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Abstract – Diverging correlation lengths on either side of the jamming transition are used to
formulate a rheological model of granular shear flow, based on the propagation of stress through
force chain networks. The model predicts three distinct flow regimes, characterized by the shear
rate dependence of the stress tensor, that have been observed in both simulations and experiments.
The boundaries separating the flow regimes are quantitatively determined and testable. In the
limit of jammed granular solids, the model predicts the observed anomalous scaling of the shear
modulus and a new relation for the shear strain at yield.
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Jamming occurs when an amorphous collection of
particles spontaneously develops rigidity and supports
weight like a solid instead of flowing like a liquid [1]. The
transition takes place without static spatial ordering,
but is accompanied by long-range dynamical correlations
arising from the collective motion of groups of parti-
cles [2–4]. In the case of sheared granular materials, the
transition from jammed to flowing phases occurs as the
applied stress Σ is increased or the packing fraction
φ is decreased, and there is a packing fraction φc at
which the system jams in the limit of zero stress [5–7].
Diverging correlation lengths are observed on each side
of the transition, and are related to the average size of
force chain networks for φ< φc [2,8] and the average size
of isostatic clusters for φ> φc [3,9].
In the jammed state many macroscopic observables

exhibit power law scalings in (φ−φc) [5–7] and the
flowing state rheology changes dramatically as the packing
fraction is increased above φc. Although the jamming
transition controls both dynamic and static properties
near φc, theories tend to focus mainly on the latter [9,10].
Here we theoretically explore the jamming transition by
first considering flows with non-zero shear rate γ̇ and
then taking the limit of γ̇→ 0 to access the static case.
This procedure leads to quantitative predictions for the
flowing rheology that match observations in ref. [11]. It
also predicts the anomalous static scaling of the shear
modulus measured in refs. [5,6] and a new scaling relation

for the static yield strain, γ∗ ∝ (φ−φc)1/2, which provides
a testable prediction of the theory.
Granular materials behave as peculiar liquids. This

can be clearly demonstrated by measuring the shear
rate dependence of the stress tensor Σ(γ̇). Depending on
various parameters, the system exhibits either Bagnold
scaling Σ∝ γ̇2, elastic-inertial scaling Σ∝ γ̇1, or quasi-
static scaling Σ∝ γ̇0 (i.e. constant) [11]. The rheology
of the flow is dependent on φ, with Bagnold scaling
for φ< φc, quasi-static scaling for φ> φc, and elastic-
inertial scaling in between. This is in marked contrast to
Newtonian fluids where Σ∝ γ̇ and only the proportional-
ity constant depends on φ. Although the phase diagram
of granular shear flow has been extensively studied in
simulations [11–13] and experiments [14], the origins of
the rheological crossovers remain to be explained. Arriv-
ing at a solution to this problem requires a well-developed
theory for the stress tensor in dense granular flows.
The stress tensor ultimately depends on the amorphous

microscopic arrangement of grains. Forces are transmitted
via contacts between grains and a perturbation on one
grain can have long-range effects. Indeed, both experi-
ments and simulations indicate that contact forces are
correlated [2,15] and tend to form quasi–one-dimensional
filaments, or force chains, that permeate the material [16].
Since contact between grains is the only form of force
transfer, Σ is fully determined by properties of the net-
works [17,18]. Here we investigate the role of force chain
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Fig. 1: A force network of grains taken from simulations [18].
The grains not connected to this particular cluster are not
shown. In the FNM, the elastic force between grains i and j
arises from collisional forces that propagate through the
network. Lines are drawn between contacting grains, with the
bold lines illustrating different paths through the network.
The path d→ e→ f→ i is defined as a path of length �= 3
since the collisional force F debc must travel through three grains
to affect the contact {i, j}. Also illustrated are paths of length
�= 1 (a→ j) and �= 2 (b→ c→ j). At each link in a path, the

transferred force is reduced by a factor Gi′j′(1), which depends
on the relative angle between the contact and the amount of
friction. The total elastic force is determined by summing over
all possible paths through the network.

networks in determining the value of the stress tensor by
constructing a model of momentum transfer. We begin
with an overview of the force network model (FNM)
for perfectly rigid grains and then extend the model to
include realistic grains with finite rigidity.

