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Abstract.

We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0
Parkfield Earthquake. This earthquake was recorded at 13 1-Hz GPS receivers, which
provides for a truly co-seismic dataset that can be used to infer the static-slip field. We
find that the resolution of our inverted slip model is poor at depth and near the edges
of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity
of the model resolution in the static field inversion leads to artifacts in poorly resolved
areas of the fault plane. These artifacts look qualitatively similar to asperities commonly
seen in the final slip models of earthquake source inversions, but in this inversion they
are caused by a surplus of free parameters. The location of the artifacts depends on the
station geometry and the assumed velocity structure. We demonstrate that a nonuni-
form gridding of model parameters on the fault can remove these artifacts from the in-
version. We generate a nonuniform grid with a grid spacing that matches the local res-
olution length on the fault, and show that it outperforms uniform grids, which either
generate spurious structure in poorly resolved regions or lose recoverable information in
well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly aver-
ages slip in poorly resolved areas of the fault while recovering small-scale structure near
the surface. Finally, we present an inversion of the Parkfield GPS dataset on the nonuni-
form grid and analyze the errors in the final model.

1. Introduction

Kinematic inversions of seismic data are routinely used
to create models of the temporal evolution of slip on finite
faults. While kinematic inversions remain our best tool with
which to image the earthquake source, they are problematic
because quantifying model error is difficult. Traditional es-
timates of goodness of fit to seismic data are not necessarily
reliable measures of model error. Exact solutions may de-
pend on poorly determined features of the data, and thus
limiting free parameters can improve the model [Jackson,
1972]. Furthermore, constraints and stability criteria are
necessary to produce physically meaningful solutions [Olson
and Apsel , 1982]. Still, a stable solution that matches phys-
ical constraints is not necessarily closely related to the true
slip distribution. This is evident in comparing source mod-
els for a given earthquake produced by competing research
groups. Alternative models that fit the data may appear to
be virtually uncorrelated [Mai , 2007].

Due to the limited number of seismic stations close to the
earthquake source, in practice the inverse problem is often
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underdetermined. This means that the available data are
not sufficient to uniquely determine every source parameter
[Menke, 1989]. Thus resolution is of vital importance for the
reliability of the final slip model. Specifically, in this paper,
we analyze model resolution, which is the ability of the in-
version to uniquely determine model parameters. Note that
resolution error is a different type of error than perturbation
error, which is the error in the final model due to errors in
the data. Both types of errors affect the inversion result,
and both must be quantified in order to assess the validity
of the final model.

Because the data cannot resolve tradeoffs between model
parameters, not all structure seen in the final model is
required by the data. The inversion result depends on
choices made during the inversion process, including grid
size and any smoothing or damping used (e.g., [Hartzell ,
1989; Hartzell and Langer , 1993; Das and Suhadolc, 1996b;
Liu and Archuleta, 2004]). In addition, the near-field sta-
tion geometry can strongly affect the solution [Saraó et al.,
1988; Olson and Anderson, 1988]. We will discuss optimal
smoothing and gridding choices that can remove artifacts in
the final model that are due to the station distribution and
inversion parameterization.

Kinematic inversions can employ a variety of different
data types. In this paper we focus of the resolving power
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of Global Position System (GPS) data. GPS data measure
the displacement at a particular point on the surface. The
sampling rate of GPS is typically too poor to resolve tem-
poral details of the earthquake rupture. Thus, unlike dy-
namic measurements such as accelerograms, which contain
information about the dynamics of faulting, GPS receivers
measure the static field (the final displacement). GPS data
are ideally suited to invert for the final slip distribution on
the fault, rather than the temporal evolution of slip.

GPS data provide a particularly interesting case to study,
as the static field decays very quickly with distance from the
source. (The static field decays as the inverse square of the
source-to-receiver distance, whereas dynamic waves decay as
the inverse of this distance [Aki and Richards, 2002].) Thus,
the resolving power of GPS data varies significantly for dif-
ferent areas of the fault plane. Synthetic tests of different
data types confirm this (e.g., [Delouis et al., 2002]). Com-
pared to static measurements, seismic waves can resolve slip
that occurs deeper and further from stations. However, GPS
data can still provide important information about the rup-
ture that dynamic data cannot. Because of low-frequency
noise, accelerometer records typically must be filtered, which
eliminates the possibility of retrieving information at 0 Hz .
In contrast, GPS data and other static field measurements
are sensitive to the final slip. Thus static and dynamic mea-
surements provide complementary information about the
rupture process. In the companion to this paper, Custódio et
al. [companion paper] describe a two-step inversion scheme
that uses both GPS and strong-motion data to image the
temporal evolution of slip.

We use data from the 2004 Mw 6.0 Parkfield Earthquake
to investigate the resolution of GPS inversions. The de-
tails of this earthquake rupture are of particular interest as
the Parkfield earthquake sequence is extremely important
for testing ideas of earthquake recurrence and predictability
[Bakun and Lindh, 1985; Bakun et al., 2005]. Historically,
the Parkfield earthquake series provided the impetus for for-
mulating the characteristic earthquake hypothesis that still
greatly impacts ideas used in seismic hazard analysis [Jack-
son and Kagan, 2006]. By comparing kinematic inversions
of past earthquakes at Parkfield we can determine to what
extent these earthquakes are similar, and thus, to what ex-
tent ideas developed in this region can be extrapolated to fu-
ture seismicity on other faults [Murray and Langbein, 2006;
Custódio and Archuleta, 2007].

