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Live fuel moisture (LFM) is an important factor for ascertaining fire risk in shrublands located in
Mediterranean climate regions. We examined empirical relationships between LFM and numerous
vegetation indices calculated from MODIS composite data for two southern California shrub functional
types, chaparral (evergreen) and coastal sage scrub (CSS, drought-deciduous). These relationships were
assessed during the annual March–September dry down period for both individual sites, and sites pooled by
functional type. The visible atmospherically resistant index (VARI) consistently had the strongest
relationships for individual site regressions. An independent method of accuracy assessment, cross
validation, was used to determine model robustness for pooled site regressions. Regression models were
developed with n−1 datasets and tested on the dataset that was withheld. Additional variables were
included in the regression models to account for site-specific and interannual differences in vegetation
amount and condition. This allowed a single equation to be used for a given functional type. Multiple linear
regression models based on pooled sites had slightly lower adjusted R2 values compared with simple linear
regression models for individual sites. The best regression models for chaparral and CSS were inverted, and
LFM was mapped across Los Angeles County, California (LAC). The methods used in this research show
promise for monitoring LFM in chaparral and may be applicable to other Mediterranean shrubland
communities.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Live fuel moisture (LFM), a measure of the water content of live
vegetation, is a strong determinant of fire ignition, spread rate, and
intensity (Countryman & Dean, 1979; Anderson, 1982). LFM is
particularly important in the shrublands of southern California as a
large proportion (55–75%) of the biomass available to fires is living, so
fires will only propagate if LFM is low (Countryman & Dean, 1979;
Dennison et al., 2008). Additionally, in fire-related research, plant
moisture is important for predicting crown fire initiation in conifers
(Agee et al., 2002) and burning efficiency (Chuvieco et al., 2004).
Detectingwater stress is also important for agricultural applications as
it is a primary control on plant growth (Brix, 1962, Acevedo et al., 1971,
Boyer, 1982).

Field measurement of LFM involves clipping live foliage, placing it
in an airtight container, weighing it wet, drying the foliage, and then

weighing it dry. Themoisture content of the vegetation is expressed as
a percentage of the dry weight (Wd):

LFM kð Þ ¼ 100 � Ww−Wdð Þ=Wd ð1Þ

where Ww is wet weight (Countryman & Dean, 1979). Weise et al.
(1998) suggested that fire danger can be approximated using LFM,
with low fire danger for LFMN120%, moderate fire danger for 120%N
LFMN80%, high fire danger for 80%NLFMN60%, and extreme fire
danger for LFMb60%. Dennison et al. (2008) examined relationships
between LFM and fire history in the Santa Monica Mountains of Los
Angeles County (LAC), and found that large fires only occurred when
LFM dropped below 77%.

LFM varies temporally and spatially, primarily due to available soil
moisture, and soil and air temperature (Countryman & Dean, 1979;
Bowyer & Danson, 2004). However, because field surveys are
expensive and time consuming, LFM is generally measured in the
field at only a few discrete locations to determine the level of fire
danger. For example, the field dataset used in this research involves 14
sampling locations within nearly 380,000 ha of chaparral (evergreen)
and coastal sage scrub (CSS, drought deciduous) shrublands. Remotely
sensed data provide the opportunity to study LFM over larger spatial
extents and the use of remotely sensed data to map/monitor LFM is a
developing research area.
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There are two main approaches to LFM estimation, empirical
relations between vegetation indices (VIs) and LFM, and simulation
methods using radiative transfer models (RTM). Yebra et al. (2008)
compared the two methods for estimating LFM in Mediterranean
grassland/shrubland in Spain. Regression results were superior for
RTMwhen the same dataset was used to calibrate and test themodels.
However, when the datasets were split into separate calibration/
validation datasets, the two techniques performed similarly. For
grasslands, R2 were 0.914 and 0.927, for the empirical and RTM
approaches, respectively. For shrublands the R2 were again similar,
0.723 and 0.703, however the predictions using the RTM deviated
from the 1:1 line, so root mean squared error (RMSE) was much
higher, 25.18 versus 16.01. Hence, as RTM are difficult to parameterize,
and may not be superior to an empirical approach (Yebra et al., 2008),
an empirical approach was utilized in this research.

Previous studies have examined correlations between VIs and LFM
data. The normalized difference vegetation index (NDVI, Rouse et al.,
1973) has most commonly been used in LFM research (e.g., Paltridge &
Barber, 1988; Hardy & Burgan, 1999). Other VIs, such as normalized
difference water index (NDWI, Gao, 1996), vegetation index green
(VIgreen) and visible atmospherically resistant index (VARI, Gitleson
et al., 2002), and enhanced vegetation index (EVI, Huete et al., 1997)
are being evaluated or reevaluated with the availability of Moderate
Resolution Imaging Spectrometer (MODIS) data (Dennison et al., 2005,
2007; Stow et al., 2005, 2006; Roberts et al., 2006; Hao & Qu, 2007).
Greenness indices (e.g., NDVI, VIgreen, VARI, and EVI) are sensitive to
changes in vegetation chlorophyll absorption and leaf area index (LAI),
which co-occur with changes inwater content (Hardy & Burgan 1999).
Wetness indices (e.g., NDWI and normalized difference infrared index
(NDII, Hardisky et al., 1983)) are more directly sensitive to changes in
vegetation moisture content. The formulations of the indices, with
respect to MODIS band numbers are listed in Table 1.

NDVI and LFM are highly correlated in grassland functional types
(Paltridge & Barber, 1988; Hardy & Burgan,1999). Paltridge and Barber
(1988) studied grassland LFM in Australia, finding linear agreement up
to about 200% LFM, at which point NDVI saturated. Hardy and Burgan
(1999) used fine spatial resolution Airborne Data Acquisition and
Registration (ADAR) data and similarly found that a western Montana
grassland had a strong relation between LFM and NDVI (R2 of 0.815),
however, shrubland R2 was lower at 0.539. Chuvieco et al. (2004)
studied grassland and Mediterranean shrubland LFM in Spain with
Advanced Very High Resolution Radiometer (AVHRR) data and found a
similar pattern for the utility of NDVI. Pearson correlation (r) was
0.754 for grassland LFM and NDVI. For Cistus ladanifer and Rosmarinus
officinalis, r was 0.474 and 0.529 for NDVI, but increased to 0.717 and
0.806 when an NDVI/surface temperature ratio was utilized. Hence,
other indices beyond NDVI have been examined for LFM studies in
shrublands.

