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Newton's 3rd Law – A Closer Look
● Consider 2 particles with action/reaction pair of forces:

– Newton's 3rd Law →
– Puts no restrictions on the direction of

● Symmetry Considerations
– Attempt to write a formula for the force
– No “universal” xyz directions →  What can            depend on?
– Relative position vector      and relative velocity vector      only

   
● If             depends only on        mathematically:

– Direction of       → only “defined” direction in space 
–             must point in direction of       (or opposite direction)
–  Forces of this type are called “central” forces
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Central Forces and Torque
● Mathematical definition of central force:

– True in every reference frame!

● Calculating in a particular reference frame S:

● Examples:
– Central forces:  gravity, electric
– Non-central force: magnetic (depends on position and velocity) 
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r 12
r 12× F 1 on 2 = 0

r 12× F 1 on 2 = 0

r 2 −r 1× F 1 on 2 = 0

r 2 × F 1 on 2− r 1 × F 1 on 2 = 0

r 2× F 1 on 2 r 1 × F 2 on 1 = 0

The quantity                is called the “torque” 
(   ) on the ith particle

Internal central forces produce zero net torque 
on a system

External forces and non-central internal forces 
can exert non-zero net torque on a system
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Static Equilibrium
● “Equilibrium” →   Fnet = 0   →   aCM = 0

● “Static Equilibrium” →  ai = 0  for every particle
– Examples:  buildings, bridges → (not perfectly static!)
– Requires:                         and
– Useful for calculating structural loads and stresses

● Examples:
– Shelf → calculate tension in cable
– Calculate force of wall on plank

– Door of width w and height h → draw direction of each Fhinge

F net , external = 0 net , external =∑
i

r i × F i = 0
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Angular Momentum
● Consider the net torque on a system of particles

–              is referred to as “angular momentum”(    ) of ith particle
– Internal, central forces exert zero net torque          
– Net torque must be provided by external forces:

– If zero net external torque → angular momentum is conserved

● Both       and        depend on choice of origin
– Unlike force and momentum (only depend on xyz directions)
– However, the equation above is true in all reference frames

net =∑
i

r i × F i  net =∑
i
r i × d pi

dt  net =
d
dt ∑i r i × pi 

r i× pi
Li

net , external =
d Ltotal

dt
(Similar to Newton's 2nd Law )

L



  

Examples
● Pendulum at some instant (angle θ, speed v)

– Using top of string as origin:
– Calculate torque and angular momentum
– Plug in to Tnet = dL/dt

Repeat, using mass's lowest point as origin

● Wooden board falls off table
– Mass m, starting from rest
– Using edge of table as origin:
– Calculate Tnet and aright edge of board at t=0
– (Assume board stays rigid → v proportional to r)

● Why does a helicopter need a tail rotor?

m

dθ

d/4
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CM Frame of a Physical System
● Empty space → homogeneous and isotropic

– All points are physically the same → no point is “special”
– All directions physically the same → no direction is “special”

● System of particles → breaks this symmetry
– A “special” reference frame can be defined for the system:
– Origin = CM of system (called the “CM frame”) 
– x'y'z' axes → defined by particle positions (“principal axes”) 
– Angular velocity vector          → defined by particle velocitiesCM
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Angular Momentum in CM Frame

● For a system of particles measured in the CM frame:
– Total momentum must be zero, but total KE can be non-zero!

