ROTATIONAL DYNAMICS

<u>Newton's 3rd Law – A Closer Look</u>

- Consider 2 particles with action/reaction pair of forces:
 - Newton's 3rd Law $\rightarrow \vec{F}_{1 \text{ on } 2} = -\vec{F}_{2 \text{ on } 1}$

- Puts no restrictions on the direction of $\vec{F}_{1 \text{ on } 2}$

- Symmetry Considerations
 - Attempt to write a formula for the force $\vec{F}_{1 on 2}$
 - No "universal" xyz directions \rightarrow What can $\vec{F}_{1 \text{ on } 2}$ depend on?

2

 r_{12}

- Relative position vector \vec{r}_{12} and relative velocity vector \vec{v}_{12} only
- If $\vec{F}_{1 \text{ on } 2}$ depends <u>only</u> on \vec{r}_{12} mathematically:
 - Direction of $\vec{r}_{12} \rightarrow$ only "defined" direction in space
 - $\vec{F}_{1 \text{ on } 2}$ must point in direction of \vec{r}_{12} (or opposite direction)
 - Forces of this type are called "central" forces

Central Forces and Torque

• Mathematical definition of central force: $\vec{r}_{12} \times \vec{F}_{1 \text{ on } 2} = 0$

- True in every reference frame!

• Calculating in a particular reference frame S:

$$\vec{r}_{12} \times \vec{F}_{1 \text{ on } 2} = 0$$

$$(\vec{r}_2 - \vec{r}_1) \times \vec{F}_{1 \text{ on } 2} = 0$$

$$(\vec{r}_2 \times \vec{F}_{1 \text{ on } 2}) - (\vec{r}_1 \times \vec{F}_{1 \text{ on } 2}) = 0$$

$$\left(\vec{r}_{2} \times \vec{F}_{1 \text{ on } 2}\right) + \left(\vec{r}_{1} \times \vec{F}_{2 \text{ on } 1}\right) = 0$$

The quantity $\vec{r}_i \times \vec{F}_i$ is called the "torque" $(\vec{\tau}_i)$ on the ith particle

<u>Internal</u> central forces produce zero net torque on a system

2

Χ

0 <u>External</u> forces and <u>non-central</u> internal forces can exert non-zero net torque on a system

• Examples:

- <u>Central forces</u>: gravity, electric
- <u>Non-central force</u>: magnetic (depends on position <u>and velocity</u>)

Static Equilibrium

- "Equilibrium" \rightarrow $\mathbf{F}_{net} = 0 \rightarrow \mathbf{a}_{CM} = 0$
- "Static Equilibrium" $\rightarrow \mathbf{a}_i = 0$ for every particle
 - <u>Examples</u>: buildings, bridges \rightarrow (not <u>perfectly</u> static!)
 - Requires: $\vec{F}_{net, external} = 0$ and $\vec{\tau}_{net, external} = \sum_{i} (\vec{r}_i \times \vec{F}_i) = 0$
 - Useful for calculating structural loads and stresses
- <u>Examples</u>:
 - Shelf \rightarrow calculate tension in cable
 - Calculate force of wall on plank
 - Door of width w and height $h \rightarrow draw direction of each F_{hinge}$

Angular Momentum

• Consider the net torque on a system of particles

$$\vec{\tau}_{net} = \sum_{i} \left(\vec{r}_{i} \times \vec{F}_{i} \right) \quad \longrightarrow \quad \vec{\tau}_{net} = \sum_{i} \left(\vec{r}_{i} \times \frac{d \vec{p}_{i}}{dt} \right) \quad \longrightarrow \quad \vec{\tau}_{net} = \frac{d}{dt} \left(\sum_{i} \left(\vec{r}_{i} \times \vec{p}_{i} \right) \right)$$

- $\vec{r}_i \times \vec{p}_i$ is referred to as "angular momentum" (\vec{L}_i) of ith particle
- Internal, central forces exert zero net torque
- Net torque must be provided by <u>external</u> forces:

 $\vec{\tau}_{net, external} = \frac{d \vec{L}_{total}}{dt}$ (Similar to Newton's 2nd Law)

– If zero net external torque \rightarrow angular momentum is conserved

- Both $\vec{\tau}$ and \vec{L} depend on choice of origin
 - Unlike force and momentum (only depend on xyz directions)
 - However, the equation above is true in <u>all</u> reference frames

Examples

- Pendulum at some instant (angle θ, speed ν)
 - Using top of string as origin:
 - Calculate torque and angular momentum
 - Plug in to $T_{net} = dL/dt$

Repeat, using mass's lowest point as origin

- Wooden board falls off table
 - Mass m, starting from rest
 - Using edge of table as origin:
 - Calculate T_{net} and a_{right edge of board} at t=0
 - (Assume board stays rigid \rightarrow v proportional to r)
- Why does a helicopter need a tail rotor?