The use of near infrared (NIR) and short wave infrared (SWIR)
bands for estimating LFM was suggested by Tucker (1980) and papers
cited therein. These bands have been used in various configurations by
Hardisky et al. (1983), Hunt et al. (1987), and Hunt and Rock (1989).
Chuvieco et al. (2002) used a time series of seven Landsat Thematic
Mapper (TM) scenes to study LFM in a Mediterranean shrubland

ecosystem. They evaluated correlations between LFM and the
following indices: NDVI, NDII5 (using Landsat TM bands 4 and 5),
NDII7 (TM bands 4 and 7), leaf water content index (LWCI), tasseled
cap wetness, band integrals and derivatives, and NDVI relative
greenness. The Pearson correlation coefficients (r) between grassland,
shrubland, and Quercus faginea LFM and NDVI were 0.869, 0.486, and
0.091. NDII5 had the highest correlations on average, with values of
0.855, 0.753, and 0.808, demonstrating the utility of the use of SWIR
bands for LFM estimation.

MODIS samples seven spectral bands, centered at 469, 555, 645,
857, 1240, 1640, and 2130 nm at a spatial resolution of 500 m. The
greater spectral dimensionality relative to AVHRR data provides a
more diverse set of indices that can be correlated with LFM. Dennison
et al. (2005) compared MODIS NDVI and NDWI for monitoring LFM of
chaparral shrublands in LAC. They found that both indices correlated
well with LFM at most sites, with R2 values ranging from 0.25 to 0.60
for NDVI, and 0.39 to 0.80 for NDWI. NDWI showed better agreement
at each site, though the difference was significant for only three of the
17 sites. Stow and colleagues studied LFM at 3 chaparral sites in San
Diego County, California (Stow et al., 2005, 2006; Stow & Niphadkar
2007). Stow et al. (2005) compared VARI and NDWI from MODIS; for
their three study sites R2 values were 0.94, 0.74, and 0.75 for VARI and
0.91, 0.4, and 0.42 for NDWI. VARI was significantly higher than NDWI
for the second and third sites. Regression equationswere similar for all
three sites, and the R2 for VARI when the data from the three sites
were pooled was 0.72. Stow et al. (2006) tested the temporal stability
of the relationships by developing a regression model for each study
site using 2001–2003 data and testing the models on 2004 data. They
found a large, systematic bias in RMSE, predicted values of LFM were
higher than measured values. Stow and Niphadkar (2007) used a
longer time series of data which added a very wet and a very dry year.
Pooled R2 for VARI was again 0.72 and the regression coefficients were
similar to those from the shorter Stow et al. (2005) timeseries. They
also tested relative VIs, where the continuous VI variable for a
pixel is normalized by the maximum and mean value of that VI in the
timeseries (Burgan & Hartford 1993). Using normalized VARI
improved the pooled R2 slightly to 0.75, while normalized NDWI
and NDII6 R2 values improved more, to 0.74 and 0.75. Roberts et al.
(2006) also investigated pooled site regressions. VARI was the best
overall index, with an individual site average R2 of 0.668. It
outperformed NDVI, EVI, VIgreen, NDII6, NDII7, NDWI, as well as
endmember fractions (Adams et al., 1993). When all of the datasets
were pooled together, irrespective of functional type, the R2 decreased
to 0.308. However, when grouping them by functional type, results
were stronger. For CSS the average R2 of the individual site regressions
was 0.767, the pooled R2 was 0.533. For chaparral the corresponding
R2 were 0.643 and 0.526. While there was a drop off in the amount of
explained variance, the regressions pooled by functional type still
showed a high degree of agreement.

This study seeks to model spatial and temporal variations in LFM
by developing robust relationships between field and remotely sensed
data which account for site-specific and interannual differences in
sensor measured vegetation response. The research presented here is
a significant advancement beyond relationships demonstrated in
Roberts et al. (2006) and Stow and Niphadkar (2007). Roberts et al.
(2006) stratified the study sites by functional type, but did not use
multiple regression. Stow and Niphadkar (2007) used relative VIs to
account for site differences. Relative VIs have a specific form, whereas
the approach used in this research is not predetermined. We account
for site-specific differences by including additional regression vari-
ables in a multiple regression (per-pixel minimum, maximum, range,
mean, median VIs). These variables can affect the slope or the
intercept in the regression equation, making their use more flexible
than that of relative VIs. Additionally, we evaluate pooled regressions
between LFM and vegetation indices using an independent measure
of goodness-of-fit, cross-validated R2 (Michaelsen, 1987). To our

Table 1
Vegetation indices from MODIS data with their acronyms

Index Formula

NDVI (ρ2−ρ1)/(ρ2+ρ1)
EVI 2.5⁎ (ρ2−ρ1)/(1+ρ2+6⁎ρ1−7.5⁎ρ3)
VIgreen (ρ4−ρ1)/(ρ4+ρ1)
VARI (ρ4−ρ1)/(ρ4+ρ1−ρ3)
NDII6 (ρ2−ρ6)/(ρ2+ρ6)
NDII7 (ρ2−ρ7)/(ρ2+ρ7)
NDWI (ρ2−ρ5)/(ρ2+ρ5)
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knowledge, Yebra et al. (2008) is the only other study of LFM to use an
independent validation dataset. These advances permit the first
validated time series maps of LFM that could be used to monitor the
spatial variation and temporal progression of LFM and fire risk.