● Angular Momentum (calculated in an inertial frame S):

psystem = M system vCM KE system = 1
2
M system vCM

2  ∑
i=1

N 1
2
mi v ' i

2

Lsystem = ∑
i

[r i× pi ] = ∑
i

[rCM r i ' ×mi vCM  vi '  ]

Lsystem = ∑
i
mi [ rCM ×vCM  r i ' ×vCM  rCM ×v i '  r i ' ×vi '  ]

∑
i
mi vi ' = 0∑

i
mi r i ' = 0

Lsystem = LCM  ∑
i
mi r i ' ×v i ' 

“orbital” angular momentum (zero in CM frame)

“spin” angular momentum



  

Rotating CM Frame
● “Special” reference frame for a system of particles:

– Must allow for rotating axes to account for angular momentum

● Let S be an inertial (non-rotating) CM frame
– Let S' be a rotating CM frame with matrix R(t)
– Recall:

Lsystem ' = ∑
i
mi r i ' ×vi '  = 0

ΩLsystem ' = ∑
i
mi [R r i × R vi − × R r i ] = 0

v ' = R v − [ × R r ]

Lsystem ' = ∑
i
mi [R r i × R v i  ]−∑

i
mi [R r i ×  × R r i] = 0

Lsystem ' = R [Lspin , inertial − ∑
i
mi [r i ×  ×r i ]] = 0

For some “special”    
     



Lspin , inertial = ∑
i
mi [r i ×  ×r i ] This can be used to calculate the “special”       

for a given system (which makes L' = 0)




  

Inertia Tensor
Lspin , inertial = ∑

i
mi [r i ×  ×r i ]

Lspin , inertial = −∑
i
mi [r i × r i×  ]

Lspin , inertial = −∑
i
mi [ 0 −z i yi

z i 0 −xi
− yi xi 0   0 −zi yi

z i 0 −xi
− yi xi 0  x

y

z
]

Lspin , inertial = [∑i mi  yi
2  z i

2 −xi yi −z i xi
−xi yi  xi2  z i

2  −yi z i
−z i xi − yi z i  xi2  yi

2  
 x

 y

z
] ≡ I 

“Inertia Tensor” – fully describes the distribution of 
mass in a system

Diagonal elements are called “moments of inertia”

Off-diagonal elements are called “products of inertia”

Reference frame for a system of 
particles is almost complete:

1) origin → CM
2) angular velocity → using L and I 
3) need to find “principal axes”



  

Inertia Tensor for Mass Distributions

● For a system of particles:

● Inertia tensor extends naturally to mass distributions:

● Example:  Calculate I for a flat disk in the xy-plane

I = ∫  x , y , z  dxdydz  y
2  z2  −x y −z x
−x y x2  z2  − y z
−z x − y z x2  y2

I = ∑
i
mi  yi

2 zi
2  −xi yi −z i xi

−xi yi  xi2 zi
2  − yi zi

−z i xi −yi z i xi2 yi
2 

x y

z

 x , y , z  = z  { M
 R2

 x2  y2 R

0 elsewhere I = 
1
4

M R2 0 0

0 1
4

M R2 0

0 0 1
2

M R2



  

Principal Axes

● Elements of inertia tensor depend on choice of xyz axes
– Is there a “special” set of xyz axes for a given system?
– Yes!  Possible (but difficult) to find “principal axes” such that 

products of inertia are zero → in this reference frame:

● For a system which is symmetric about an axis:
– The symmetry axis is one of the principal axes of the system

I = ∑
i
mi  yi

2 zi
2  −xi yi −z i xi

−xi yi  xi2 zi
2  − yi zi

−z i xi −yi z i xi2 yi
2  =  I xx I xy I xz

I yx I yy I yz

I zx I zy I zz


L x= I xx x

L y= I yy  y

Lz = I zz z

I = ∑
i
mi  yi

2 zi
2  0 0

0 xi2 zi
2  0

0 0 xi2 yi
2  Note:    and   

can point in 
different 
directions!

L 


L



  

Rigid Body Rotation
● Physics definition of “rigid body”

– System of particles which maintains its shape (no deformation)
– i.e. velocity of particles in CM frame comes from rotation only
– Notation: ω = angular velocity of rigid body (inertial CM frame) 

● View from rotating CM frame
– Every particle stands still in equilibrium (I is constant)
– Centrifugal forces balanced by internal stresses

● Rigid body model for solid objects → reasonably good
– In reality, solids can 1) deform and 2) dissipate energy as heat
– Rigid body model → not applicable to fluids, orbits, stars, etc.