θ

d

d/4

d

m

CM Frame of a Physical System

- Empty space \rightarrow homogeneous and isotropic
 - All points are physically the same \rightarrow no point is "special"
 - All directions physically the same \rightarrow no direction is "special"

- System of particles \rightarrow breaks this symmetry
 - A "special" reference frame can be defined for the system:
 - Origin = CM of system (called the "CM frame")
 - x'y'z' axes \rightarrow defined by particle positions ("principal axes")
 - Angular velocity vector $\hat{\Omega}_{CM} \rightarrow$ defined by particle velocities

Angular Momentum in CM Frame

$$\vec{p}_{system} = M_{system} \vec{v}_{CM}$$
 $KE_{system} = \frac{1}{2} M_{system} v_{CM}^2 + \sum_{i=1}^{N} \frac{1}{2} m_i (v'_i)^2$

- For a system of particles measured in the CM frame:
 - Total momentum must be zero, but total KE can be non-zero!
- Angular Momentum (calculated in an inertial frame S):

"orbital" angular momentum (zero in CM frame)

Rotating CM Frame

- "Special" reference frame for a system of particles:
 - Must allow for rotating axes to account for angular momentum
- Let S be an inertial (non-rotating) CM frame

- Let S' be a rotating CM frame with matrix R(t)
- Recall:
$$\vec{v} ' = R \vec{v} - [\vec{\Omega} \times (R \vec{r})]$$

 $\vec{L}_{system} ' = \sum_{i} m_{i} (\vec{r}_{i} ' \times \vec{v}_{i} ') = 0$ For some "special" $\vec{\Omega}$
 $\vec{L}_{system} ' = \sum_{i} m_{i} [R \vec{r}_{i} \times (R \vec{v}_{i} - \vec{\Omega} \times (R \vec{r}_{i}))] = 0$
 $\vec{L}_{system} ' = \sum_{i} m_{i} [(R \vec{r}_{i}) \times (R \vec{v}_{i})] - \sum_{i} m_{i} [(R \vec{r}_{i}) \times (\vec{\Omega} \times (R \vec{r}_{i}))] = 0$
 $\vec{L}_{system} ' = R [\vec{L}_{spin, inertial} - \sum_{i} m_{i} [\vec{r}_{i} \times (\vec{\Omega} \times \vec{r}_{i})]] = 0$
 $\vec{L}_{spin, inertial} = \sum_{i} m_{i} [\vec{r}_{i} \times (\vec{\Omega} \times \vec{r}_{i})]$ This can be used to calculate the "special" $\vec{\Omega}$
For a given system (which makes L' = 0)

Inertia Tensor

$$\begin{split} \vec{L}_{spin, inertial} &= \sum_{i} m_{i} \left[\vec{r}_{i} \times \left(\vec{\Omega} \times \vec{r}_{i} \right) \right] \\ \vec{L}_{spin, inertial} &= -\sum_{i} m_{i} \left[\vec{r}_{i} \times \left(\vec{r}_{i} \times \vec{\Omega} \right) \right] \\ \vec{L}_{spin, inertial} &= -\sum_{i} m_{i} \left[\begin{pmatrix} 0 & -z_{i} & y_{i} \\ z_{i} & 0 & -x_{i} \\ -y_{i} & x_{i} & 0 \end{pmatrix} \begin{pmatrix} 0 & -z_{i} & y_{i} \\ z_{i} & 0 & -x_{i} \\ -y_{i} & x_{i} & 0 \end{pmatrix} \begin{pmatrix} \Omega_{x} \\ \Omega_{y} \\ \Omega_{z} \end{pmatrix} \right] \\ \vec{L}_{spin, inertial} &= \left[\sum_{i} m_{i} \begin{pmatrix} (y_{i}^{2} + z_{i}^{2}) & -x_{i} & y_{i} & -z_{i} & x_{i} \\ -x_{i} & y_{i} & (x_{i}^{2} + z_{i}^{2}) & -y_{i} & z_{i} \\ -z_{i} & x_{i} & -y_{i} & z_{i} & (x_{i}^{2} + y_{i}^{2}) \end{pmatrix} \begin{pmatrix} \Omega_{x} \\ \Omega_{y} \\ \Omega_{z} \end{pmatrix} \right] \equiv \vec{I} \vec{\Omega} \end{split}$$