2. Methods

2.1. Study sites and data

2.1.1. LFM data
This study uses the LAC LFM data used in Dennison et al. (2005),

Roberts et al. (2006), and Dennison et al. (2007), with two
modifications: additional years of data have been collected, and only
the late March through September dry down periodwas considered. A
study site map is provided in Roberts et al. (2006). The data were
collected at 12 sites in 2000, however one site burned in late 2002
(Sycamore Canyon) and one in late 2003 (Pico Canyon) so two new
sites were located (Glendora Ridge and Peach Motorway). The
Bouquet Canyon site burned in 2001, but the new sampling location
is still within the fire perimeter, so the useful sample period is quite
short. Two other sites burned and their new sampling locations are
also too close to burned areas to be useful for satellite remote sensing
studies: Placerita Canyon burned in 2004 and Woolsey Canyon in

2005. Thus 14 sites were sampled (Table 2). The precise species
composition of each site is not known, but 11 of the sites were
dominated by evergreen chaparral species, one site by drought
deciduous CSS species, and two by amixture of evergreen and drought
deciduous species.

LFM data have been gathered at approximately two week intervals
since 1983 by the Los Angeles County Fire Department. The sampling
protocol was designed by Countryman and Dean (1979). Sampleswere
taken from at least three random shrubs for each dominant species
within a 1–4 ha area at each sampling date. The samples consist of
live leafy material as well as some woody stems. The samples were
immediately sealed, then weighed wet, oven dried for 15 h at 104 °C,
and weighed dry. LFM was calculated as per Eq. (1). LFM data from
2000 to 2006 were used in this research (MODIS data began in 2000).
The field sampling dates were not coincident with the 16-day MODIS
composite dates, so the LFM data were linearly interpolated to the
middle of the 16 day MODIS compositing intervals.

LFM peaks in the spring, declines as the summer drought
progresses, and remains low until the onset of growth in the following
spring (Countryman & Dean 1979) (Fig.1). The long-termmean annual
trend in chaparral and CSS LFM for LAC (Fig. 1) was used to define the
dry down period to be from day 81 (late March) until day 257 (middle
September). Most remote sensing/LFM papers have also focused on

Table 2
Sample size for the Los Angeles County LFM sites

Site Functional type Sampled species # Dates # Dates, dry down only Years

Bitter Canyon 2 Chaparral Adenostema fasciculatum 143 80 2000–2006
Bouquet Canyon Chaparral Adenostema fasciculatum 36 22 2000–2001
Clark Motorway Chaparral Adenostema fasciculatum 144 80 2000–2006
Clark Motorway Chaparral Ceanothus megacarpus 144 80 2000–2006
La Tuna Canyon Chaparral Adenostema fasciculatum 139 78 2000–2006
Laurel Canyon Chaparral Adenostema fasciculatum 139 79 2000–2006
Pico Canyon Chaparral Adenostema fasciculatum 82 45 2000–2003
Placerita Canyon Chaparral Adenostema fasciculatum 92 50 2000–2004
Scheuren Road Chaparral Adenostema fasciculatum 140 78 2000–2006
Sycamore Canyon Chaparral Adenostema fasciculatum 52 31 2000–2002
Sycamore Canyon Chaparral Ceanothus crassifolius 52 31 2000–2002
Trippet Ranch Chaparral Adenostema fasciculatum 144 80 2000–2006
Woolsey Canyon Chaparral Adenostema fasciculatum 118 67 2000–2005
Peach Fire Road Chaparral Adenostema fasciculatum 61 35 2004–2006
Glendora Canyon Chaparral Adenostema fasciculatum 72 38 2003–2006
Glendora Canyon Chaparral Ceanothus crassifolius 72 38 2003–2006
Bitter Canyon 1 Coastal sage scrub Artemisia californi 143 80 2000–2006
Bitter Canyon 1 Coastal sage scrub Salvia leucophylla cophylla 143 80 2000–2006
Bouquet Canyon Coastal sage scrub Salvia mellifera 36 22 2000–2001
Trippet Ranch Coastal sage scrub Salvia mellifera 143 79 2000–2006

Fig. 1. Average LFM (1981–2007) for coastal and inland chaparral sites, and coastal sage scrub in Los Angeles County, California.
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the late spring through early fall dry down period only (e.g., Paltridge
& Barber, 1988; Hardy & Burgan, 1999; Chuvieco et al., 2002; Stow
et al., 2005, 2006), because LFM is more of a concernwhen vegetation
is drying down/under increasing fire risk than when it is “greening
up”.

2.1.2. Remotely sensed data
Daily 500 m MODIS/Terra version 4 MOD09GHK surface reflec-

tance data were used to construct 16-day composites from 2000
through 2006 (Dennison et al., 2007). These data were acquired from
the Land Processes Distributed Active Archive Center (http://
edcimswww.cr.usgs.gov/pub/imswelcome). The compositing algo-
rithm screens for clouds using the MOD09GST 1 km cloud product,
resampled to 500 m. Pixels are screened out if Bit 0–1 (cloud state)
is not “clear”, or if Bit 2 (cloud shadow) is not “no”, or if Bit 8–9
(cirrus detected) is not “none”. Off-nadir look angles are screenedwith

a threshold of 45° applied to theMODMGGAD 1 km geolocation angles
product. Off-nadir views can result in an effective ground sampling
distance on the order of 2 km, resulting in blocks of 500 m pixels
having the same values. After cloudy and off-nadir pixels are removed,
a spectral shape compositing algorithm (described in Dennison et al.,
2007) was used to select the most representative date for each pixel.

2.2. Analysis

The sampled vegetation stands were identified and boundaries
were delineated on 1 m spatial resolution Digital Ortho Quarter Quads
(DOQQs). These polygons were overlayed on a MODIS image in order
to select a single MODIS pixel for each of the 14 sites. Timeseries were
extracted from the MODIS composite data for 2000–2006.

