the emission spectrum of a single electron E(ω):
T (ω) ∝ N(γ)⊗E(ω). Thus, by the convolution theorem, the
power spectrum of temperature fluctuations as a function of
smoothing frequency ∆ωk is given by:

P (kω) = P (kγ)W
2
k (A3)

where Wk is the Fourier transform of the emission spec-
trum E(ω). The window function Wk therefore quantifies
the suppression of small-scale temperature fluctuations due
to smoothing by the broad emission kernel E(ω).

Let us now calculate Wk. The power per unit frequency
emitted by each electron is (Rybicki & Lightman 1979):

E(ω) =

√
3q3B sinα

2πmec2
F (x) (A4)

where α is the pitch angle between the magnetic field and
electron velocity, while

F (x) ≡ x

∫ ∞

x

K5/3ξdξ, (A5)

where K5/3 is a modified Bessel function of the second kind,
and x ≡ ω/ωc. The critical frequency ωc is:

ωc ≡ 3

2
γ3ωB sinα =

3γ2qB sinα

2mec
(A6)

where γ is the electron Lorentz factor. Note that the criti-
cal frequency is larger than the electron gyration frequency
ωB = qB/γmec by a factor ∼ γ3. The power per frequency
interval dν is simply P (ν) = 2πP (ω). The function F (x) is
shown as the top panel of Figure A1. Note that it is broad
in frequency range: ∆ν ∼ ν. This implies that fluctuations
on scales ∆ν ≪ ν will be smoothed out.

The window function Wk is simply the absolute value
of the Fourier transform of F (x). In the bottom panel of
Figure A1, we plot Wk as a function of xk = 1/k ≈ ∆ν/ν.
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In the bottom panel of Figure A1, we plot Wk, as well as
the window function for the left and right portion separately.
Note that F (x) is asymmetric about its peak at xmax = 0.29
and the left (low-frequency portion) is much narrower than
the right (high-frequency) portion. The latter sets the char-
acteristic frequency width of the electron’s emission. Wk is
dominated by the narrow left portion, as seen by the sep-
arate window functions for the left and right portion (the
”ringing” in Fourier space for the left portion is due to the
sharpness of edges). The window function clearly acts as a
low-pass filter: all high-frequency fluctuations are strongly
damped, since the emission spectrum E(ω) is so broad. 21cm
emission corresponds to x ∼ 10−4/xmax ∼ 10−2.5; at these
small frequency intervals, Wk ∼ 10−4. Thus, even if there
are pathologically large fluctuations in the electron distribu-
tion function ∆γ ≡ [δN(γ)/N(γ)]rms ∼ 0.1 (averaged over
bins of width δγ/γ ∼ δν/ν ∼ 10−4), they will be strongly
suppressed to yield temperature fluctuations on these scales
δT/T ∼ Wk∆γ ∼ 10−5(∆γ/0.1), smaller than the 21cm sig-
nal δT/T ∼ 10−4. In reality, stochastic fluctuations in the
electron distribution function are likely to be much smaller
than ∆γ ∼ 0.1: Poisson fluctuations are utterly negligible,
since one is averaging over a huge number of electrons, so
some unusual process (for instance, resonances in momen-
tum space) would be necessary to produce sharp features
in the electron momentum distribution. Thus, foreground
temperature fluctuations over the narrow frequency inter-
vals associated with 21cm emission are utterly negligible.

We can perform a similar estimate for thermal
bremsstrahlung emission, which is the emission spectrum
E(ν, v) of an electron of velocity v, convolved with a
Maxwellian velocity distribution. However, the emission
spectrum of even a mono-energetic electron population is
very broad in frequency space: E(ν, v) ∝ v−1gff (v, ν), where
the Gaunt factor gff (v, ω) is of order unity from low frequen-
cies out to hνcrit ∼ 1

2
mv2. The free-free emission spectrum

for a monoenergetic distribution is much broader than that
for synchrotron emission, where ∆ν ∼ νobs: for free-free
emission, ∆ν ∼ νcrit ∼ (kBT/h) ∼ 100(T/104 K)THz ≫
νobs ∼ 150MHz. The window function will decay even more
rapidly at small frequency intervals, and there will be no
small-scale frequency structure for free-free emission, even
for a turbulent plasma.

