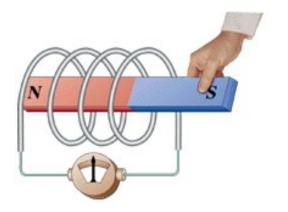

ELECTROMAGNETIC INDUCTION

Electromagnetic Induction

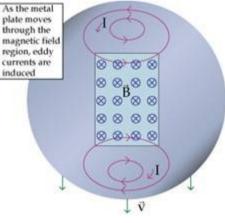

- Magnetic fields resist <u>changes</u> to their state
 - Similar to a large mass resisting changes in velocity
- When a change is made to a B field
 - A new B field is "induced" \rightarrow direction opposes change
 - Any moving magnet feels a resisting force

- This process is called electromagnetic induction
 - The resisting nature of the force is called "Lenz's Law"

Induced Current

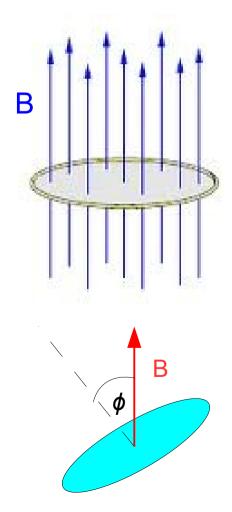
- Does B_{induced} have an electric current source?
 - Experiment: A moving magnet near a conducting metal
 - B_{induced} is stronger due to induced current in the metal
 - <u>Conclusion</u>: Changing B field \rightarrow electric current \rightarrow B_{induced}
- Can now produce current <u>without</u> a battery!

This is called "<u>alternating</u> current" (AC) because the current switches direction...


Batteries produce <u>direct</u> current (DC), which moves in a constant direction

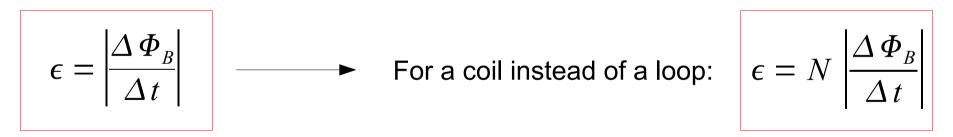
Eddy Currents

- Current can be induced in any conducting material
 - Not just iron, and not just wire loops!
- Induced currents resemble "whirlpools"
 - And are called "eddy" currents
- Metal detectors
 - Move an electromagnet past a metal
 - And detect the eddy currents

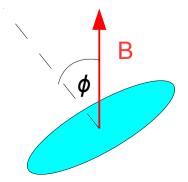

Magnetic Flux

- To calculate the induced current in a wire loop:
 - Must measure the changing B field around the whole loop
 - Mathematically, there is a simpler way:
- Magnetic Flux (ϕ_B)

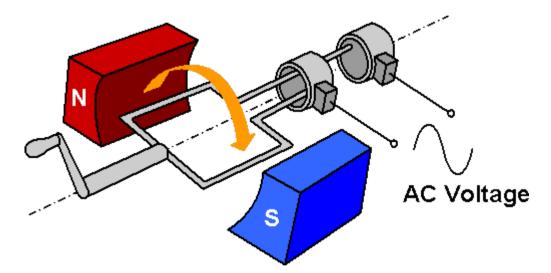
- Measure of how B field penetrates a loop

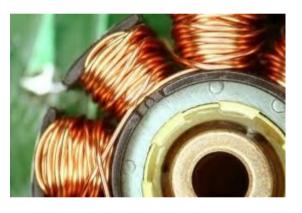

$$\Phi_B = B_\perp A = B A \cos(\phi)$$

- <u>Unit</u>: 1 Weber (W) = 1 T m^2


Faraday's Law

- General rule covering electromagnetic induction
- Changing magnetic flux produces an EMF
 - Which can produce a current (if a conductor is nearby)
 - EMF measured in Volts (but no actual ΔV no battery)


Ways to produce a changing magnetic flux:


- 1) Change strength of B field
- 2) Change area of loop
- 3) Change the angle ϕ by rotating the loop

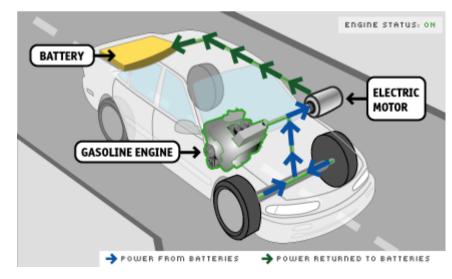
Generators

- Ingredients: Magnet, Wire loop/coil
 - Same ingredients as an electric motor!

Changing flux through the loop/coil \rightarrow EMF (pushes AC through the

wires). Force to turn coil can be provided:

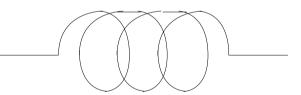
1) by hand


2) by pressure produced by burning fuel3) by wind

Regenerative Braking

- Traditional (friction-based) brakes waste fuel
 - Braking: converts energy of burned fuel \rightarrow heat
- Instead, we can save this energy in a battery
 - By using the spinning wheels as generators
- Electric cars and hybrids
 - Can use stored energy later...
 - ...to drive the car via a motor

Inductance

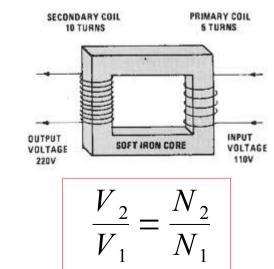

- Induced EMF (ϵ) for a loop or coil of wire
 - Depends on how quickly the current in the loop changes
 - And the "inductance" (L) of the loop/coil <u>Unit</u>: Henry (H)
 - Compare a loop/coil with a resistor:

Resistors

$$I = \frac{V}{R} = \frac{\epsilon}{R}$$

(Current is proportional to EMF)

Wire loops/coils - "Inductors"


$$\frac{\Delta i}{\Delta t} = \frac{\epsilon}{L}$$

(Change in current is proportional to EMF)

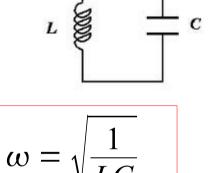
$$\epsilon = L \left| \frac{\Delta i}{\Delta t} \right|$$

Transformers

- t
- Transporting electrical energy is inefficient
 - Due to long wires from power plant to destination
 - Long wire \rightarrow large resistance \rightarrow lots of heat loss
- Electrical power: P_{from power plant} = VI
 - For a given amount of power, there is some flexibility:
 - (Low Voltage, High Current) or (High Voltage, Low Current)
- Transformers
 - Convert (Low V, High I) to (High V, Low I)
 - Low I cuts down on heat loss
 - Low V safer for the end user

Storing Magnetic Energy

- Inductor can store energy in its B field
 - Similar to a capacitor storing energy in its E field


$$U = \frac{1}{2}LI^2 \qquad u = \frac{Energy}{Volume} = \frac{B^2}{2\mu_0}$$

- This energy resists abrupt changes
 - A light bulb in series with an inductor:
 - Will turn on slowly after switch is turned on
 - Will fade out slowly after switch is turned off

Electrical Oscillations

- Inductors and capacitors both store energy
 - Connect them \rightarrow energy "oscillates" from one to the other
 - Just like KE and PE in a mass-spring system
- LC circuits are "electrical oscillators"

- With a "resonance" angular frequency:

- Basis for our wireless communications
 - Radio, cell phones, bluetooth, wi-fi, etc.
 - Adjust L and/or C \rightarrow can "tune" to a specific frequency