Multiple regression was used to examine relationships between
LFM and MODIS data. Potential predictors include the time series of

Fig. 2. Temporal correlograms for LFM (top) and VARI (bottom) for the 16 chaparral datasets.
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seven VIs (NDVI, NDWI, NDII6, NDII7, VIgreen, VARI, EVI) from a MODIS
16 day composite and summary statistics (minimum, maximum,
mean, median, and range) of these seven VIs. Summary statistics of VIs
have been used in global land cover classification schemes because
different vegetation types have different phenologies (De Fries et al.,
1998; Friedl et al., 1999). In this research, the goal is to account for
phenological variability in the regressions in order to explain more
variance in the time series VI/LFM relationships. Summary statistics
involving two time periods, yearly and overall, were calculated for
each site. The yearly summary statistics control for both interannual
and intersite differences in the vegetation. Statistics were calculated
for each year from 2000 to 2006. The overall summary statistics
control for general differences in greenness across sites. Overall
statistics were calculated from 2000–2001 data, the only period when
all of the sites in this study were unburned. The values for the overall
statistics were replicated seven times so that they could be used in the
samemanner as the yearly statistics. 35 yearly and 35 overall statistics
were generated; the minimum, maximum, mean, median, and range
of the seven VIs. Only one time series variable was included in the
regressions to avoid possible multi-colinearity effects. Equations of
the following form were fit:

LFM ¼ β0 þ β1 � VIþ β2 � ssadd þ β3 � VI � ssmult ð2Þ

where β0 is the y-intercept; β1, β2, and β3 are the parameters for the
independent variables; VI is the continuous timeseries VI variable;
ssadd is the additive VI summary statistic variable; and ssmult is the
multiplicative VI summary statistic variable.

As the number of variables under consideration was reasonable,
the all possible regressions approach to multiple regression was
implemented. Analyses were performed for individual sites, all
evergreen chaparral sites pooled together, and all CSS sites pooled
together — to determine the potential for mapping LFM across
evergreen chaparral and CSS areas. For individual site regressions, the
seven continuous variables were combined with 35 yearly VI
summary statistic variables to determine the best single, two and
three variable combinations. For pooled regressions across all sites,
the seven continuous variables were combined with 70 VI summary
statistic variables (35 yearly and 35 overall) to determine the best
single, two and three variable combinations. The summary statistic

variables control for interannual differences in LFM relationships at
individual sites and interannual/intersite differences for the pooled
analyses.

Adjusted R2 values were utilized to assess goodness-of-fit for the
individual sites. Adjusted R2 reduces the effect of additional
explanatory variables automatically inflating the R2 metric. The
generality of the LFM/image product models (i.e. potential for
mapping) was assessed using cross-validated adjusted R2 (Michaelsen,
1987) through leave-one-dataset-out cross validation for the pooled
chaparral and CSS datasets. Leave-one-out cross validation involves
developing a regression equation from n−1 datasets and testing the
equation on the remaining dataset. The process is repeated n times,
once for each dataset. For the CSS regressions there were only four
LFM datasets, two of which came from the same site. Leave-one-out
models were constructed so that only one LFM dataset from the Bitter
Canyon site was included in each model.

The significance of differences in R2 due to the addition of
additional variables was tested using a sum of squared errors
comparison test:

Fobs ¼ R2
full−R

2
reduced

� �
= p−kð Þ� �

= R2
full= n−p−1ð Þ� � ð3Þ

where Rfull
2 is the R2 of the full model, Rreduced2 is the R2 of the model

with fewer predictor variables, p the number of variables in the full
model, k the number of variables in the reduced model and n the
number of samples. R2 rather than adjusted R2 is used in this equation.
If Fobs is larger than Fcritical found from an F-distribution with a 0.05
significance level and (p−k) and (n−p) degrees of freedom, the
difference is significant.

Temporal autocorrelation can inflate the significance of differences
in F scores because all of the data points used in the regression are not
independent. In order to reduce the effects of temporal autocorrela-
tion, n was reduced when Fcritical and Fobs were calculated to n/4. The
factor of 0.25 (n/4) was determined through inspection of temporal
autocorrelograms for FMC and VARI for the first 12 16-day lags,
corresponding to half of a year (Fig. 2). Temporal autocorrelograms
are analogous to the more commonly used spatial semivariograms,
with the lags referring to nearby time steps as opposed to nearby
pixels. The data values of adjacent 16 day composites are highly
correlated, with r on the order of 0.9 for a lag of one. At a lag of four

Table 3
Adjusted R2 for individual site regressions

Site NDVI NDWI NDII6 NDII7 VIgreen VARI EVI 2add 3

Bitter Cyn 2 Chamise 0.748 0.803 0.750 0.699 0.843 0.847 0.708 0.846 0.853
Bouquet Cyn Chamise 0.632 0.774 0.816 0.753 0.799 0.802 0.785 0.794 0.820
Clark Mtwy Chamise 0.652 0.481 0.748 0.699 0.708 0.714 0.419 0.713 0.742
Clark Mtwy Ceme 0.634 0.438 0.720 0.670 0.724 0.728 0.428 0.742 0.777
La Tuna Cyn Chamise 0.650 0.740 0.667 0.591 0.819 0.826 0.554 0.835 0.854
Laurel Cyn Chamise 0.448 0.548 0.609 0.570 0.671 0.678 0.351 0.698 0.742
Pico Cyn Chamise 0.626 0.767 0.725 0.679 0.786 0.789 0.546 0.792 0.784
Placerita Cyn Chamise 0.652 0.716 0.717 0.662 0.811 0.816 0.526 0.842 0.853
Schueren Rd Chamise 0.350 0.563 0.455 0.365 0.643 0.645 0.382 0.670 0.668
Sycamore Cyn Chamise 0.707 0.756 0.741 0.712 0.847 0.845 0.663 0.849 0.865
Sycamore Cyn Hoaryleaf Ceanothus 0.770 0.832 0.817 0.781 0.922 0.922 0.699 0.924 0.934
Trippet Ranch Chamise 0.679 0.684 0.696 0.640 0.777 0.790 0.362 0.795 0.792
Woolsey Cyn Chamise 0.675 0.739 0.682 0.624 0.816 0.822 0.611 0.820 0.865
Peach Motorway Chamise 0.935 0.902 0.899 0.888 0.909 0.914 0.683 0.913 0.943
Glendora Ridge Chamise 0.588 0.729 0.617 0.497 0.716 0.728 0.565 0.754 0.754
Glendora Ridge Hoaryleaf Ceanothus 0.537 0.746 0.592 0.428 0.673 0.683 0.635 0.747 0.811
Chaparral average 0.643 0.701 0.703 0.641 0.779 0.784 0.557 0.796 0.816
Bitter Cyn 1 California Sage 0.801 0.734 0.706 0.649 0.883 0.896 0.733 0.903 0.923
Bitter Cyn 1 Purple Sage 0.776 0.842 0.804 0.730 0.840 0.860 0.766 0.912 0.945
Bouquet Cyn Black Sage 0.749 0.900 0.891 0.852 0.935 0.939 0.781 0.940 0.942
Trippet Ranch Black Sage 0.662 0.616 0.645 0.592 0.798 0.799 0.271 0.807 0.829
CSS average 0.747 0.773 0.761 0.706 0.864 0.873 0.638 0.890 0.910

Significant differences (pb0.05) are underlined. The multivariate models used for chaparral are VARI and yearly EVI range and VARI, yearly NDWI minimum, and yearly VIgreen
median. The models used for CSS are VARI and yearly NDWI median and VARI, yearly VARI median, and yearly EVI maximum.
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the correlation approaches zero (implying independence) for both
variables. Hence n was reduced to n/4 for use in Eq. (3).