In addition, the quantity of data available at this site al-
lows us to probe the earthquake source at a finer resolution
than has been possible in less well-recorded earthquakes.
Thus the 2004 Mw 6.0 Parkfield earthquake provides the
ideal setting to investigate a central issue for earthquake
source physics: the resolving power of kinematic inversions.
To compare the source processes of different earthquakes or
interpret individual source models, a quantitative measure
of the uncertainty associated with different models is needed.
The goal of this paper is to separate robust features of inver-
sions from artifacts so that kinematic inversions can provide
more reliable, easily interpretable images of the earthquake
process at depth.

We study the impact that nonuniqueness has on the so-
lution in the case of the Parkfield GPS data inversion. In
Section 2, we compute the resolution matrix for an inversion
of the Parkfield GPS data and demonstrate how the spatial
variability in the resolution affects the model in a series of
synthetic tests. Section 3 contains an alternative method us-
ing a nonuniform grid that removes artifacts caused by poor
resolution. We show via synthetic tests that the nonuniform
grid outperforms uniform grids of various sizes, even when
smoothing constraints are imposed to destroy artifacts in the
model. We then apply the nonuniform grid to an inversion of
the Parkfield GPS dataset in Section 6, and quantitatively
assess the effect of both resolution errors and data errors

on the solution. Finally, in Appendix A, we demonstrate
that bootstrapping, a technique that has been used in past
attempts of model error quantification, fails to distinguish
true structure from artifacts, and in fact gives incorrect error
bounds that are lower in areas where the model error is large
due to poor resolution. This underscores the importance of
the alternative techniques that we present here.

1.1. Formulation of the Inverse Problem

Kinematic inversions image the earthquake rupture by
exploiting the linearity between slip on a fault plane and
ground motions recorded in the surrounding medium. In
the full spatial and temporal problem the displacement u
recorded by a seismograph on the surface is represented by

ui(~x, t) =

∫ t

0

∫

Σ

∆uj(~ξ, τ ) Gij(~x − ~ξ, t − τ ) d~ξ dτ, (1)

where ∆u is the slip on the fault surface Σ, and G is the
Green’s function for a point dislocation and a given crustal
structure.

The above integral, when discretized in space and time,
becomes a linear matrix equation of the form A~x = ~f , where
~f is the data vector composed of displacements measured on
the surface, ~x is the fault slip to be recovered, and A is the
matrix describing the system response (Green’s function) at
the locations where measurements are available. The goal
of the inversion is to find the slip ~x, given the known data
~f and the system response matrix A. To write the inverse
problem in the linear form A~x = ~f , once must specify the
discretization of ~x a priori ; that is, one must specify the
rupture time windows in advance. For the full inversion in
space and time, this can be difficult, because the temporal
problem is nonlinear in rupture velocity (i.e., the correct
rupture time windows at each fault location are in fact not
known). One must either linearize the problem by choosing
a discretization of ~x (for example one could choose a con-
stant rupture velocity, although this is not required) or by
moving to a nonlinear algorithm that may not necessarily
find the global minimum. There are disadvantages to ei-
ther approach. The linearized solution may not be close to
the true solution if extensive nonlinearities are present, or
the nonlinear algorithm may be too computational intensive
to adequately search the parameter space. The nonlinear-
ity of the dynamic problem complicates the resolution issue
as well; conventional methods (e.g., [Backus and Gilbert ,
1968; Wiggins, 1972]) for assessing model resolution fail un-
der strong nonlinearity.

As the resolution of nonlinear inversions is difficult to
assess, we focus on the static inverse problem in this pa-
per. GPS data give final displacements, which eliminates
the time component in Equation 1 and renders the problem
linear. With static GPS data, we can only image the final
slip on the fault plane. The linearity of the static inverse
problem allows us to describe the resolving power of the
Parkfield GPS dataset quantitatively.

We find the minimum-length least-squares solution of our
inverse problem, A~x = ~f , using the Moore-Penrose Gener-
alized Inverse of A, Ã. Also termed the “natural” inverse,
Ã gives one of the least-squares solutions (it minimizes the
data residual ‖A~x− ~f‖2). In addition, the solution is termed
minimum-length because it is the least-squares solution with
the smallest solution length (‖~x‖2 is minimized).

We can find Ã using Singular Value Decomposition (SVD)
[Nash, 1990]. First we find the SVD of A:

A = UΛV
T
, (2)

where U and V are orthogonal and Λ is diagonal with el-
ements λii. The singular values λii are unique for a given
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A. Once A is decomposed in this manner, the generalized
inverse of A is given by:

Ã = V Λ−1
U

T
, where (Λ−1)ii =

{
λ−1

ii , if λii > 0.
0, if λii = 0.