ω
Fcent

Tension



  

Example: Rotating Skew Rod
● Rigid massless rod (length 2d):

– Rotates as shown with mass m at each end
– At the instant shown:
– Calculate Lsystem, using 2 different methods:
– 1)             , and 2) calculate the inertia tensor
– Notice L and ω don't point same direction!

● Is an external torque needed to sustain this motion?
– If so, calculate it

● Use symmetry to guess the principal axes
– Verify guess by calculating inertia tensor in principal frame

x

y
ω

r i× pi

φ



  

Fixed-Axis Rotation
● Common practice →  hold ω constant (not L) → 

– If L and ω not parallel → “axle” must exert an external torque!

● Example:  Rotating ceiling fan
– If mass is symmetrically distributed:
– L and ω parallel → fan turns smoothly
– If mass distribution has asymmetry (poor alignment, etc.):
– L and ω not parallel → fan wobbles

● High rotation speeds → wheels, lathes, etc.
– Mounting must be able to exert external torque
– Enough to handle a “tolerable” amount of asymmetry

d L
dt

≠ 0



  

Parallel-Axis Theorem
● Often: fixed axis does not pass through CM of system

– Example:  door hinge – how to calculate Ldoor?
– Recall
– For rigid body rotation:

● Parallel-Axis Theorem:  
– Let d be the perpendicular distance from CM to fixed axis

    

ω

d

Lsystem = M total vCM ×rCM   I principal  
vCM = ×rCM

Lsystem = M total  ×rCM ×rCM   I principal  

Lsystem =  I orbital     I principal  

Plug in:

I orbital , axis = M d 2 I axis = I principal  M d 2

I door about hinges =  1
12

M door 2 d 2  M door d
2 = 1

3
M door 2 d 2

Lsystem = M total rCM × rCM ×     I principal  



  

Rotational KE
● For a rotating rigid body (in inertial frame) :

● In principal axis frame:

● Example: “average” frisbee toss 
– Estimate KEtranslation and KErotation in Joules 

KE system = ∑
i

1
2
mi vi

2 = ∑
i

1
2
mi  ×r i ⋅ ×r i

KE system = 1
2

⋅[∑i mi r i × × r i ]
KE system = 1

2
⋅ I  = 1

2
⋅L (maximum angle between      and      is 90º) L

KE principal = 1
2
I xx x

2  1
2
I yy  y

2  1
2

I zz z
2

(For non-rigid bodies, must also include motion of particles toward/away from CM)

(Using vector identity)



  

Rolling Without Slipping
● System's        and       :  independent of each other

– No relation between translational / rotational motion in general
– However, by using a force → the 2 can be coupled

● Example:  friction
– Drop a ball spinning at angular velocity ω on the floor
– Relative velocity of ball's surface / floor causes kinetic friction
– This force has 2 effects:
– 1) pushes the ball to the right (affecting        )
– 2) exerts a CCW torque on the ball (affecting      )

● Rolling without slipping → condition where
– vcontact=0 → fixed-axis rotation about contact pt. (static friction)

vCM 

ω
vcontact F

vCM



vCM = R 



  

Examples
● “Sweet spot” of baseball bat or tennis racket

– Goal:  Minimize effect of ball impact on hands
– Assume quick impulse → Fhand has no effect 
– If collision is elastic, calculate x such that:
– vend of bat = 0 (closest to hands) due to collision

● Belt around two rotors (m1, r1 and m2, r2)

– Belt (mass mb) moves at speed v
– Calculate the total KE of the system
– What happens to belt as v gets large? 

x L



  

“Stability” of Rotating Objects
● Consider a rotating object which is deflected:

– The larger Linitial gets:
– The smaller the deflection angle

● Example: riding a bicycle
– At low speed → leaning leads to falling over
– At high speed → same amount of torque has less impact