The best overall three variable models for chaparral and CSS were
inverted and applied to MODIS data of LAC. A vegetation map was
acquired from the state of California Fire and Resource Assessment
Program (FRAP) website (http://frap.cdf.ca.gov/) in the form of a 2003
fuel model map at 30 m spatial resolution. Fuel models (Anderson,
1982) are broad vegetation classes that are used in fire models such as
Farsite (Finney, 1998) and HFire (Morais, 2001; Peterson et al., in
review). The FRAP map delineates the extent of chaparral and CSS
areas, as well as grasslands, forests, etc. Masks were generated for
chaparral and CSS areas, and resampled to 500 m using a majority
rule. Hence, the inverted three variable chaparral equation was
applied to pixels classified as chaparral and the inverted CSS equation
was applied to pixels classified as CSS.

3. Results

3.1. Individual site regressions

For individual datasets, one, two, and three variable models were
considered. Table 3 presents the adjusted R2 values for the 20 LAC
(16 chaparral, four CSS) datasets. VARI and VIgreen were the best single
predictors on average, though NDWI was best for the two Glendora
Ridge datasets and NDII6 was best for Bouquet Canyon Chamise
and Clark Motorway Chamise. Adjusted R2 values were high for all
datasets, with an average value of 0.784 for chaparral sites and 0.873
for CSS sites.

The addition of summary statistic variables can help control for
interannual variability at a given site. For chaparral, neither two nor
three variable models led to significant increases in adjusted R2,
though the models with the highest average R2 are listed in Table 3.
For CSS, the best overall two variable model used VARI and the yearly
median of NDWI as an additive term, and the Bitter Canyon Purple
Sage dataset showed a significant increase in R2. The addition of two
summary statistic variables allows the intercept and the slope to vary
on a yearly basis at each site. The best overall three variable model for
CSS used VARI, the yearly median of NDWI for the additive term, and
yearly maximum of EVI for the multiplicative term. The Bitter Canyon
Purple Sage dataset again showed significant improvement with three
variables.

3.2. Pooled site regressions

The slope and y-intercepts from the individual regressions of VARI
with LFM show a wide range of values (Table 4). The y-intercepts
varied from 75 to 128% LFM for chaparral datasets, and from 99 to
237% LFM for CSS. Slope varied from 272 to 688 for chaparral, and from
787 to 1113 for CSS. The Laurel Canyon site has a particularly steep
slope due to a reduced range in VARI values, caused by adjacent urban
areas which exhibit much less temporal variability in greenness than
natural areas. Slopes are steeper for the CSS sites than the chaparral
sites because there is a larger range in LFM values. The Trippet Ranch
site has a much different regression equation than the other CSS sites,
likely because the other sites are purely CSS whereas Trippet has a

Table 4
Coefficients for the regression equations between VARI and LFM for chaparral and CSS
sites

Site Intercept Slope

Bitter Cyn 2 Chamise 127.8 325.0
Bouquet Cyn Chamise 109.5 271.7
Clark Mtwy Chamise 90.6 322.6
Clark Mtwy Ceme 88.1 421.0
La Tuna Cyn Chamise 116.0 330.9
Laurel Cyn Chamise 101.3 687.8
Pico Cyn Chamise 107.3 352.0
Placerita Cyn Chamise 101.8 335.6
Schueren Rd Chamise 115.9 382.1
Sycamore Cyn Chamise 93.0 283.3
Sycamore Cyn Hoaryleaf Ceanothus 90.9 306.1
Trippet Ranch Chamise 75.0 373.0
Woolsey Cyn Chamise 110.7 285.3
Peach Motorway Chamise 97.3 296.7
Glendora Ridge Chamise 100.6 312.1
Glendora Ridge Hoaryleaf Ceanothus 93.4 311.2
Bitter Cyn 1 California Sage 225.7 787.4
Bitter Cyn 1 Purple Sage 237.3 828.9
Bouquet Cyn Black Sage 218.8 984.0
Trippet Ranch Black Sage 99.2 1112.5