(3)

While there is some freedom in the choice of U and V , the
generalized inverse Ã is unique. Our preferred solution sat-
isfies x̃ = Ãf .

Notice that the preferred solution given by SVD elimi-
nates the parts of the solution that correspond to zero sin-
gular values of A (by setting (Λ−1)ii = 0 when the singular
value λii = 0). This eliminates unstable parts of the so-
lution, as zero singular values correspond to vectors in the
model space (the solution space) that have no effect on the
data. As such, the data can place no constraint on the
weight given to zero singular vectors in the solution. The
Moore-Penrose solution gives these unconstrained vectors
zero weight. This is why the solution is minimum-length,
as adding unstable vectors to the solution does not improve
the data residual but does increase ‖~x‖2. Using the Moore-
Penrose inverse achieves the same result as a small amount
of damping, which also removes small singular vectors from
the solution.

1.2. Inversion Parameters

Our modeled fault plane and the surrounding GPS sta-
tions are shown in map view in Figure 1. We use 1-Hz

120.5 120.4 120.3

35.8

35.9

36

CAND

CARH

HOGS

HUNT
LAND

LOWS MASW

MIDA

MNMC

POMM

RNCH

TBLP

Map Scale: 10km

Displacement Scale: 5cm

Longitude (˚W)

La
tit

ud
e(

˚N
)

Figure 1. Horizontal static offsets recorded at GPS sta-
tions during the 2004 Mw6.0 Parkfield earthquake. The
dark grey solid line shows the horizontal extent of our
modeled fault plane. The surface trace of the San An-
dreas Fault is shown in black [Rymer et al., 2006], af-
tershocks are shown in light grey [Thurber et al., 2006],
and the epicenter of the earthquake is denoted by the
star. Note that the stations are primarily located near
the center of the fault trace. This results in poor spatial
resolution near the edges of the fault plane and at depth,
as shown in Figure 2. Figure 8b shows the vertical GPS
offsets.

GPS data from 13 stations located close to the fault. The
GPS offsets used were computed from 1-Hz data using the
method of Larson et al. [2003] with added modified side-
real filtering [Choi et al., 2004]. Co-seismic displacements
were calculated as differences in average displacements be-
tween 40-100 seconds after the earthquake and 5-100 sec-
onds before the earthquake. The sampling rate of the GPS
data allow us to use a truly co-seismic ground displacement
(rather than a daily average, which would be contaminated
by post-seismic deformation) with minimal afterslip. We as-
sume the rupture is constrained to a fault plane 40 km in the
strike direction × 13.65 km down-dip, in accordance with
aftershock locations (grey dots, Figure 1) [Thurber et al.,
2006]. Source parameters are specified on a grid with sub-
faults (discretized areas of the fault plane) that are 2 km
along-strike by 1.95 km down-dip, and then interpolated to
a 500 m × 487.5 m grid before convolution with Green’s
functions. We assume that the fault strikes 140◦ SE and
dips 87◦ SW, and the ruptured area is deeper than 0.5 km
(that is, there is no surface rupture). The velocity struc-
ture is approximated by a 1D bilateral model with slower
material to the northeast side of the fault [Thurber et al.,
2003, 2006]. This velocity structure provides a good approx-
imation to the true three-dimensional structure, which has
been shown to be less important for static problems [Wald
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(b) Diagonal Elements of Resolution Matrix with Rake, Along-strike Direction
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(c) Summed Rows of Resolution Matrix with Rake, Down-dip Direction
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Figure 2. The diagonal elements of the Parkfield GPS
resolution matrix plotted on the fault plane. A value
of unity indicates perfect resolution for a particular sub-
fault. a) In the case where slip is assumed to occur in
the along-strike direction only, there are 168 model pa-
rameters (compared to 39 data points). The problem is
severely underdetermined, and resolution is particularly
poor near the edges of the fault and at depth, far from
the GPS stations. Subfigures b) and c) show how the
resolution suffers when rake rotation is allowed. Allow-
ing rake rotation doubles the number of free parameters
in the inversion.
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and Graves, 2001]. Following Liu et al. [2006], Green’s func-
tions for this layered-velocity structure are computed using
the frequency-wavenumber method [Zhu and Rivera, 2002].

We use synthetic tests to investigate the resolution er-
rors present in a typical formulation of the Parkfield GPS
inversion. Resolution errors are due to the underdetermined
nature of the inversion, and are independent of data errors
(also termed perturbation errors), which we do not focus on
in this work. To isolate the effects of resolution errors on
the inversion result, we do not perturb the data in our syn-
thetic tests. This allows us to use the generalized-inverse
solution with no additional damping or smoothing. In our
final inversion of the Parkfield GPS dataset, we do sample
the actual GPS data errors via a Monte Carlo procedure,
as the nonuniform grid that we introduce allows both res-
olution and data errors to be taken into account. This is
explained further in Section 6.