"Inertia Tensor" – fully describes the distribution of mass in a system

Diagonal elements are called "moments of inertia"

Off-diagonal elements are called "products of inertia"

Reference frame for a system of particles is almost complete:

1) origin \rightarrow CM

- 2) angular velocity \rightarrow using L and I
- 3) need to find "principal axes"

Inertia Tensor for Mass Distributions

- For a system of particles: $\tilde{I} = \sum_{i} m_{i} \begin{pmatrix} (y_{i}^{2} + z_{i}^{2}) & -x_{i} y_{i} & -z_{i} x_{i} \\ -x_{i} y_{i} & (x_{i}^{2} + z_{i}^{2}) & -y_{i} z_{i} \\ -z_{i} x_{i} & -y_{i} z_{i} & (x_{i}^{2} + y_{i}^{2}) \end{pmatrix}$
- Inertia tensor extends naturally to mass distributions: $\begin{pmatrix} y^2 + z^2 \\ -x y \\ -z x \end{pmatrix}$

$$\tilde{I} = \int \rho (x, y, z) \, dx \, dy \, dz \begin{pmatrix} (y^2 + z^2) & -x y & -z x \\ -x y & (x^2 + z^2) & -y z \\ -z x & -y z & (x^2 + y^2) \end{pmatrix}$$

Elements of inertia tensor depend on choice of xyz axes

- Is there a "special" set of xyz axes for a given system?
- Yes! Possible (but <u>difficult</u>) to find "principal axes" such that $\frac{1}{2}$ products of inertia are zero \rightarrow in this reference frame:

$$\tilde{I} = \sum_{i} m_{i} \begin{pmatrix} (y_{i}^{2} + z_{i}^{2}) & 0 & 0 \\ 0 & (x_{i}^{2} + z_{i}^{2}) & 0 \\ 0 & 0 & (x_{i}^{2} + y_{i}^{2}) \end{pmatrix} \longrightarrow \begin{array}{c} L_{x} = I_{xx} \ \Omega_{x} \\ L_{y} = I_{yy} \ \Omega_{y} \\ L_{z} = I_{zz} \ \Omega_{z} \end{array}$$

Note: L and $\vec{\Omega}$ can point in different directions!

For a system which is symmetric about an axis: ^{dir}

- The symmetry axis is one of the principal axes of the system

Rigid Body Rotation

- Physics definition of "rigid body"
 - System of particles which maintains its shape (no deformation)
 - i.e. velocity of particles in CM frame comes from rotation only
 - Notation: ω = angular velocity of rigid body (<u>inertial</u> CM frame)

ω

Tension

F_{cent}

- View from rotating CM frame
 - Every particle stands still in equilibrium (I is constant)
 - Centrifugal forces balanced by internal stresses
- Rigid body model for solid objects \rightarrow reasonably good
 - In reality, solids can 1) deform and 2) dissipate energy as heat
 - Rigid body model \rightarrow not applicable to fluids, orbits, stars, etc.

Example: Rotating Skew Rod

ω

 \langle

Х

- Rigid massless rod (length 2d):
 - Rotates as shown with mass m at each end
 - At the instant shown:
 - Calculate L_{system}, using 2 different methods:
 - 1) $\vec{r}_i \times \vec{p}_i$, and 2) calculate the inertia tensor
 - Notice **L** and $\boldsymbol{\omega}$ don't point same direction!
- Is an external torque needed to sustain this motion?
 - If so, calculate it
- Use symmetry to guess the principal axes
 - Verify guess by calculating inertia tensor in principal frame

Fixed-Axis Rotation

- Common practice \rightarrow hold ω constant (not L) $\rightarrow \frac{d L}{dt} \neq 0$
 - If L and ω not <u>parallel</u> \rightarrow "axle" must exert an external torque!
- Example: Rotating ceiling fan
 - If mass is <u>symmetrically</u> distributed:
 - L and ω parallel \rightarrow fan turns smoothly
 - If mass distribution has asymmetry (poor alignment, etc.):
 - L and $\boldsymbol{\omega}$ not parallel \rightarrow fan wobbles
- High rotation speeds \rightarrow wheels, lathes, etc.
 - Mounting must be able to exert external torque
 - Enough to handle a "tolerable" amount of asymmetry

Parallel-Axis Theorem

<u>Often</u>: fixed axis does <u>not</u> pass through CM of system

ω

- <u>Example</u>: door hinge - how to calculate L_{door}?