Table 5
Cross-validated adjusted R2 for pooled, cross-validated regressions

Site NDVI NDWI NDII6 NDII7 VIgreen VARI EVI 2add 3

Bitter Cyn 2 Chamise −0.55 −0.07 −1.14 −1.05 0.11 0.112 −0.09 0.814 0.782
Bouquet Cyn Chamise −0.05 0.487 0.046 −0.11 0.655 0.64 0.18 0.664 0.603
Clark Mtwy Chamise 0.432 0.285 0.63 0.563 0.578 0.579 0.38 0.689 0.688
Clark Mtwy Ceme 0.367 0.303 0.515 0.452 0.55 0.549 0.336 0.673 0.684
La Tuna Cyn Chamise 0.547 0.636 0.621 0.541 0.625 0.631 0.517 0.824 0.846
Laurel Cyn Chamise 0.095 −0.05 0.321 0.343 0.394 0.403 0.259 0.448 0.507
Pico Cyn Chamise 0.492 0.612 0.572 0.491 0.716 0.72 0.49 0.763 0.740
Placerita Cyn Chamise 0.512 0.566 0.587 0.529 0.764 0.767 0.483 0.808 0.801
Schueren Rd Chamise 0.277 0.015 0.082 0.17 0.482 0.491 0.111 0.597 0.582
Sycamore Cyn Chamise 0.577 0.648 0.666 0.63 0.758 0.765 0.62 0.785 0.827
Sycamore Cyn Hoaryleaf Ceanothus 0.568 0.659 0.68 0.638 0.772 0.784 0.619 0.856 0.867
Trippet Ranch Chamise −0.28 0.26 −0.05 −0.26 0.097 0.106 −0.29 0.657 0.664
Woolsey Cyn Chamise 0.571 0.525 0.484 0.471 0.711 0.71 0.561 0.774 0.771
Peach Motorway Chamise 0.741 0.43 0.568 0.527 0.881 0.881 0.478 0.893 0.921
Glendora Ridge Chamise 0.418 0.448 0.43 0.364 0.694 0.702 0.482 0.518 0.504
Glendora Ridge Hoaryleaf Ceanothus 0.371 0.508 0.458 0.347 0.629 0.632 0.515 0.632 0.648
Chaparral average 0.318 0.392 0.342 0.29 0.589 0.592 0.353 0.712 0.715
Bitter Cyn 1 California Sage −0.3 −0.97 −0.82 −0.45 −0.57 −0.6 0.057 0.738 0.882
Bitter Cyn 1 Purple Sage −0.38 −0.87 −0.79 −0.47 −0.63 −0.65 −0.01 0.766 0.856
Bouquet Cyn Black Sage 0.236 0.513 0.3 0.249 0.624 0.641 0.21 0.919 0.932
Trippet Ranch Black Sage −3.9 −1.3 −3.29 −3.67 −1.06 −1.06 −4.32 0.737 0.785
CSS average −1.08 −0.66 −1.15 −1.08 −0.41 −0.42 −1.02 0.790 0.864

Significant differences (pb0.05) are underlined. The multivariate models used for chaparral are VARI and VIgreen overall mean and VARI, VIgreen overall median, and VIgreen yearly
range. The models used for CSS are VIgreen and VIgreen overall median and VARI, NDII6 overall mean, and NDVI overall range.
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mixture of chaparral and CSS. Additional predictor variables are
clearly needed in order to account for the different slopes and inter-
cepts when the data are pooled together.

Leave-one-dataset-out cross validation was performed once for
each of the 16 LAC chaparral datasets and once for each of the four CSS
datasets (Table 5). As expected, based on the different slopes and
intercepts evident in Table 4, a single variable model was less than
ideal for both functional types; the best average cross-validated
adjusted R2 was 0.592 (VARI) for chaparral and −0.42 (VIgreen) for CSS.
A negative value for cross-validated R2 means the predicted values for
LFM areworse than if the overall average LFM value had been assigned
to each data point. Or, in statistical terms, the residual sum of squares
is larger than the mean sum of squares. This can only happen when a
model is developed on one dataset and tested on another. There is no
lower limit on cross-validated R2, however the upper limit is still 1.0.

The best overall two variable (additive variable added) models for
the pooled analyses were VARI and overall median of VIgreen for
chaparral with an average cross-validated adjusted R2 of 0.712, and
VIgreen and overall minimum of NDWI for CSS with an average cross-
validated adjusted R2 of 0.790. Most sites showed improvement in R2,
with sixof the chaparral datasets and three of the CSSdatasets showing
significant improvement. Reduced sample sizes at the sites which
burned (Bouquet Canyon, Pico Canyon, PeachMotorway, and Sycamore
Canyon) make it more difficult for differences to be significant.

The best overall three variable model (additive and multiplicative
variables added) for chaparral was VARI, overall median of VIgreen, and
yearly range of VIgreen with an average R2 of 0.715. No sites showed a
significant improvement in R2 compared to values from the two
variable model. The best overall three variable model for CSS showed
considerable improvement over the two variable model. VARI, overall
mean of NDII6, and overall range of NDVI produced an average R2 of
0.864. Two CSS datasets showed a significant increase in R2 for three
variable models. The Trippet Ranch dataset also shows a significant
improvement when slope is included if the p-value threshold is 0.1
rather than 0.05.

3.3. Mapping LFM

The two plant functional type three variable models were inverted
and applied across the landscape to map LFM. The equations are:

LFMchap ¼ 97:8þ 471:6 � VARI−293:9 � omVIgreen−816:2 � VARI � yrVIgreen
ð4Þ

LFMCSS ¼ 179:2þ 1413:9 � VARI−450:5 � omNDII6−1825:2 � VARI � orNDVI
ð5Þ

where VARI is the time series of VARI, omVIgreen is the overall median
of VIgreen, yrVIgreen is the yearly range in VIgreen, omNDII6 is the overall
mean of NDII6, and orNDVI is the overall range of NDVI. Scatterplots
of predicted versus observed LFM values are shown in Fig. 3. The
regression lines show some deviation from the 1:1 lines for both
functional types. However, there is more scatter for high LFM values
than low values. The low values show good agreement between
observed and predicted LFM values for both chaparral and CSS.

The maps of chaparral and CSS LFM for 2000–2006 show spatial
and temporal patterns that reflect the topography and weather of LAC.
Areas with LFMb60% are highlighted in red, areas from 60%–77% are
highlighted in yellow, and there is a color scale from 77% to 200% on
Figs. 4, 6, 7 and 8. These threshold values follow thresholds suggested
by Weise et al. (1998) and Dennison et al. (2008).

Starting with day 113 (23 April), early in the dry down portion of
the year, only the driest year, 2002, showed large areas of chaparral
LFM less than 77% (Fig. 4, Table 6). These areas are located on the
desert side of the coastal mountain ranges which experience higher

summer air temperatures and lower winter precipitation, hence
vegetation dries out earlier. Precipitation at the Saugus remote
automated weather station (RAWS), centrally located relative to the
LFM sampling sites, was well below average for the 2001–2002 water
year (Fig. 5). This led to the early onset of dry conditions. The area of
low LFM values in 2004 corresponds to the fire scar of the 2003 Simi
Fire. Table 6 provides quantitative comparisons of the different years.

Drying progressed gradually through day 161 (10 June) (Fig. 6). By
day 161, year 2004 also showed a coherent pattern of low LFM values,
in similar areas as for 2002. Precipitation in the 2003–2004water year
was the second lowest of the study period (Fig. 5). Large areas of
dangerous (LFMb77%) levels of LFM by day 161 are almost entirely
restricted to the two dry years, with two exceptions. First, the Simi Fire
scar is visible in the central west portion of the 2004, 2005, and 2006
maps. Second, there is a small chaparral stand in the northern part of
the county that had lower values in 2005 and 2006. This stand had low
LFM values at the beginning of the dry downperiod in 2002, 2004, and
2005 (Fig. 4), so it appears to be susceptible to early onset of drying.