2. The Parkfield GPS Resolution Matrix

Recall that our solution satisfies x̃ = Ãf = Ã(Ax) =

(ÃA)x. The matrix R = ÃA is the resolution matrix, which
maps the true solution to the inversion result. If the resolu-
tion matrix equals the identity matrix, then the estimated
model is perfectly resolved. For inverse problems that are
underdetermined, there are insufficient data to resolve all
the model parameters. Hence, the estimated model param-
eters are actually averages of the true model parameters
[Menke, 1989]. The ith row of the resolution matrix shows
how the ith model parameter is mapped to other estimated
model parameters by the inversion process. In most geo-
physical problems, as in ours, there is a natural spatial or-
dering of model parameters. (In our problem, the entries
of ~x represent slip on various subfaults, which are arranged
spatially on a two-dimensional grid.) In these cases, a length
scale can be determined from each row of R, and this resolu-
tion length gives the distance over which slip from a subfault
(gridded area of the fault) is “smeared out” by the inversion.
For example, if there is a one-dimensional spatial ordering of
model parameters (if we were only inverting for offsets on the
fault trace), then if we were to plot the entries for a particu-
lar row of the resolution matrix, we would expect something
similar to a Gaussian centered at the diagonal element. In
our case, the model parameters have a two-dimensional spa-
tial ordering, so in fact, we might expect to see the elements
in a given row to resemble a two-dimensional Gaussian when
plotted onto their corresponding subfaults. The resolution
length for a given subfault (which may be different in the
along-strike direction and down-dip direction) can be found
by explicitly fitting a Gaussian distribution to the elements
of the row of R corresponding to that subfault, or alterna-
tively, estimating the spread of the Gaussian from the mag-
nitude of the diagonal element (assuming that the Gaussian
normalizes to unity).

The Parkfield GPS inverse problem, when gridded into 2-
km × 1.95-km subfaults, is severely underdetermined. There
are 13 static GPS stations, with 3 components each, thus
giving 39 data points to invert. However, with source pa-
rameters located every ∼2 km, there are 168 subfaults. Solv-
ing for rake rotation in addition (allowing slip to occur in
either the strike or the dip direction) doubles the number
of free parameters, giving 336 model parameters. In either
case, the null space of A is large, which means there are
many vectors in the model space that are unconstrained by
the data. Thus, we can only solve for averages of the model
parameters, even if the data and Green’s function contain
no errors.

As shown in Figure 1, the GPS stations in the Parkfield
region are primarily located in the middle of the fault sec-
tion. Thus we expect resolution to be poor near the north-
west and southeast edges of the modeled fault plane. This is
confirmed in Figure 2, which shows the diagonal elements of

the Parkfield GPS resolution matrix mapped onto the fault
plane. The diagonal elements show how much slip in a par-
ticular subfault is correctly mapped to that subfault by the
inversion; thus, a value of unity indicates perfect resolution.
Given the Parkfield GPS data, slip in a small region of the
center part of the fault and near the surface is well-resolved.
Slip placed by the inversion elsewhere on the fault has large
spatial uncertainties. When rake rotation is also solved for,
as in Figures 2b and 2c, the problem becomes even more
underdetermined and resolution worsens. This can be seen
graphically in the figure, as the well-resolved areas (the red
areas) are substantially smaller in in Figures 2b and 2c than
in Figure 2a.

Even though the resolution is near zero in many of the
deeper subfaults, this does not mean that the data contain
no information about slip at depth. Rather, slip is unlikely
to be recovered in the correct spatial location. This is be-
cause the data places no constraint on unstable slip patterns
in the model space that correspond to small-scale structure
at depth.

The diagonal elements of the resolution matrix are a sim-
ple measure of the resolution of each subfault, but neglect
subfault correlations. The off-diagonal structure in R affects
the inversion result as well. To aid the reader in visualiz-
ing this structure, we present in Figure 3 three rows of the
resolution matrix, corresponding to subfaults with varying
resolutions. While what is being shown are rows of the res-
olution matrix, we have plotted the elements in these rows
two-dimensionally, because each element corresponds to a
particular subfault on the fault plane. A single row of the
resolution matrix shows the result of the following synthetic

 (a) Row of Resolution Matrix Corresponding to Well−Resolved Subfault
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       (b) Row of Resolution Matrix Corresponding to Subfault with Intermediate Resolution
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 (c) Row of Resolution Matrix Corresponding to Poorly−Resolved Subfault
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Figure 3. The rows of the resolution matrix correspond-
ing to three sample subfaults. The row shown corre-
sponds to the subfault that is outlined in white. For
a well-resolved subfault (a), all of the slip is recovered in
the correct location. However, for less-resolved subfaults
(b) and (c), some of the slip is mapped to other subfaults.
Note that the color scale is different in each subfigure.
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test: data is generated for slip (with a magnitude of one) for
a single subfault (shown in the white box in the figure); this
data is then inverted using the Moore-Penrose inverse. The
extent to which the final image “smears out” the input slip
to neighboring subfaults is indicative of the resolving power
of the data for that subfault. Figure 3a shows that in well-
resolved regions of the fault plane, the inversion maps the
slip to the correct subfault. Slip from deeper subfaults (see
Figures 3b and 3c) is “smeared out” by the inversion over
progressively larger areas of the fault as depth increases.