- Recall
$$\vec{L}_{system} = M_{total} \vec{v}_{CM} \times \vec{r}_{CM} + (\tilde{I}_{principal}) \vec{\omega}$$

- For rigid body rotation: $\vec{v}_{CM} = \vec{\omega} \times \vec{r}_{CM}$

- Parallel-Axis Theorem:
 - Let d be the perpendicular distance from CM to fixed axis

$$I_{orbital, axis} = M d^{2} \longrightarrow I_{axis} = I_{principal} + M d^{2}$$
$$I_{door about hinges} = \left(\frac{1}{12} M_{door} (2 d)^{2} + M_{door} d^{2}\right) = \frac{1}{3} M_{door} (2 d)^{2}$$

Rotational KE

• For a rotating rigid body (in inertial frame) :

$$KE_{system} = \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} = \sum_{i} \frac{1}{2} m_{i} (\vec{\omega} \times \vec{r}_{i}) \cdot (\vec{\omega} \times \vec{r}_{i})$$
$$KE_{system} = \frac{1}{2} \vec{\omega} \cdot \left[\sum_{i} m_{i} (\vec{r}_{i} \times (\vec{\omega} \times \vec{r}_{i})) \right] \qquad \text{(Using vector identity)}$$

$$KE_{system} = \frac{1}{2} \vec{\omega} \cdot (\tilde{I} \vec{\omega}) = \frac{1}{2} \vec{\omega} \cdot \vec{L}$$

(maximum angle between $\vec{\omega}$ and \vec{L} is 90°)

(For non-rigid bodies, must also include motion of particles toward/away from CM)

- In principal axis frame: $KE_{principal} = \frac{1}{2} I_{xx} \omega_x^2 + \frac{1}{2} I_{yy} \omega_y^2 + \frac{1}{2} I_{zz} \omega_z^2$
- <u>Example</u>: "average" frisbee toss
 - Estimate $\text{KE}_{\text{translation}}$ and $\text{KE}_{\text{rotation}}$ in Joules

Rolling Without Slipping

- System's \vec{v}_{CM} and $\vec{\omega}$: independent of each other
 - No relation between translational / rotational motion in general
 - However, by using a force \rightarrow the 2 can be coupled
- <u>Example</u>: friction

- Relative <u>velocity</u> of ball's surface / floor causes <u>kinetic</u> friction
- This force has 2 effects:
- 1) pushes the ball to the right (affecting \vec{v}_{CM})
- 2) exerts a CCW torque on the ball (affecting $\vec{\omega}$)
- Rolling without slipping \rightarrow condition where $v_{CM} = R \omega$
 - $v_{contact}$ =0 \rightarrow fixed-axis rotation about contact pt. (static friction)

Examples

- "Sweet spot" of baseball bat or tennis racket
 - Goal: Minimize effect of ball impact on hands
 - Assume quick impulse $\rightarrow F_{hand}$ has no effect
 - If collision is elastic, calculate x such that:
 - $v_{end of bat} = 0$ (closest to hands) due to collision

- Belt around two rotors (m₁, r₁ and m₂, r₂)
 - Belt (mass m_b) moves at speed v
 - Calculate the total KE of the system
 - What happens to belt as v gets large?

X

"Stability" of Rotating Objects

- Consider a rotating object which is deflected:
 - The larger L_{initial} gets:
 - The smaller the deflection angle
- Example: riding a bicycle
 - At low speed \rightarrow leaning leads to falling over
 - At high speed \rightarrow same amount of torque has less impact
- Coin (mass M, radius R) rolls without slipping on table
 - Traces out circular path (of radius d >> R) on table
 - Coin must lean inward by (small) angle β to do so
 - Calculate β if circle takes time T to complete

Euler's Equations

• Linear Momentum: $\vec{p}_{system} = m \vec{v}_{CM}$ and is conserved

– Since m is a scalar and is constant $\rightarrow \mathbf{v}_{CM}$ is constant

- <u>Angular Momentum</u>: $\vec{L}_{spin, inertial} = \tilde{I} \vec{\omega}$ and is conserved
 - \rightarrow <u>not</u> a simple scalar and <u>can</u> vary with time
 - No such thing as "conservation of ω " \rightarrow even with no torque!