Since extragalactic sources are dominated by free-free
or synchrotron emission, their sum will also be smooth in
frequency space. The only contaminants which might have
sufficient small-scale structure in frequency space to be con-
fused with the 21cm forest are radio recombination lines.
Preliminary estimates show they are unlikely to be a sig-
nificant source of contamination out of the Galactic plane
(Shaver et al. 1999; Oh & Mack 2003), but there could be
surprises. Below, we estimate the integrated background of
radio recombination lines from star-forming galaxies.

APPENDIX B: THE RADIO RECOMBINATION

LINE BACKGROUND

In this Appendix, we perform simple estimates of the fore-
ground contamination due to extragalactic radio recombi-

Figure A1. Top panel: Frequency dependence of the synchrotron
spectrum of a single electron with Lorentz factor γ, as given by
equation (A5), in units of x ≡ ω/ωc. The emission peaks at
xmax = 0.29; the low frequency portion (’L’ for Left) damps more
rapidly than the high frequency portion (’R’ for Right). Bottom

panel: The window function Wk, which is the Fourier transform
of the emission spectrum F (x), as a function of xk = 1/k. For
the small frequency intervals relevant for the 21cm forest xk <
10−2.5, the window function has small amplitude, Wk ∼ 10−4,
implying that foreground temperature fluctuations are negligible
on these scales. The decay of the window function is dominated by
the narrow left portion of the emission spectrum (dashed lines),
rather than the broad right portion (dotted lines).

nation lines (RRLs), which have frequencies:

ν = 153∆n
( n

350

)−3

(1 + z)−1 MHz. (B1)

Extragalactic RRLs were first detected from the star-
bursts in M82 and NGC 253 by Shaver et al. (1977) and
Seaquist & Bell (1977). It was soon pointed out that stimu-
lated emission from a strong non-thermal background could
allow distant radio galaxies and quasars to be seen in RRL
emission Shaver (1978). This expectation has not been borne
out, likely because the volume filling factor of HII regions
around radio quasars is small (Anantharamaiah et al. 1993).
Nonetheless, they are detectable in bright nuclear starburst
regions in nearby galaxies; to date, there are 15 known ex-
tragalactic RRL detections (Roy et al. 2008, 2010). Models
of RRL emission are highly uncertain and sensitive to the
unknown gas density and geometry in nuclear regions. At
higher frequencies, emission appears to be due to a mixture
of spontaneous emission and stimulated emission by free-free
continuum within the HII regions, while at lower frequencies
stimulated emission by non-thermal continuum can be im-
portant. In this paper, we adopt a crude conservative upper
bound on RRL emission. We find the level of contamination
is so small that more sophisticated estimates are unneces-
sary.

We begin by estimating the luminosity due to internal
emission (spontaneous and stimulated) in HII regions. Under
optically thin conditions, and considering only the strongest
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α lines (∆n = 1), the flux from an HII region in RRLs is
(Shaver (1978); also see Gordon & Sorochenko (2002)):

∆SL =
0.72ν

∆V T
3/2
e

neMHII

D2
bn(1− βnτC/2)mJy (B2)

where ne(in cm−3) is the gas density, MHII (in M⊙) is the
mass of ionized hydrogen, ∆V (in kms−1) is the line width,
Te (in K) is the temperature, ν (in GHz) is the frequency,
and bn(1− βnτC/2) captures departures from thermal equi-
librium12. The dependence on n is weak as long as n ≫ 1; see
Shaver (1978) for the full expression. Assuming that the es-
cape fraction of ionizing photons is small, ionization equilib-
rium in HII regions within the galaxy implies that αBn

2V =
αBn(MHII/mp) = Ṅion = 1053 s−1(SFR/1M⊙ yr−1), which
allows us to related the quantity neMHII in equation (B2)
with the star formation rate (SFR) of a galaxy. Performing
this substitution, we obtain the RRL luminosity for inter-
nally generated radiation:

Linternal
ν = 1.3× 1025 erg s−1 Hz−1

(

SFR

1M⊙ yr−1

)

( ν

1GHz

)

(B3)

(

∆V

200 kms−1

)−1 (
Te

104 K

)−3/2 [
bn(1− βnτC/2)

100

]

.

Note that we have adopted an extremely optimistic ex-
pression for the boost factor due to stimulated emission,
bn(1− τCβn/2) ∼ 100.