Due to structure in R, it is possible to obtain structure
even by inverting a random field. In Figure 4, we show a
synthetic test to probe the resolving power of the Parkfield
GPS data set. Synthetic data are generated from an in-
put distribution of random, uncorrelated slip (with uniform
probability between zero and one for both the along-strike
and the up-dip direction) at each subfault. The slip model
inverted from the synthetic data shows apparent structure
not present in the original slip model. This happens due to
structure in the resolution matrix. The rows of R do not,
in general, sum to unity. This means that some slip is lost
in the mapping of the true solution x to the final model
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(b) Output Slip Model (Inversion Result)
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Figure 4. Due to structure in the resolution matrix,
it is possible to obtain structure by inverting a random
field. The slip field in this synthetic test (a) is uncorre-
lated noise, but the inversion result (b) shows apparent
“asperities” that are due to off-diagonal structure in R
rather than structure in the data. Off-diagonal structure
in the resolution matrix R can play a large role in ap-
parent heterogeneity that appears in the inversion result.
The summed columns of R for an inversion with rake
rotation is shown in (c) for comparison. Note that (b)
correlates strongly to (c), showing that inverted struc-
ture can be due to structure in R, rather than structure
in the data.

x̃; thus the inversion does not preserve moment without an
additional constraint. Even with this constraint, however,
additional structure in R can allow slip to be preferentially
mapped to certain subfaults rather than others. The under-
determined nature of the inverse problem leads to spatial
uncertainty in slip. The inversion “smears out” slip from its
true location to surrounding subfaults. Often there is a spa-
tial bias in this process due to structure in R. The elliptical
(rather than circular) shape of the resolution kernels shown
in Figure 3 shows this bias. As a result, some subfaults have
more slip incorrectly mapped to them in the inversion pro-
cess than other subfaults. This leads to spurious structure
in the final inverted image. It is common for resolution ker-
nels to have this spatial bias [Harris and Segall , 1987; Du
et al., 1992].

While the input slip model in this particular synthetic test
is physically unrealistic, this test demonstrates an important
point: Because inversions are stabilized and smoothed, they
may return apparently “sensible” results even if the data or
Green’s functions are not at all sensible. This test contains
no perturbation error, and in fact, the inversion result fits
the data perfectly. In underdetermined problems, data fit is
not a good measure of model resolution. With enough free
parameters, one can always fit the data; but this does not
mean that the model error is small.

The off-diagonal structure of R can be visualized by plot-
ting the summed rows of R onto the fault plane, as shown in
Figure 4c. It is no accident that Figure 4b and 4c are highly
correlated. The resolution matrix as a whole contains all
the information about how the true slip model is mapped
to the inversion result. Each row provides an image of how
slip in one subfault is “smeared out” by the inversion. The
inversion will not recover the correct solution due to lack
of data; furthermore, damping of unstable modes results in
slip accumulation in certain areas of the fault plane. This
can be visualized by looking at the summed rows of the res-
olution matrix. These summed rows show which subfaults
tend to have more slip incorrectly mapped to them. The
structure seen in the output slip model is a function of the
Green’s function, and thus the station locations, rather than
structure associated with the seismic source. The resolution
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Figure 5. A synthetic test showing the resolving power
of the Parkfield GPS stations for a rectangular slip patch
in the input model with slip only along strike (a). The
inversion result (b) shows strong spurious structure be-
cause the problem is very underdetermined.
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Figure 6. We generate data from a synthetic slip model (a checkerboard test) shown in (a) and in-
vert the data onto three different grids. b) With a small, uniform grid, the inverse problem is severely
underdetermined. While the small scale structure is correctly recovered in the well-resolved portion of
the fault near the center of the fault trace, spurious structure is generated at depth. c) With a larger
uniform gridding, the problem is not underdetermined. However, structure near the surface is lost and
spurious structure is again generated at depth in part because the large subfaults near the surface are
removing structure that is within the resolution length of the problem. d) With a nonuniform grid with
spacing that approximates the local resolution length on the fault plane, structure is adequately recovered
in well-resolved portions of the fault and spurious slip is avoided in poorly resolved areas. This inver-
sion parameterization correctly averages small-scale structure in poorly resolved areas while recovering
small-scale structure near the surface.

matrix explains this finding, which has been seen in syn-
thetic tests for other inverse problems as well [Saraó et al.,
1988; Olson and Anderson, 1988].

Results from another synthetic test are shown in Figure 5.
The input model in this test is more physically realistic than
the test shown in Figure 4 but yields a similar result. Here
the input model has uniform slip in the strike direction only,
but as the inversion allows for rake rotation the problem is
extremely poorly constrained. The resulting slip model ob-
tained by the inversion shows structure – not present in the
input model – that correlates strongly with structure in the
off-diagonal elements of the resolution matrix in the strike
direction.