The period from day 177–241 (26 June 26–29 August) experienced
the most rapid drop in LFM. The peak in dryness occurred on day 241
(Fig. 7). As with previous timesteps, 2002 and 2004 had the largest
amount of low LFM areas on day 241, but all of the other years showed
a large amount of pixels having LFMb77%.

In contrast, the CSS maps showed a more limited amount of
interannual variability. There were some differences early in the dry
down period, with 2002 and 2004 drying out sooner than the other

Fig. 3. Observed vs. predicted values of LFM for a) all chaparral and b) all CSS datasets.
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years, but from day 193 (mid July) on there are large areas of LFMb60%
in all years (Fig. 8, Table 6). The earlier onset of low LFM values for CSS
corresponds with the finding that soil moisture reaches seasonal low
values two months earlier in the CSS than the chaparral (Miller and
Poole,1979). Areas of high LFM values at the CSS/urbanmargin are due
to the FRAP fuels map mapping irrigated areas in the wildland urban

interface as CSS. The irrigated landscaping retains high moisture
values year-round.

4. Discussion and conclusions

For the individual site regressions for chaparral, models consisting
solely of a VI time series predictor variable were generally preferable.
Variables accounting for interannual variability did not significantly
improve the chaparral models. In contrast, Roberts et al. (2006),
utilizing the entire year, rather than the dry down period only, found
that interannual variability did have an effect on LFM/VI regressions.
Interannual variability in greenness should be greater for full year
datasets which include the late winter/early spring time period when
greenness is at a peak, hence it would have a larger effect on the
regressions. However, variables accounting for interannual variability
improved individual site regressions for the CSS datasets. CSS is
shallower rooted than chaparral, so plant moisture is more dependent
on annual precipitation (Hellmers et al., 1955). As total water year
precipitation varied widely from 6 to 69 cm during the study period
(Fig. 5), variables to account for interannual variability in greenness
were needed.

In contrast, additional variables were utilized for both functional
types in the pooled regressions. The variables selected for the additive
term reflect the general greenness of the sites (median VI summary
statistic variables were selected twice, mean and minimum once
each). Using these variables acts to shift and better align the data
clouds, controlling for intersite differences in greenness. Bitter Canyon
2 Chamise and Trippet Ranch Chamise show the largest increase in R2

between one and two variable models for chaparral (Table 5). These
two sites have the lowest and highest value for the y-intercept in
Table 4, so including a variable which accounts for the intercept has
the largest effect for these sites. A similar trend is found for the CSS
sites. The Bitter Canyon 1 datasets and Trippet Ranch Black Sage show
very large increases in R2 (Table 5), and have the highest and lowest y-
intercepts in Table 4.

The range between minimum andmaximum VI value was selected
for the multiplicative term for both pooled regressions. The range in

Table 6
MODIS pixel counts in three live fuel moisture categories for Figs. 4, 6, 7 and 8

Day Year Functional type Live fuel moisture categories

b60% 60%–77% N77% Total

113 2000 Chaparral 3 48 9211 9262
113 2001 Chaparral 1 14 9247 9262
113 2002 Chaparral 281 2285 6696 9262
113 2003 Chaparral 26 245 8990 9261
113 2004 Chaparral 228 491 8543 9262
113 2005 Chaparral 110 246 8903 9259
113 2006 Chaparral 3 97 9162 9262
161 2000 Chaparral 22 413 8827 9262
161 2001 Chaparral 13 260 8989 9262
161 2002 Chaparral 2086 5620 1556 9262
161 2003 Chaparral 58 343 8861 9262
161 2004 Chaparral 892 4152 4218 9262
161 2005 Chaparral 281 595 8386 9262
161 2006 Chaparral 149 297 8816 9262
241 2000 Chaparral 1584 5134 2544 9262
241 2001 Chaparral 1285 5227 2750 9262
241 2002 Chaparral 7629 1426 207 9262
241 2003 Chaparral 1125 5234 2903 9262
241 2004 Chaparral 6157 2741 364 9262
241 2005 Chaparral 1848 5644 1770 9262
241 2006 Chaparral 1280 5195 2787 9262
193 2000 Coastal sage scrub 1171 1727 4960 7858
193 2001 Coastal sage scrub 987 1453 5418 7858
193 2002 Coastal sage scrub 2779 2016 3063 7858
193 2003 Coastal sage scrub 1564 988 5306 7858
193 2004 Coastal sage scrub 2916 2084 2858 7858
193 2005 Coastal sage scrub 1943 1754 4161 7858
193 2006 Coastal sage scrub 1324 1594 4940 7858

Fig. 4. Mapped LFM for Los Angeles County, California chaparral for day 113 (23 April) for 2000–2006. Values representing LFMb60% (extreme fire danger) are in red, values
representing 60%bLFMb77% (highfire danger) are inyellow. (For interpretation of the references to colour in this figure legend, the reader is referred to thewebversion of this article.)
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LFM is relatively consistent across sites, so the range in values of the VI
dictates the slope of the regression line. Hence the multiplicative
summary variable acts to adjust for differences in slope of the
datasets. For CSS, the Bitter Canyon datasets show a significant
improvement when a variable accounting for slope is included in the
regression model.

The best three variable model when chaparral sites were pooled
has an average adjusted R2 that is 0.069 lower than that of the best
single variable model for individual sites. This is a minimal decrease in
predictive power considering the broader applicability of the cross-
validated model. Four datasets show large departures between cross-
validated and individual R2 greater than 0.10. Two of these sites
(Bouquet Canyon Chamise and Glendora Ridge Chamise) have smaller
sample sizes so they may be more sensitive to poor predictions. The
Laurel Canyon chaparral stand is approximately the size of 1 MODIS
pixel, and is surrounded by housing with non-native, irrigated
landscaping, which can influence the remotely sensed signal when
dates having less vertical look angles (larger effective pixel sizes) are

selected in the compositing process. Hence, it is not surprising that a
model developed for chaparral does not work well for an area within
the wildland urban interface. The Trippet Canyon Chamise dataset has
the highest values for VARI of the chaparral sites (lowest value for y-
intercept in Table 4) so it may be that the model developed at less
green sites does not extrapolate well to the greenest site.