The force network model (FNM) for rigid grains.
– The central concept of the FNM [18] is that the force F ij

between a pair of contacting grains {i, j} can be expressed
as the sum of a collisional part F ijbc and an elastic part F

ij
s .

The collisional part is the force expected from collisions
between pairs of grains in the absence of networks. It is
proportional to the square of the relative velocity between
the contacting grains i and j upon initial incidence and
is predicted by kinetic theory to scale with the square of
the shear rate γ̇2 [19]. The elastic force is a consequence
of the pressure induced by the network surrounding a
pair of grains. Collisional forces from other contacts in
the network are transferred to the pair from first nearest
neighbors, second nearest neighbors, and so forth, all the
way to the edge of the network, as illustrated in fig. 1.
The presence of multiple contacts leads to an elastic force
F ijs between grains i and j, and this contribution can be
expressed as a sum over all paths between the contact
{i, j} and every other contact {i′, j′} in the connected
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Fig. 2: A schematic illustration of three important length
scales, plotted as a function of packing fraction φ, and their
relation to granular flow near φc. ξ gives the average physical
size of force chain networks and diverges as φ→ φ−c . l

∗

quantifies the length scale above which the system responds
as an elastic solid and diverges as φ→ φ+c . Λ≡ c/γ̇ gives the
maximum distance that forces, which propagate at an effective
speed c, can become correlated. The macroscopic rheology
(indicated beneath the graph) depends on the smallest length
scale, and transitions occur at the intersections. φc is the
packing fraction where the system jams in the limit of zero
stress. Our predictions for φhs and φqs are given in eqs. (4), (5).

force network:

F ijs =

ξ−1∑
�=1

∑
{i′,j′}

Gi′j′(�)F i′j′bc . (1)

In this equation, � is the path length (in grain dia-
meters) between two contacts {i, j} and {i′, j′}. The maxi-
mum path length is constrained by the average linear
size of physical networks ξ, which has been measured
in simulations by considering correlations between grain
forces [2,18] and diverges as φ→ φc, as plotted in fig. 2.
F i

′j′
bc is the collisional force on the contact at the end of the
path and the sum over {i′, j′} includes all collisional forces
in the network, which may have multiple paths leading to
the contact {i, j}. The function Gi′j′(�) accounts for the
fact that only a fraction of the collisional force is trans-
ferred at each link in the path, and no more than the
collisional force can be transferred from each contact in
the network. In constructing this equation we assume that
grains are perfectly rigid, which ensures that the propaga-
tion of collisional forces is instantaneous.
By defining N(�) as the total number of contacts

separated by path length �, G(�) as the average of Gi′j′(�)
over all paths of length �, and Fbc as the average collisional
force, eq. (1) reads

F ijs =

ξ−1∑
�=1

N(�)G(�)Fbc(�). (2)
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This is the central equation of the FNM: its parameters
are related to the network geometry and have all been
measured in simulations [18].
The FNM is similar to other models that separate the

stress tensor into elastic and collisional components [20],
but introduces a new way to calculate elastic stresses. Elas-
tic stresses arise from clusters (not necessarily percolating)
of simultaneously contacting grains that transfer forces.
These force networks are not static, but are constantly
formed and destroyed by the shear flow. Since each of these
rates is proportional to γ̇, properties of the steady-state
networks are independent of γ̇.