● Coin (mass M, radius R) rolls without slipping on table
– Traces out circular path (of radius d >> R) on table 
– Coin must lean inward by (small) angle β to do so
– Calculate β if circle takes time T to complete 

L

T dt

Video:

http://www.youtube.com/watch?v=JZWyAVN970c&feature=related


  

Euler's Equations
● Linear Momentum:                         and is conserved

– Since m is a scalar and is constant   →   vCM is constant 

● Angular Momentum:                           and is conserved
– I →  not a simple scalar and can vary with time 
– No such thing as “conservation of ω” →  even with no torque!

psystem=m vCM

Lspin , inertial = I 

 =
d Lspin , inertial

dt
=  d I

dt    I  d 
dt 

d I '
dt

≡ 0 = d I
dt

− × I

To evaluate  d I /dt, recall:
In “rotating principal axis CM frame” → I' is 
constant for a rigid body

 =  × I    I  d 
dt 

Chain rule:

“Euler's Equations”
Notice      can change 
even if torque is zero!



(similar to F = m dv/dt )



  

Stable/Unstable Rotations
● Rigid-body rotation about any principal axis:

– Every particle in equilibrium (as viewed in rotating CM frame)
– Is this equilibrium stable?  If       has small off-axis component:
– Do Euler's equations predict it will grow / shrink / neither?  

● Consider rotating principal-axis system with 
– Euler's equations (to 1st order in        and        ) become:



 y , z  ≪ x

 y z

I xx
d x

dt
= 0

I yy
d  y

dt
  I xx− I zz  x z = 0

I zz
d z

dt
  I yy− I xx   x  y = 0

d 2 y

dt2
−  I xx − I zz   I yy − I xx 

I yy I zz
x

2  y = 0

C < 0 :  rotation about x-axis is stable
C > 0 :  rotation about x-axis is unstable
Largest & smallest moments of inertia: stable axis
Intermediate moment of inertia:  unstable axis

x

y

ω

?

“C” = Constant

(No external torque)



  

Precession
● In general → motion of ω very complicated

– Euler's Equations – coupled nonlinear DE's
– http://www.youtube.com/watch?v=GgVpOorcKqc
– Terminology: “Precession” and “Nutation”
– Precession → motion of ω simpler to describe than nutation

● Torque-free precession
– L has large stable-axis component → ω “circles” L 
– Example: spinning coin tossed in air “wobbles”  

● Torque-induced precession
– Causes L and ω to rotate around fixed axis
– Example:  Precession of Earth axis due to Moon/Sun

L

http://www.youtube.com/watch?v=GgVpOorcKqc


  

Gyroscopes
● Devices for studying / utilizing precession and nutation

– Basic setup: single axis with low friction & good alignment
– Can be used to produce strong L due to “spin”:
– http://www.youtube.com/watch?v=hVKz9G3YXiw

● Commonly used in sensor systems
– Can be used to measure orientation, latitude, acceleration, etc.

● Example:  “Uniform Precession”
– http://www.youtube.com/watch?v=8H98BgRzpOM&feature=related
– Wheel has mass M, radius R, string attached distance d from center
– Horizontal wheel spins at angular velocity ωspin, calculate ωprecession 

http://www.youtube.com/watch?v=hVKz9G3YXiw
http://www.youtube.com/watch?v=8H98BgRzpOM&feature=related


  

“State” of a System
● “Microscopic state” of a system of particles → 

– Given the system's current state and forces between particles:  
– Use Newton's Laws to predict future motion of each particle

● “Macroscopic state” of a system → Ptotal, KE, PE, L 
– Quantities associated with the system as a whole
– Conservation Laws – predict the future motion of the system

● Experiments in early-mid 1900's
– Showed that elementary particles (like e–) have L and energy
– So they act more like systems than particles!
– Quantum Mechanics explains how this can be possible

mi , r i , vi
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