
From Fourier Series to Fourier Integral

Fourier series for periodic functions

Consider the space of doubly differentiable functions of one variable x defined
within the interval x ∈ [−L/2, L/2]. In this space, Laplace operator is
Hermitian and its eigenfunctions {en(x)}, defined as

∂2en

∂x2
= λn en , (1)

en(L/2) = en(−L/2) , e′n(L/2) = e′n(−L/2) (2)

form an ONB. With an exception for λ = 0, each eigenvalue λ turns out to
be doubly degenerate, so that there are many ways of choosing the ONB.
Let us consider

en(x) = eiknx/
√

L , (3)

λn = −k2
n, kn =

2πn

L
, n = 0,±1,±2, . . . . (4)

For any function f(x) ∈ L2[−L/2, L/2], the Fourier series with respect to
the ONB {en(x)} is

f(x) =
∞∑

n=−∞
〈en|f〉|en〉 = L−1/2

∞∑

n=−∞
fn eiknx , (5)

where

fn = 〈en|f〉 = L−1/2
∫ L/2

−L/2
f(x)e−iknxdx . (6)

In practice, it is not convenient to keep the factor L−1/2 in both relations.
We thus redefine fn as fn → L−1/2fn to get

f(x) = L−1
∞∑

n=−∞
fn eiknx , (7)

fn =
∫ L/2

−L/2
f(x)e−iknxdx . (8)

If f(x) is real, the series can be actually rewritten in terms of sines and
cosines. To this end we note that from (8) it follows that

f−n = f∗n , if Im f(x) ≡ 0 , (9)
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and we thus have

f(x) =
f0

L
+ L−1

∞∑

n=1

[fn eiknx + f∗n e−iknx] =
f0

L
+

2
L

∞∑

n=1

Re fn eiknx . (10)

Now if we parameterize
fn = An − iBn , (11)

where An and Bn are real and plug this parametrization in (8) and (10), we
get

f(x) =
f0

L
+

2
L

∞∑

n=1

[ An cos knx + Bn sin knx ] , (12)

where

An =
∫ L/2

−L/2
f(x) cos knx dx , Bn =

∫ L/2

−L/2
f(x) sin knx dx . (13)

Eqs. (12)-(13)—and also Eq. (11)—hold true even in the case of complex
f(x), with the reservation that now An and Bn are complex.

Actually, the function f(x) should not necessarily be L-periodic. For
non-periodic functions, however, the convergence will be only in the sense
of the inner-product norm. For non-periodic functions the points x = ±L/2
can be considered as the points of discontinuity, in the vicinity of which the
Fourier series will demonstrate the Gibbs phenomenon.

Fourier integral

If f(x) is defined for any x ∈ (−∞,∞) and is well behaved at |x| → ∞, we
may take the limit of L →∞. The result will be the Fourier integral:

f(x) =
∫ ∞

−∞
dk

2π
fk eikx , (14)

fk =
∫ ∞

−∞
f(x)e−ikxdx . (15)

Indeed, at very large L we can take the limit L →∞ in (8):

fn =
∫ L/2

−L/2
f(x)e−iknxdx →

∫ ∞

−∞
f(x)e−iknxdx . (16)
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Then, we consider (7) as an integral sum corresponding to a continuous
variable k, so that kn are just the discrete points where the function is
calculated:

f(x) = L−1
∞∑

n=−∞
fn eiknx =

1
2π

∞∑

n=−∞
fkn eiknx ∆k , (17)

where ∆k = kn+1 − kn = 2π/L, and fk is given by (16) In the limit of
L →∞, we have ∆k → 0, and the integral sum approaches the integral:

∞∑

n=−∞
fkn eiknx ∆k →

∫ ∞

−∞
fk eikx dk . (18)

The function g(k) ≡ fk is called Fourier transform of the function f .
Apart from the factor 1/2π and the opposite sign of the exponent—both
being matters of definition—the functions f and g enter the relations (14)-
(15) symmetrically. This means that if g is the Fourier transform of f , then
f is the Fourier transform of g, up to a numeric factor and different sign of
the argument. By this symmetry it is seen that the representation of any
function f in the form of the Fourier integral (14) is unique. Indeed, given
Eq. (14) with some fk, we can treat f as a Fourier transform of g(k) ≡ fk,
which immediately implies that fk should obey (15) and thus be unique for
the given f . For a real function f the uniqueness of the Fourier transform
immediately implies

f−k = f∗k , (19)

by complex-conjugating Eq. (14).