Bagnold scaling. – Equation (2) yields a constitutive
relation for each component of the stress tensor that
matches measurements from simulations for rigid grains
with φ< φc [18]. A major feature of the constitutive
relations is that Bagnold scaling holds, i.e. Σ∝ γ̇2. This
is because all of the network parameters in eq. (2) are
independent of γ̇ and the rheology is set by Fbc, as
predicted by kinetic theory [19].
The form of the constitutive relations is especially

simple for rigid granular materials slightly below φc. At
these large packing fractions, each grain has many contacts
and the entire collisional force from every contact is
transferred to its nearest neighbors. Thus N(1)G(1) = 1,
which implies that N(�)G(�) = 1 for all �. In this limit,
it follows from eq. (2) that Σ∝ ξFbc ∝ ξγ̇2. The FNM
predicts that the stress tensor is proportional to the size of
the force networks, independent of spatial dimension. For
dense flows with ξ� 1 it also predicts that the collisional
part of the stress, proportional to Fbc, is much smaller
than the elastic part, proportional to (ξ− 1)Fbc, which
has been observed in simulations [18].

The elastic-inertial regime. – The FNM has been
constructed for perfectly rigid grains by assuming that
forces propagate instantaneously through networks. Now
we extend the model to realistic grains with finite stiffness,
where forces propagate at finite speed. Because forces do
not propagate instantaneously, even if physical networks
exist with size ξ, forces might not reach the end of a
network before it is destroyed. Therefore, in addition to
ξ, it is important to consider the maximum extent of
correlated networks Λ for grains with finite stiffness.
The value of Λ is difficult to predict. It is propor-

tional to the elastic speed that forces move through
individual grains (dependent on grain stiffness) and
inversely proportional to the rate γ̇ at which networks
are destroyed [11,12]. However, it is more complicated
than this and depends sensitively on network topology,
since oftentimes breaking even a single contact can sever
a network and prevent forces from propagating. We will
therefore set Λ≡ c/γ̇, which defines c as the effective
speed that forces propagate through networks. While
c increases with grain stiffness it also depends on the
topology of the networks and will thereby increase with
packing fraction, since denser packed networks have a

larger number of paths between any two grains. For flows
of grains with finite stiffness and γ̇ > 0, Λ is always finite
and is plotted in fig. 2.
For realistic grains there are two relevant length scales

for φ< φc: the size of the physical contact networks ξ and
the maximum correlation distance Λ. If ξ <Λ then forces
propagate through the entire physical network before it
is destroyed. Therefore the assumptions of the rigid grain
FNM hold and Σ∝ ξγ̇2, averaged over time scales larger
than ξ/c. However, if ξ >Λ, the collisional force from a
single contact is not transferred to the entire network, but
only over a distance Λ. Since ξ diverges at φc, there is
always a critical packing fraction φhs above which Λ< ξ,
as illustrated in fig. 2. For φ> φhs the shear flow is in a
regime where the size of the physical networks ξ becomes
irrelevant and must be replaced by the size of correlated
networks Λ. This predicts a linear scaling of stress with
shear rate, Σ∝ cγ̇, as was observed in ref. [11] and named
the elastic-inertial regime.
The introduction of finite grain stiffness to the FNM

produces a crossover from Bagnold’s scaling to elastic-
inertial scaling as the packing fraction is increased. The
elastic-inertial scaling reveals that a second time scale,
shown here to be dependent on the speed of force propa-
gation through force networks, becomes important at high
packing fraction.

The onset of quasi-static flow. – For φ> φc, a
third length scale l∗ becomes relevant [9] that is related
to the departure from the isostatic limit. Isostatically
jammed materials are configured such that contact forces
can be completely determined from the constraint that
no particle moves [21]. This occurs when the coordination
number z, equal to the average number of contacts per
particle, approaches a critical value zc that depends on
the spatial dimension. Contact forces are highly correlated
in the isostatic state since breaking any single contact
alters the value of every other contact force and causes
rearrangements of grains over the entire material.
For a system with z = zc+ δz (δz > 0), large-scale

rearrangements are confined to small distances and
elasticity is recovered over length scales larger than l∗.
It was predicted that l∗ ∝ 1/δz [9] and this scaling has
been verified in simulations [3]. Although these simula-
tions were constrained by system size to l∗ � 20 grain
diameters, the scaling is expected [9] to hold as l∗→∞.
The value of l∗ is related to the packing fraction, since
δz ∝ (φ−φc)1/2 [5,6], and is plotted in fig. 2.
The rheology of granular shear flow with φ> φc depends