In practice the inverted slip model will contain true struc-
ture from the data and artificial structure due to resolution
problems. While consideration of the structure of the res-
olution matrix may help one interpret the final model, it
does not provide a definitive means to determine which fea-
tures are robust. Structure in well-resolved areas is certainly
more trustworthy than structure elsewhere, but in GPS in-
versions even large-scale features at depth may not be an
accurate reflection of the true slip field. In Appendix A,
we demonstrate that bootstrapping fails to determine which
slip features are reliable. Improving the resolution of source
models requires a spatially heterogeneous approach, which
we discuss in Section 3.

3. Optimal Gridding of the Fault Plane

As we have seen, formulating the inverse problem in a way
that is severely underdetermined can lead to spurious struc-
ture in the final model. In the inversion of Parkfield GPS
data, the resolution is highly spatially variable, with a much
smaller resolution length near the top and center of the fault
plane. We can improve the model resolution by making the
subfaults larger in poorly resolved areas. A nonuniform grid

with cells that match the local resolution length on the fault
plane simultaneously maximizes the recoverable information
in well-resolved areas of the fault while avoiding spurious
structure in poorly resolved areas.

We use a checkerboard synthetic slip model (Figure 6a)
to generate data at the Parkfield GPS stations, and invert
it with different subfault parameterizations to test how the
gridding of the fault plane can affect the inversion result. As
Figure 6b demonstrates, when we use a small uniform grid
of ∼2 km, information from the well-resolved portion of the
fault plane is recovered, but spurious structure is generated
elsewhere. Figure 6c shows results using a large approxi-
mately uniform grid such that the inverse problem is not
underdetermined. Here information from the well-resolved
portion of the fault plane is lost; also spurious structure
is generated at depth because the inversion is sensitive to
structure at a smaller scale than the grid size near the sur-
face allows. Finally, in Figure 6d we show the inversion
result using a nonuniform grid in which the scale of the sub-
faults was chosen to approximate the local resolution length
on the fault plane. In this optimal gridding of the fault,
we see that information from the well-resolved portion of
fault plane is recovered, and in other areas of the fault the
inverted slip represents a spatial average (in the larger sub-
faults, the recovered slip is near 0.5, which is the average
slip of the input checkerboard model in a subfault of that
size). No spurious, larger-scale structure is generated. This
is an optimal result, for it resolves small-scale features in
areas that they can be recovered without adding artifacts
elsewhere.

This irregular grid is similar to nonuniform grids pre-
sented in other static inversions, which also seek to more
closely match grid size and resolution length [Sagiya and
Thatcher , 1999; Pritchard et al., 2002; Simons et al., 2002].
A similar multi-scale inversion approach is discussed by
Uchide and Ide [2007]; it jointly performs the inversion on
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three uniform grids of different sizes with constraints to en-
sure that they are mutually compatible. An iterative algo-
rithm for creating a grid to match the local resolution length
is described in Lohman and Simons [2005], who use an ir-
regular grid for InSAR data down-sampling based on data
resolution (rather than model resolution, as we discuss in
this work).

Smoothing, of course, can help to eliminate spurious
structure in poorly resolved inversions. None of the inver-
sions shown in Figure 6 contain smoothing (except for the
larger subfault size in the Figures 6c and 6d, which in a
sense is smoothing with a boxcar function). While spatially
uniform smoothing in the regular grid inversion shown in
Figure 6b eliminates spurious structure, it also eliminates
true structure in the well-resolved portion of the fault. The
nonuniform grid eliminates this tradeoff by accounting for
the spatially varying resolution length in the structure of
the grid itself. Spatially variable smoothing can achieve a
similar result. Smoothing explicitly via the grid has the ad-
vantage that the resolution length scale is readily apparent
in the final image.

4. Inversion of Parkfield GPS Data

We perform a traditional inversion of the Parkfield GPS
data on a uniform 2km × 1.95km grid and compare this re-
sult to an inversion performed on the nonuniform grid shown
in Figure 6d. We weight the data in proportion to the in-
verse square of the data errors given by the GPS processing,
which are 1.49 mm for the east component, 2.97 mm for the
north component, and 3.77 mm for the up component of
displacement.

Unconstrained inversions of this data show backslip,
which is unphysical. This may be a sign of Green’s func-
tion errors (i.e. deficiencies in the velocity structure), as we
did not see backslip in synthetic tests. To prevent backslip,
we use the nonnegative least squares (NNLS) algorithm of
Lawson and Hanson [1974]. The NNLS algorithm, unlike
the generalized-inverse solution, is not minimum-norm and
is not inherently smooth. Therefore we append Laplacian
smoothing constraints to the system of equations [Hartzell
and Heaton, 1983] and choose the amount of smoothing via
finding the corner in the data residual vs. model roughness
tradeoff curve [Harris and Segall , 1987]. In addition, we ap-
ply a moment constraint to match the observed teleseismic
moment of 1 × 1018 Nm. This has the effect of preventing
the slip from reaching the bottom edge of the modeled fault
plane. With a moment constraint applied, edge constraints
(constraining the slip to go to zero at the edges of the fault
plane) were not needed. Slip is assumed to be purely right-
lateral in agreement with past inversions [Custódio et al.,
2005; Liu et al., 2006; Murray and Langbein, 2006; Johanson
et al., 2006], which reduces the number of free parameters
and improves resolution considerably. Thus the resolution
in this inversion is similar to that shown in as Figure 2a,
rather than Figures 2b and 2c.