Application to Linear PDE

The application of the Fourier integral to linear PDE’s is based on the fact
that Fourier transform turn differentiation into simple algebraic operations.
Indeed, if

f(x) =
∫ ∞

−∞
dk

2π
fk eikx , (20)

then, differentiating under the sign of the integral, we get

f ′(x) =
∫ ∞

−∞
dk

2π
ik fk eikx , (21)
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f ′′(x) =
∫ ∞

−∞
dk

2π
(−k2) fk eikx , (22)

and so forth. As a characteristic example, consider the heat equation on the
infinite x-axis

ut = uxx , x ∈ (−∞, ∞) , (23)

with some given initial condition u(x, 0). Let us look for the solution in the
form of the Fourier integral

u(x, t) =
∫ ∞

−∞
dk

2π
g(k, t) eikx . (24)

[Note the analogy with looking for the solution in the form of the Fourier
series when solving boundary value problems.] Plugging this into Eq. (23)
we get ∫ ∞

−∞
dk

2π
[ġ + k2g] eikx = 0 , (25)

and by uniqueness of the Fourier integral immediately conclude that

ġ + k2g = 0 . (26)

That is we replaced PDE with an ordinary differential equation for the
Fourier transform. This equation is readily solved:

g(k, t) = g(k, 0) e−k2t , (27)

where the initial condition g(k, 0) is found by Fourier transforming the func-
tion u(x, 0):

g(k, 0) =
∫ ∞

−∞
dx u(x, 0) e−ikx . (28)

The final answer comes in the form of the integral

u(x, t) =
∫ ∞

−∞
dk

2π
g(k, 0) e−k2t+ikx . (29)

As an important example, let us find the simplest non-trivial (that is not
identically constant in the real space) solution. To this end we set g(k, 0) = c,
where c is just a constant, and get

u(x, t) = c

∫ ∞

−∞
dk

2π
e−k2t+ikx . (30)
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The integral we are dealing with is the famous Gaussian integral
∫ ∞

−∞
e−ay2+by dy =

√
π

a
eb2/4a . (31)

The above expression is valid for any complex number b and for all complex
a’s for which Re a > 0. Moreover, this formula remains valid if Re a = 0,
provided Im a 6= 0. For complex a’s, the function

√
a is understood as√

a =
√|a|eiϕ/2, where ϕ ∈ [−π/2, π/2] is the phase of a. With this formula

we find the answer:
u(x, t) =

c

2
√

πt
e−x2/4t . (32)

It is instructive to physically analyze the answer. We see that we are dealing
with a spatially localized profile of the function u, centered at the point
x = 0. [We can also re-center the profile at any given point x0 by the
transformation x → x − x0. Note that this transformation implies gk →
e−ikx0 gk.] The profile gets wider with time, an the typical width—that can
be found from the requirement that the exponent is on the order one—is
proportional to

√
t. The amplitude of the profile decreases in such a way

that the integral ∫ ∞

−∞
u(x, t) dx = g(k = 0, t) = c (33)

remains constant, which is a general property of any localized solution of
the heat equation on the infinite axis, because

∂

∂t

∫ ∞

−∞
u(x, t) dx =

∫ ∞

−∞
ut(x, t) dx =

∫ ∞

−∞
uxx(x, t) dx = ux(∞, t)− ux(−∞, t) = 0 . (34)

The solution (32) features a property known as self-similarity: it preserves
its spatial shape, up to re-scaling the coordinate x and the amplitude of u.

It is remarkable that the above qualitative physical analysis can be done
without explicitly performing the integral (30). The trick is to properly re-
scale (non-dimensionalize) the integration variable. Non-dimensionalizing
the integration variable is a simple and powerful tool of qualitative analysis
of physical answers, especially when the integrals cannot be done analyti-
cally. That is why we pay a special attention to it here, despite the fact that
the answer is already known to us.
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In the integral (30), instead of dimensional variable k we introduce a
new dimensionless variable y such that

k2t = y2 , (35)

and
u(x, t) =

c

2π
√

t

∫ ∞

−∞
dy e−y2+iy(x/

√
t) . (36)

Now we easily see that

u(x, t) =
c

2π
√

t
f(x/

√
t) , (37)

where
f(x) =

∫ ∞

−∞
dy e−y2+iyx (38)

is some function that decays at x → ±∞. And that is all we need for
establishing the above-mentioned properties, including the self-similarity.