on the relative sizes of the correlated networks Λ and
isostatic clusters l∗. When l∗ >Λ forces propagate over
regions where grain rearrangements are prevalent and
inertial scalings are therefore important. When l∗ <Λ
forces propagate over distances that are large compared to
the rearranging regions, redundant contacts stabilize the
networks, and forces are no longer inertial. At l∗ =Λ≡ c/γ̇
the rheology crosses over from elastic-inertial behavior,
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Σ∝ cγ̇ for Λ� l∗, to quasi-static scaling, Σ∝ c2/l∗ for
Λ� l∗.
FNM predictions at non-zero shear rate. – In the

preceding sections a prediction for the stress tensor has
been obtained using the FNM. The FNM was first derived
in the context of perfectly rigid grains, and the effects of
grain stiffness and system elasticity were incorporated by
considering crossovers in characteristic length scales. The
FNM prediction for the stress tensor is given by

Σ∝




ξγ̇2, for ξ �Λ;
cγ̇, for ξ �Λ and l∗ �Λ;
c2/l∗, for ξ �Λ and l∗ �Λ.

(3)

The variables ξ, c, and l∗ depend on the viscoelastic grain
properties and packing fraction, but not on γ̇. A schematic
of the length scales and flow regimes is shown in fig. 2.
The transitions between flow regimes can also be

expressed in terms of the critical packing fractions φhs
and φqs, as defined in fig. 2. We focus here on the limit
of stiff grains with Λ� 1. According to eq. (3), the
transition from elastic-inertial scaling to quasi-static
scaling occurs when l∗ =Λ. Given that l∗ ∝ (φ−φc)−1/2,

φqs−φc ∝ (γ̇/c)2. (4)

Similarly, the transition from Bagnold scaling to elastic-
inertial scaling occurs when ξ =Λ. Since ξ diverges at φc,
it scales as ξ ∝ (φc−φ)−ψ near the transition. This gives

φc−φhs ∝ (γ̇/c)1/ψ. (5)

Equations (4), (5) fully determine the crossovers in rheol-
ogy and are used to construct the flow map in fig. 3.
For constant φ< φc, corresponding to a horizontal

slice through fig. 3, the system exhibits Bagnold scaling
for small γ̇ and elastic-inertial scaling for large γ̇. This
unexpected behavior where Bagnold’s scaling, normally
associated with “rapid” flows, actually occurs for small
γ̇ in constant volume shear flows has been observed
previously [11]. For constant φ> φc, the system exhibits
quasi-static scaling for large γ̇ and elastic-inertial scaling
for small γ̇. The emergence of quasi-static flow as the shear
rate is reduced in dense materials is a feature that has been
observed in experiments [14] and simulations [22]. Finally,
for a flow with constant γ̇ > 0, the system passes through
all three rheologies as the packing fraction is increased.
The preceding analysis only strictly holds for infinite

system size L. For finite L we expect the rheology to
depend on the size of the smallest length scale —ξ(φ),
Λ(φ), or l∗(φ)— compared to L. If L>Λ(φqs) there are
no finite-size effects. If L<Λ(φqs) then finite-size effects
become relevant at the packing fraction where L= ξ(φ)
(for L<Λ(φhs)) or L=Λ(φ) (for L>Λ(φhs)), and persist
until L= l∗(φ) in the quasi-static regime.
Of particular interest is L<Λ(φhs), in which case

the elastic-inertial rheology is not observed. Instead, the

Elastic−Inertial

Quasi−Static

Bagnold

φc

φ

γ̇

φqs(γ̇ )

φhs(γ̇ )

Fig. 3: The predicted flow map of sheared granular materials
as a function of packing fraction φ and normalized shear rate
γ̇ ′ = γ̇/c. The scaling behavior of φqs and φhs are taken from
eqs. (4), (5), using ψ= 1.