Figures 7a and 7b show the slip model from the uniform-
grid inversion and the associated perturbation error from a
Monte Carlo sampling of the errors in the GPS data. For
the Monte Carlo error sampling, we generate 1000 perturbed
sets of GPS data. Each set of perturbed data is a random
realization of the data errors, which we assume are uncor-
related and Gaussian, with standard deviations as given by
the GPS processing. We then invert the perturbed datasets
and generate a suite of slip models. Next, we compute the
standard deviation of slip for each subfault using the range
of slips produced for that subfault from the suite of slip
models. It should be noted that this data error is only part
of the error in this model because the resolution error is not
adequately captured in this uniform-grid inversion.

The inversion on the nonuniform grid, as shown in Figure
7c, captures the resolution error in the gridding of the fault

plane. The perturbation error in this model is shown in Fig-
ure 7d, which we computed in the same way as for the regu-
lar grid. Thus both types of uncertainty have been captured
in this final model. The maximum slip in the two models
is comparable, as is the variance reduction, which is 90%
for the uniform grid inversion and 89% for the nonuniform
grid inversion. This small difference in variance reduction
is despite the fact that the uniform-grid inversion employs
significantly more free parameters. The perturbation error
in the nonuniform grid inversion is slightly higher than in
the regular-grid inversion, which demonstrates the tradeoff
between resolution and variance [Menke, 1989]. The fit to
the data is similar in both inversions, and is shown for the
nonuniform grid inversion in Figure 8.

In our view, the nonuniform grid inversion of the Park-
field GPS data is superior because it assesses both resolution
and perturbation errors. In addition, it is less likely to con-
tain artifacts because the larger subfaults at depth limit the
number of free parameters. In the companion to this paper,
the uniform-grid and nonuniform grid GPS inversion results
are each used to constrain the final slip in two inversions
of the strong-motion data from the 2004 Mw 6.0 Parkfield
earthquake [Custódio et al., companion paper]. The two-
step inversion using the GPS slip model on the uniform grid
is unable to match strong-motion data at stations to the
southeast, in contrast to the successful two-step inversion
using the GPS slip model on the nonuniform grid. This
confirms our view that the nonuniform grid produces more
reliable results with fewer artifacts.

5. Conclusion

Underdetermined inversions do not have enough data to
constrain all of the model parameters. When it is not possi-
ble to obtain more data, the way to remedy this problem is
to limit the number of free parameters. As we have shown,
a surplus of free parameters leads to artifacts in the final
slip model. In poorly resolved regions, these artifacts can
look very similar to slip asperities. These artifacts can even
appear to be robust features, because they depend upon the
station distribution, which does not change even as other
model assumptions are varied or the data values are per-
turbed. Thus it is important to limit the number of free
parameters in inversions. While extra free parameters can
improve the data fit, we have shown that the data fit it not a
good measure of model error, which is what modelers want
to minimize.

Static inversions such as GPS inversions have a highly
nonuniform resolution in space. Thus, to prevent informa-
tion in well-resolved regions from being lost, free parameters
must be limited via a spatially nonuniform approach. The
ideal solution would have no resolution artifacts, and would
still resolve source structure at the finest scale possible. We
have presented a method that achieves these goals. By em-
ploying a nonuniform grid, free parameters are limited in
regions where the model parameters are most underdeter-
mined. This solution allows for artifacts to be removed from
regions with poor resolution, while preserving information
recoverable from areas with superior resolution.

Two types of uncertainty must be quantified in kinematic
inversions: resolution error and perturbation error. These
types of error differ in character, and therefore require dif-
ferent types of quantification. Perturbation errors are errors
in the solution resulting from errors in the data. They can
be captured through Monte Carlo sampling, and can be de-
scribed in terms of error bounds on the slip at each subfault
(as well as subfault-to-subfault correlations, which are more
difficult to describe concisely). Resolution errors, which are
due to insufficient constraints and data, cannot be captured
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Figure 7. Inversion of Parkfield GPS data on a regular grid (a), and on an irregular grid (c), with asso-
ciated perturbation errors found via Monte Carlo sampling of GPS errors (b and d). Both inversions give
similar fits to the data with a variance reduction of 89-90%. The fit to GPS data for the irregular-grid
inversion is shown in Figure 8.
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Figure 8. The fit to GPS data from the nonuniform-grid inversion. Data is shown in black, and synthet-
ics are shown in red. The variance reduction is 89%, compared to 90% for the inverison on the uniform
grid.

via error bounds because in a strict mathematical sense they

are unbounded (that is, the null vectors can be of any mag-

nitude without affecting the data). Because resolution error

is best described in terms of a length scale, it is appropri-

ate to capture this type of error in the grid itself. We have

shown that a nonuniform grid, with grid spacing equal to the



PAGE ET AL.: RESOLUTION BASED REMOVAL OF ARTIFACTS X - 9

local resolution length, can capture this type of uncertainty,
and thus prevent spurious structure from contaminating the
solution. Subsequent Monte Carlo sampling of data errors
on the nonuniform grid can allow both types of errors to be
quantified, leading to a more easily interpreted slip model.