Let us proceed to estimate the RRL luminosity due to
stimulated emission from external radiation. Consider a col-
lection of compact HII regions around a starburst. One can
place a conservative upper bound on stimulated emission
by considering an extreme case where N HII regions lie in
front of a uniformly distributed background emission SCbg

(Zhao et al. 1996):

∆SL = N los
HII

(

∆VHII

∆Vobs

)

SCbge
−τC (e−τL − 1) (B4)

whereNlos is the number of HII regions along the line of sight
(generally Nlos < 1 observationally, and is required in this
formula since we ignore shadowing), ∆VHII ∼ 20 kms−1 is
the Doppler width of individual HII regions, ∆Vobs is the ob-
served line width (either due to motions of HII regions within
the galaxy, or the width of the observing channel), and τL, τC
are the line and continuum (free-free) optical depths of each
HII region. When ∆Vobs = ∆VHII, and for τL, τC ≪ 1 (which
is usually the case), ∆SL ∼ −N los

HIIτLSCbg, which makes in-
tuitive sense: the line-to-continuum ratio is simply the cu-
mulative optical depth of the line (note that for stimulated
emission, τL < 0). The factor of ∆VHII/∆Vobs simply ex-
presses frequency dilution. In this paper, we shall conser-
vatively assume a very high fidicial value of N los

HIIτL ∼ 0.1.
While models of the observed emission from starbursts gen-
erally yields N los

HIIτL ∼ 10−3 − 10−4 at 8.3 GHz, τL ∝ ν−1,

12 In particular, τC is the continuum (free-free) optical depth,
while bn ≡ Nn/N∗

n is the departure coefficient which relates the
population of atomic energy level n, Nn, to its LTE value N∗

n.
The central line optical depth is then related to the LTE value
by τL = bnβnτ∗L , where βn ≡ 1 − (kTe)/(hν)(∆b∆n)/bn . Under
conditions appropriate for strong stimulated emission, typically
bnβn ∼ 10 − 100.

and hence could be larger at lower frequencies. Note that
the ratio of continuum to line optical depths is:

τC
τL

∼ 8

(

∆VHII

20 kms−1

)

( ν

150MHz

)−1.1
(

bnβn

100

)−1 (
Te

104

)1.15

.

(B5)
Thus, increasing τL to values of order unity will also in-
crease free-free absorption, resulting in unobservable RRL
emission. Note also that the single ”slab” model of Shaver
(1978); Anantharamaiah et al. (1993); Zhao et al. (1996)
simply corresponds to N los

HII → 1, such that SL ≈ τLSCBg.
We now need a model for SCbg. At low frequencies, non-

thermal emission dominates over free-free emission, and will
be the primary source of stimulated emission. Since the cov-
ering fraction of HII regions has been generally found to be
small (e.g., in Anantharamaiah et al. (1993), fHII ∼ 10−6),
stimulated emission from an AGN is generally unimportant.
We model the non-thermal emission to be primarily syn-
chrotron emission from supernova remnants. The observed
correlation between SFR and radio luminosity is (Yun et al.
2001):

LCbg
ν = 2.2× 1028 erg s−1 Hz−1

(

SFR

1M⊙ yr−1

)

( ν

1GHz

)−0.8

(B6)
Then from equation B4, we have:

Lexternal
ν = 2.2× 1026 erg s−1 Hz−1

( ν

1GHz

)−0.8
(

τLN
los
HII

0.1

)

(B7)

(

SFR

1M⊙ yr−1

)(

∆VHII

20 kms−1

)(

∆Vobs

200 kms−1

)−1 (
1 + z

3

)−0.8

.

We stress that these fiducial parameters (bn(1− τCβn/2) ∼
100, τLN

los
HII ∼ 0.1) are by design significant overesti-

mates to conservatively place an upper bound on RRL
emission. For instance, from published values of SFR∼
270M⊙ yr−1 (Shioya et al. 2001), ∼ 4M⊙ yr−1 (Boissier
2005), ∼ 6M⊙ yr−1 (Young et al. 1988) and measured line
widths of 320, 95, 200 km s−1 (Zhao et al. 1996) for Arp 220,
M83, and NGC 2146 respectively, our model predicts line
flux densities of SL ∼ 4.0, 44, 4.7 mJy for the H92α line at 8.3
GHz, compared to observed values of SL ∼ 0.4, 0.8, 0.36mJy
(Zhao et al. 1996). For the H165α and H167α lines at
1.4 GHz, we predict a flux of ∼ 5mJy, while an up-
per bound on the peak line density is < 0.25 mJy (3σ;
Anantharamaiah et al. (2000)). Thus, as is our intent, we
consistently overestimate the RRL flux by at least an order
of magnitude (we do not advocate using these parameters
to estimate the detectability of RRLs!).