$$\frac{\text{Chain rule:}}{\vec{\tau}} = \frac{d \ \vec{L}_{spin, inertial}}{dt} = \left(\frac{d \ \tilde{I}}{dt}\right) \vec{\omega} + \tilde{I} \left(\frac{d \ \vec{\omega}}{dt}\right)$$

$$\text{To evaluate d I /dt, recall:}$$

$$\ln \text{ "rotating principal axis CM frame"} \rightarrow \mathbf{I'} \text{ is constant for a rigid body}$$

$$\frac{d \ \tilde{I} \ '}{dt} = 0 = \frac{d \ \tilde{I}}{dt} - \vec{\omega} \times \tilde{I}$$

$$\vec{\tau} = (\vec{\omega} \times \tilde{I}) \ \vec{\omega} + \tilde{I} \left(\frac{d \ \vec{\omega}}{dt}\right)$$
(similar to $\mathbf{F} = \text{m d}\mathbf{v}/\text{d}t$)
$$\text{Notice } \vec{\omega} \text{ can change even if torque is zero!}$$

dt

dt

Stable/Unstable Rotations

- Rigid-body rotation about any principal axis:
 - Every particle in equilibrium (as viewed in rotating CM frame)
 - Is this equilibrium stable? If $\vec{\omega}$ has small off-axis component:
 - Do Euler's equations predict it will grow / shrink / neither?
- Consider rotating principal-axis system with $(\omega_y, \omega_z) \ll \omega_x$

- Euler's equations (to 1st order in ω_y and ω_z) become:

 $I_{xx} \frac{d \omega_x}{dt} = 0$ (No external torque)

$$I_{yy} \frac{d \omega_y}{dt} + (I_{xx} - I_{zz}) \omega_x \omega_z = 0$$

$$I_{zz} \frac{d \omega_z}{dt} + (I_{yy} - I_{xx}) \omega_x \omega_y = 0$$

$$\frac{d^2 \omega_y}{dt^2} - \left(\frac{\left(I_{xx} - I_{zz}\right)\left(I_{yy} - I_{xx}\right)}{I_{yy} I_{zz}} \omega_x^2\right) \omega_y = 0$$

"C" = Constant
C < 0 : rotation about x-axis is stable

C > 0: rotation about x-axis is stable C > 0: rotation about x-axis is unstable Largest & smallest moments of inertia: stable axis Intermediate moment of inertia: unstable axis

Precession

- In general \rightarrow motion of ω very complicated
 - Euler's Equations coupled nonlinear DE's
 - http://www.youtube.com/watch?v=GgVpOorcKqc
 - <u>Terminology</u>: "Precession" and "Nutation"
 - Precession \rightarrow motion of ω simpler to describe than nutation
- Torque-free precession
 - L has large stable-axis component $\rightarrow \omega$ "circles" L
 - Example: spinning coin tossed in air "wobbles"
- Torque-induced precession
 - Causes L and ω to rotate around fixed axis
 - Example: Precession of Earth axis due to Moon/Sun

<u>Gyroscopes</u>

- Devices for studying / utilizing precession and nutation
 - Basic setup: single axis with low friction & good alignment
 - Can be used to produce strong L due to "spin":
 - http://www.youtube.com/watch?v=hVKz9G3YXiw
- Commonly used in sensor systems
 - Can be used to measure orientation, latitude, acceleration, etc.
- Example: "Uniform Precession"
 - http://www.youtube.com/watch?v=8H98BgRzpOM&feature=related
 - Wheel has mass M, radius R, string attached distance d from center
 - Horizontal wheel spins at angular velocity ω_{spin} , calculate $\omega_{precession}$

"State" of a System

- "Microscopic state" of a system of particles $\rightarrow m_i$, \vec{r}_i , \vec{v}_i
 - Given the system's current state and forces between particles:
 - Use Newton's Laws to predict future motion of each particle
- "Macroscopic state" of a system $\rightarrow \mathbf{P}_{total}$, KE, PE, L
 - Quantities associated with the system as a whole
 - Conservation Laws predict the future motion of the system
- Experiments in early-mid 1900's
 - Showed that elementary particles (like e⁻) have L and energy
 - So they act more like <u>systems</u> than particles!
 - Quantum Mechanics explains how this can be possible