The impact of other types of perturbation error on this in-
version have not been included, but merit further study. Er-
rors in the Green’s function due to incorrect velocity struc-
ture or fault location are highly nonlinear, and can change
the final slip model significantly [Das and Suhadolc, 1996a;
Sekiguchi et al., 2000]. A thorough quantification of errors
in kinematic inversions will allow for the determination of
robust features in the models, which will allow researchers
to draw firmer conclusions from this information.

Acknowledgments. We would like to thank Peng-Cheng
Liu for use of his Green’s function and kinematic inversion code.
M. T. P. acknowledges the support of a LEAPS fellowship as part
of an NSF GK-12 grant to UCSB. In addition, this work was sup-
ported by the James S. McDonnell Foundation (grant 21002070),
NSF Grant No. DMR-0606092, the David and Lucile Packard
Foundation, and USGS NEHRP Grant No. 06HQGR0046.
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Figure 9. Bootstrapping fails to give the correct error
bounds for underdetermined problems. Here we use a
random synthetic slip model (a) without any rake rota-
tion. The average inversion result from the bootstrapping
analysis (b) contains spurious structure. Also, 60% of the
subfaults fall outside of the 95% confidence bounds (the
standard deviation is shown in (c)) given by the boot-
strapped inversions.

Appendix A: The Failure of Bootstrapping

Previously we showed that in an underdetermined inver-
sion the slip model could contain artifacts due to structure
in R (and thus A) rather that structure in the data. In
this appendix we investigate the ability of a commonly used
error-estimation method, bootstrapping, to distinguish arti-
facts from true structure.

In Figure 9, we demonstrate that a random field input
again yields structure, this time for an inversion without
rake rotation, which is better resolved than the inversion
with rake rotation shown in Figure 4. A bootstrapping anal-
ysis is a resampling plan that consists of inverting datasets
that are randomly resampled from the original, complete
dataset [Efron, 1982]. The length of each bootstrapped data
vector equals the length of the original data vector, but as
each of the 39 data points are chosen randomly, some data
are included multiple times while others are omitted. Then
each of the bootstrapped data vectors are inverted sepa-
rately to create a family of slip models. If every slip model
shows a particular feature, it is assumed that that feature
is robust. We invert 1000 bootstrapped datasets and calcu-
late statistics on the resulting slip models. Figure 4b shows
the average slip values obtained, and Figure 4c shows the
standard deviation of slip for each individual subfault.
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Figure 10. Here we show a “worst case” scenario for
inverting an underdetermined problem. We formulated a
synthetic test that exploits the structure in R and places
slip in regions with little off-diagonal weight in the resolu-
tion matrix. The synthetic slip model is shown in (a). The
inversion tends to put high slip in regions where the in-
put model had little slip, as shown in (b), which is nearly
the converse of our input model. Even though this exam-
ple has a smoother input model than the example shown
in Figure 9, bootstrapping again severely underestimates
the standard deviation (c) of model parameters.
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Bootstrapping substantially underestimates the uncer-
tainty for this synthetic model, in part because slip is cor-
related on a smaller scale (the subfault size) than the reso-
lution length for much of the fault. In fact, approximately
60% of the subfaults fall outside of the 95% confidence win-
dow given by the bootstrapping analysis. Bootstrapping
fails because the null spaces in the individual bootstrapped
inversions are highly correlated. As such, certain unstable
slip distributions (corresponding to zero singular values of
A) are given zero weight in every bootstrapped inversion.
The uncertainty stemming from this poor resolution is never
sampled.

In addition to substantially underestimating the uncer-
tainty in the model parameters, the bootstrapping analysis
also fails to capture the spatial distribution of model error.
In fact, there is a negative correlation (r = −0.1819) be-
tween the absolute model error and the standard deviation
given by the bootstrapping analysis. This means that sub-
faults given a lower variance by the bootstrapping analysis
are more likely to have larger absolute errors.

In Figure 10, we show a “worst case” inversion scenario
exploiting the structure of R. The input slip model in
this synthetic test has low slip in subfaults with high off-
diagonal elements in R, i.e., in subfaults where slip tends to
be mapped due to the structure of R. As a result, the in-
verted model appears to be closer to the complement of the
true slip model. As before, the bootstrapping analysis fails
to fully capture the model uncertainty. Despite the input
slip model being spatially smoother in this example, 57%
of the subfaults fall outside of the 95% confidence window
given by bootstrapping.

Bootstrapping is designed for datasets that contain re-
dundant information. Poorly constrained inversions are not
good candidates for this procedure, and bootstrapping can
easily give a false picture of the model error. Bootstrapping
fails to capture resolution error – the model error that is
due to the infinite class of solutions present in an under-
determined inversion. This failure occurs because the null
space of A is never sampled by the bootstrapping, and the
null space is in fact the source of the resolution error.

The jackknife method is a similar resampling technique
that omits one data point with each resampling. This also
fails to quantify resolution error because the null space is
never sampled.
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