In fact, the solution (32) is really important because any spatially local-
ized solution of the heat equation asymptotically approaches Eq. (32) with
the constant c given by (33). This fundamental fact is readily seen from
the general solution (29). Indeed, the larger the t, the smaller the charac-
teristic k’s that contribute to the integral, because these k’s are limited by
the scale 1/

√
t at which the exponential e−k2t starts to severely decay. Each

spatially localized initial Fourier transform g(k, 0) is characterized by its
typical k ∼ k∗ ∼ 1/l∗ where l∗ is nothing but the inverse localization radius.
Hence, at times t À l2∗, the characteristic k in the integral is much smaller
than k∗, which means that to an excellent approximation we can replace the
function q(k, 0) with g(0, 0) = c, and pull it out from the integral. Note that
we not only proved that any localized solution approaches Eq. (32), but also
estimated the characteristic time when it happens.

Problem 24. Suppose that the solution u(x, t) of some linear PDE, obtained by
the Fourier integral technique, comes in the form:

u(x, t) = c

∫ ∞

−∞
e−k4t7eikx dk

2π
, (39)

where c is a constant.

(a) Use the fast-oscillating sine/cosine (eikx = cos kx + i sin kx) argument to show
that at any fixed time moment, u(x, t) → 0 at x → ±∞.
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(b) Use the non-dimensionalizing trick to show that: (i) The amplitude of the
solution decreases with time by the law ∝ t−7/4, (ii) the characteristic spatial
width of the function u(x, t) increases with time by the law ∝ t7/4, (iii) the integral∫∞
−∞ u(x, t) dx is time-independent.

(c) Use the uniqueness of the Fourier-integral representation of a function to show
that ∫ ∞

−∞
u(x, t) dx = c . (40)

Hint/reminder: e−i0x = 1.

Let us now consider Schrödinger equation

iψt = −ψxx , x ∈ (−∞, ∞) , (41)

with some initial condition ψ(x, 0). We look for the solution in the form of
the Fourier integral

ψ(x, t) =
∫ ∞

−∞
dk

2π
g(k, t) eikx . (42)

Plugging this into Eq. (41) we get
∫ ∞

−∞
dk

2π
[iġ − k2g] eikx = 0 , (43)

and by uniqueness of the Fourier integral conclude that

iġ − k2g = 0 . (44)

This equation is readily solved:

g(k, t) = g(k, 0) e−ik2t , (45)

the initial condition g(k, 0) being found by Fourier transforming the function
ψ(x, 0):

g(k, 0) =
∫ ∞

−∞
dx ψ(x, 0) e−ikx . (46)

We thus get

ψ(x, t) =
∫ ∞

−∞
dk

2π
g(k, 0) e−ik2t+ikx . (47)
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Formally, the expression looks quite similar to what we got for the heat
equation. However, the number i in front of k2 in the exponent really makes
the difference. For example, the solution with g(k, 0) = const is of very
limited physical interest since corresponding function ψ(x, 0) is not spatially
localized.

As an important example of spatially localized initial condition, consider
the Gaussian

ψ(x, 0) = e−(x/l0)2 . (48)

The function is centered at the point x = 0 with a characteristic width l0.
Fourier transforming this function—use Eq. (31) for doing the integral—we
get

g(k, 0) = l0
√

π e−(kl0)2/4 , (49)

and—utilizing Eq. (31) once again—find

ψ(x, t) = (1 + 4it/l20)
−1/2 e

− x2

l2
0
+4it . (50)

In Quantum Mechanics, the wavefunction ψ(x) is not directly observable.
The observable quantity is |ψ(x)|2, which is interpreted as the probability
density for finding the particle at the position x. Hence, keeping in mind
the physics applications, we analyze the evolution of

|ψ(x, t)|2 = ψ∗(x, t) ψ(x, t) = (1 + 16t2/l40)
−1/2 e

− 2x2l20
l4
0
+16t2 . (51)

Here the new exponent is obtained by summing up the exponent of Eq. (50)
with its complex conjugate:

1
l20 + 4it

+
1

l20 − 4it
=

2l20
l40 + 16t2

. (52)