It is clear that since Lint
ν ∝ ν, while Lext

ν ∝ ν−0.8, they
dominate at high and low frequencies respectively. In our
model, the cross-over point is at a rest frame frequency of
ν ∼ 4.8GHz. Since we are concerned with RRLs at rest frame
frequencies well below 1.4 GHz, the RRL emission stimu-
lated by external non-thermal sources strongly dominates.
In terms of parameters appropriate for 21cm experiments,
the RRL luminosity at low frequencies is then:

Lexternal
ν = 4.2× 1025 erg s−1 Hz−1

( νobs
150MHz

)0.2
(

τLN
los
HII

0.1

)

(B8)

(

SFR

1M⊙ yr−1

)(

∆VHII

20 kms−1

)(

∆ν

1MHz

)−1 (
1 + z

3

)−0.8

.

where we have substituted ∆ν for ∆Vobs; in general the line
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will always be unresolved by the detector unless bandwidths
are extremely small, ∆ν ∼ 0.1 MHz.

We can now estimate the typical brightness temperature
perturbation due to an integrated background of RRL emit-
ters. Assuming a comoving star formation rate of ǫSFR, and
the Rayleigh Jeans approximation TL = c2SL/(2 kBν

2θ2),
where θ is the beamsize, we obtain:

T̄L = 1.8× 10−5 K

(

ǫSFR

0.1M⊙ yr−1Mpc−3

)(

τLN
los
HII

0.1

)

(B9)

( νobs
150MHz

)−2.8
(

∆VHII

20 km s−1

)(

∆ν

1MHz

)−1 (
1 + z

3

)−3.3

.

where z refers to the redshift of the RRL emitting galax-
ies, and not of 21cm emission. Note that this is indepen-
dent of the bandwidth ∆ν or the beamsize θ, since TL

has units of surface brightness per frequency interval (in-
creasing ∆ν, θ will increase the RRL luminosity of a re-
gion, but it will be spread out over larger angular and
frequency intervals). However, the large comoving volume
Vcom ∼ 123(∆ν/νobs/(1/150))(θ/5

′)2Mpc3 in a 21cm exper-
iment’s field of view is important in estimating rms temper-
ature fluctuations δTL. Since rms density fluctuations are
well below unity on these scales (σ8 ∼ 0.8 at z = 0), an
enormous bias factor b > 103 is required for fluctuations in
the comoving star formation rate δǫSFR to produce an obser-
vationally relevant cosmological RRL signal, δTL ∼ 10−2K.
Such large bias is obviously unrealistic.

Thus, it appears fairly robustly that the RRL back-
ground is unlikely to be important. Physically, we can under-
stand why this is the case. We modelled LRRL

ν ∼ τLN
los
HIIL

Cbg
ν

where τLN
los
HII ∼ 0.1, so naively one might think that the

RRL foreground is∼ 10% of the radio continuum foreground
(which we know significantly exceeds the 21cm signal). How-
ever, whereas all continuum sources along a line of sight con-
tribute, for a specific recombination line, RRL emitters from
only a tiny redshift slice contribute13. Thus, the very reason
why RRLs might pose a danger—the fact that they are lo-
calized in frequency space—is also the reason for their small
amplitude, since that implies localization in redshift space.
Our only note of caution is that observations of extragalac-
tic RRLs have taken place at significantly higher frequencies
(e.g., at 1.4, 8.1, 84, 96 and 207 GHz; Anantharamaiah et al.
(2000)); emission at significantly lower frequencies may have
different physics. In particular, since τL ∝ ν−1, lower fre-
quency RRL emission is sensitive to lower density HII re-
gions. However, it is difficult to see how one can vitiate the
conservative upper bound we have placed. The matter could
be quickly put to rest by measuring the RRL intensities of
radio galaxies and starbursts at these frequencies.

13 It is possible that RRLs at different frequencies and thus red-
shifts can contribute to a fixed bandpass, but they will add in-
coherently and the signal will be small. The RRL foreground is
really only a danger if emission from a given line will be large,
since only a small fraction of starbursts exhibit stimulated emis-
sion.
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