For CSS, the cross-validated three variable model provides a similar
average R2 as the best single variable individual model, 0.864 vs.
0.873. The similarity in R2 between individual and pooled regressions
suggests that the cross-validated regression equations are robust.

This research, as with the prior studies of LFM with MODIS data,
found that VARI is the best index for predicting shrub LFM (Stow et al.,
2005, 2006; Roberts et al., 2006). VARI is a greenness index,
introduced by Gitelson in a study measuring vegetation fractional
cover in wheat canopies (2002). It was found to retain a linear
relationship with vegetation fraction for all values, whereas NDVI
saturated at 50% cover. The proposed mechanism for the strength of
the VARI/LFM relationships is that LFM co-varies with chlorophyll

Fig. 6. Mapped LFM for Los Angeles County, California chaparral for day 161 (10 June) for 2000–2006. Values representing LFMb60% (extreme fire danger) are in red, values
representing 60%bLFMb77% (highfire danger) are inyellow. (For interpretation of the references to colour in this figure legend, the reader is referred to thewebversion of this article.)

Fig. 5. Cumulative precipitation by water year (1 October–30 September) for the Saugus, CA RAWS station.
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absorption and LAI. Chlorophyll content and water content co-vary in
grassland functional types (Tucker, 1977), and this is the basis for
studies of LFM in grasslands (Paltridge & Barber, 1988; Hardy &
Burgan, 1999). A study by Harrison et al. (1971) also suggests a
chlorophyll content–water content relationship for shrublands. They
took cuttings from chaparral and CSS shrubs and measured rates of

photosynthesis while lowering the water content of the leaves by
placing them in a chamber and pumping in air of low relative
humidity. A linear relationship was found for chaparral species and
a piece-wise linear relationship was found for CSS species. LAI
is sensitive to overall site water balance, interannual precipitation
variability, and the progression of the summer drought for Ceanothus

Fig. 8. Mapped LFM for Los Angeles County, California coastal sage scrub for day 193 (12 July) for 2000–2006. Values representing LFMb60% (extreme fire danger) are in red, values
representing 60%bLFMb77% (highfire danger) are inyellow. (For interpretation of the references to colour in this figure legend, the reader is referred to thewebversion of this article.)

Fig. 7. Mapped LFM for Los Angeles County, California chaparral for day 241 (29 August) for 2000–2006. Values representing LFMb60% (extreme fire danger) are in red, values
representing 60%bLFMb77% (high fire danger) are in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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chaparral (Riggan et al., 1988). CSS species reduce leaf area during the
summer drought through leaf shedding (Harrison et al., 1971) and leaf
curling (Gill & Mahall, 1986).

The maps of LFM developed from the inverted equations show
coherent temporal and spatial patterns, which serves to increase
confidence in the validity of the cross-validatedmodels. Drying begins

Fig. 9. Scatterplots of VARI and LFM for the 16 chaparral data sets with dry down period in red and green up period in green. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 10. Time series plot of greenup and dry down LFM for the Trippet Ranch LFM site, for a CSS and a chaparral species, for 2000–2006.
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earliest for all years in areas which receive low annual precipitation:
low elevation sites in the rain shadow of mountain ranges. The
northern interior portion of the county was next to experience low
values of LFM. The coastal mountains dry out last, with some pixels
not showing LFM less than 77%.

Drying begins earlier in the two years having the lowest
precipitation, 2002 and 2004. On average, expansive areas of low
LFM values occur in the CSS starting around day 177 (late June) while
the period of high fire risk begins around day 209 (late July) in the
chaparral. The maps of LFM suggest that by the end of the dry down
season, most of LAC is susceptible to burning. The end of September is
also a time when the risk of Santa Ana wind events begins to increase,
leading to very high fire risk (Keeley et al., 2004).

While the dry down period was utilized in this research, data for the
full year were available, and were examined in detail. Fig. 9 shows
scatterplots between VARI and LFM for all 16 chaparral datasets used in
this research. The relationship between LFM and VARI is generally linear
during the dry down and generally non-linear for the green up period,
and the data clouds are distinct. An additional, separate equationwould
be needed for the green up period in order to model LFM year-round.

A possible explanation for the different behavior in the green up and
dry downperiods is that the remotely sensed signal during the green up
is affected by other species present, but not sampled, at a site. The
Trippet Ranch site is the only site where species from two functional
types were sampled, chamise and black sage. Examining their
phenological timing is instructive. It can be seen that the sage LFM
increases earlier in the growing season than that of chamise during the
2000–2001, 2001–2002, and 2005–2006 winters (Fig.10). The potential
for earlier onset of growth for CSS species is well established in the
literature (e.g., Gray,1982; Gill &Mahall,1986). The two functional types
behave more similarly during the dry down period; this leads to more
linear relationships during the dry down period as the mixture of
species does not have a mixed effect on the remotely sensed signal.

A fundamental assumption in this work is that the sampled
vegetation stands are homogeneous, and that averaging the LFM of
three shrubs is representative of all of the shrubs within a MODIS pixel.
The strength of the regressions, and lack of outliers in temporal
trajectories of LFM (Fig.10), suggest that this assumption is met, though
future work is planned to quantify sub-MODIS pixel variability in LFM.

Measuring LFM in the field is costly and time consuming, so
developing a reliable methodology that incorporates remote sensing
is advantageous. This research has shown that there are strong
relationships between LFM and VIs at individual study sites of
chaparral and CSS functional types, and that by incorporating
phenological metrics, regression equations can be generalized for
use throughout the functional types with a minimal loss in explained
variance. These equations were inverted, and maps of LFM reveal the
progression of vegetation drying in LAC from internal valleys to
internal mountains to coastal mountains. The methods used in this
research should be portable to other vegetation communities where
LFM is important in determining fire risk, such as Mediterranean
shrub communities in Europe, Australia, South America, and southern
Africa, though this has yet to be proven.
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