Looking at Eq. (51), we see that there are two characteristic regimes: (i)
small times, when t/l20 ¿ 1, and (ii) large times, when t/l20 À 1. At small
times, we can Taylor-expand the amplitude and the exponential in terms
of the small parameter t/l20, while at large times we can Taylor-expand in
terms of the the small parameter l20/t. Leaving only the leading terms, we
get

|ψ(x, t)|2 ≈ e−2x2/l20 (t ¿ l20) , (53)

|ψ(x, t)|2 ≈ (l20/4t) e−x2l20/8t2 (t À l20) . (54)
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We see that at t ¿ l20 there is basically no evolution, while at t À l20 the
probability distribution |ψ(x, t)|2 expands with time, the typical width of
the distribution, l∗, being directly proportional to time:

l∗(t) ∼ t/l0 (t À l20) . (55)

From Eq. (54), it can be easily seen (by non-dimensionalizing the integral)
that the quantity ∫ ∞

−∞
|ψ(x, t)|2 dx (56)

remains constant in time. Actually, this is a general property of the solutions
of Schrödinger equation that can be readily proved (to get an equation for
ψ∗t , we simply complex-conjugate the original Schrödinger equation ):

∂

∂t

∫ ∞

−∞
|ψ|2 dx =

∫ ∞

−∞
[ψ∗ψt + ψ∗t ψ] dx = i

∫ ∞

−∞
[ψ∗ψxx − ψ∗xxψ] dx = 0 .

(57)
Here we used ∫ ∞

−∞
ψ∗ψxx dx =

∫ ∞

−∞
ψ∗xxψ dx , (58)

which is true because ψ is supposed to vanish at x → ±∞, so that no
boundary terms appear when doing the integrals by parts.

Now we want to explore the asymptotic behavior (at large t) of the
solution with an arbitrary initial state ψ(x, 0). To this end we note that
at large enough t (namely, t À l20, where l0 is the typical width of the
initial state) the exponential e−ik2t+ikx in Eq. (47) has a rapidly changing—
as a function of k—phase, Φ(k) = −k2t + kx. This means that the real
and imaginary parts of the exponential are rapidly oscillating functions that
effectively nullify the integrand everywhere except for a small vicinity of the
so-called stationary-phase point k0, defined by the condition

Φ′(k0) = 0 ⇒ k0 =
x

2t
. (59)

And this leads to an important simplification: The function g(k, 0) in the
integral (47) can be safely replaced with g(k0, 0), and then pulled out. What
remains is the Gaussian integral which is done by the formula (31) with the
result

ψ(x, t) =
e−iπ/4 eix2/4t

2
√

πt
g(k = x/2t, 0) (t À l20) . (60)
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For |ψ|2, which is the quantity of our prime physical interest, we have:

|ψ(x, t)|2 =
1

4πt
|g(k = x/2t, 0)|2 (t À l20) . (61)

Our result says that at t À l20 there is a strict relation between the space-
time position (x, t) and the wavevector k defining the value of the function
ψ(x, t). It turns out that for a given (x, t) only k = x/2t is relevant! To put
it different, at t À l20, the contribution from given wavevector k propagates
in space-time with a fixed velocity v(k) = 2k, and does not interfere with
contributions from other k’s. [Note that this picture does not take place at
smaller times !] It is also worth noting that for x = 0 Eq. (61) yields:

|ψ(0, t)|2 =
1

4πt
|g(0, 0)|2 (t À l20) , (62)

from which it is directly seen that |ψ(0, t)|2 decreases with time as 1/t,
and which implies—given the conservation of

∫ |ψ|2dx—that the width of
distribution increases linearly with time.

Problem 25. Use the Fourier-integral technique to solve the wave equation

utt = c2uxx , x ∈ (−∞, ∞) (63)

with the initial conditions

u(x, 0) = e−(x/l0)
2
, ut(x, 0) = 0 . (64)

Most important part (!) Analyze the answer obtained and describe in words what
is going on with the function u(x, t) with increasing the time, and especially when
t becomes much larger than l0/c.

Technical comment. When restoring the solution of the wave equation from its
Fourier transform, one normally has to do the integrals

∫ ∞

−∞
sin(kλ) e(...) dk ,

∫ ∞

−∞
cos(kλ) e(...) dk , (65)

where e(...) is a Gaussian of k, and λ is some parameter. The standard exponential
representation for sines and cosines,

cos(kλ) =
eikλ + e−ikλ

2
, sin(kλ) =

eikλ − e−ikλ

2i
, (66)

immediately reduces each of these integrals to just a sum of two Gaussian integrals,
each of which can be then done by Eq. (31).
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