system transitions from the Bagnold regime to the quasi-
static regime with an intermediate phase that is system-
size-dependent. Observables in the intermediate phase are
determined by the finite-size scalings of the Bagnold and
quasi-static regimes, and thus fluctuate between values
characteristic of each regime. This behavior has been
observed in simulations [23] and experiments [14]. Indeed,
for experimental systems, c∼ 100m/s [24] so that for
typical values of γ̇ ∼ 0.1 s−1, Λ is sufficiently large such
that L<Λ(φhs). Therefore, we expect finite-size effects to
be important in experimental systems. In order for the
elastic-inertial regime to be observed in simulations [11],
the stiffness of the grains must be very small, which
reduces c and Λ. In this case, the stress tensor does not
depend on L.

FNM predictions at zero shear rate. – In the limit
of γ̇→ 0 the FNM predicts that the yield pressure py and
the yield shear stress sy are each proportional to c

2/l∗ for
φ� φc (see footnote 1). If a shear stress smaller than sy is
applied to the system it responds elastically with s=Gγ,
where G is the shear modulus and γ is the shear strain [5].
At a critical shear strain γ∗ the system yields and it must
be the case that sy =Gγ

∗. Using this definition for γ∗ we
have that s= sy for γ � γ∗ and s=Gγ for γ � γ∗. The
pressure only depends on the packing fraction and p= py
for all γ [5].
In the elastic regime where s=Gγ, the speed of force

propagation is set by the elastic shear wave speed c∝√G.
By enforcing continuity of c at γ = γ∗ we deduce that
c∝√G for all φ> φqs. Combined with l∗ ∝ δz−1, we
predict that

G∝ p/δz, (6)

and
γ∗ ∝ δz. (7)

1Note that in the limit of γ̇→ 0 and φ= φc, c= 0 and Λ= c/γ̇
is indeterminate. Nevertheless eq. (3) correctly predicts that Σ= 0,
regardless of the value of Λ.
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The first scaling relates the shear modulus to the pressure
and excess coordination. It matches measurements from
simulation for all dimensions and interaction potentials [5].
The second relation predicts the shear strain at which
the system yields. Although this has not been measured,
the FNM predicts that yielding is a purely geometric
phenomena, unaffected by interaction potential, and gives
a testable expression for its scaling behavior.

Conclusions. – We have taken a dynamic approach
to the jamming transition using the FNM to predict the
stress tensor in the flowing regime and then extrapolating
our results to the jammed state. While this procedure
was aimed at understanding athermal granular materials,
a similar technique should apply in amorphous systems
such as glasses that jam as the temperature is reduced.
Since the isostatic length scale l∗ exists for all jammed
amorphous materials, the challenge is to identify relevant
correlation lengths in the flowing regime and relate them
to properties of interest. Jamming may then be universally
understood as the crossover of correlations from flowing
length scales to the isostatic length scale.
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[18] Lois G., Lemâıtre A. and Carlson J. M., Phys. Rev.
E, 76 (2007) 021303.

[19] Campbell C. S., Annu. Rev. Fluid Mech., 22 (1990) 57;
Goldhirsch I., Annu. Rev. Fluid Mech., 35 (2003) 267;
Garzo V. and Dufty J. W., Phys. Rev. E, 59 (1999)
5895.

[20] Johnson P. C. and Jackson R., J. Fluid Mech., 176
(1987) 67; Volfson D., Tsimring L. S. and Aranson
I. S., Phys. Rev. E, 68 (2003) 021301.

[21] Moukarzel C. F., Phys. Rev. Lett., 81 (1998) 1634;
Roux J.-N., Phys. Rev. E, 61 (2000) 6802.

[22] Zhang D. Z., J. Rheol., 44 (2000) 1019.
[23] Aharonov E. and Sparks D., Phys. Rev. E, 60 (1999)

6890.
[24] Liu C.-h. and Nagel S. R., Phys. Rev. B, 48 (1993)

15646.

58001-p5


