
Functions of a Complex Variable

Complex Algebra

Formally, the set of complex numbers can be defined as the set of two-
dimensional real vectors, {(x, y)}, with one extra operation, complex multi-
plication:

(x1, y1) · (x2, y2) = (x1 x2 − y1 y2, x1 y2 + x2 y1) . (1)

Together with generic vector addition

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) , (2)

the two operations define complex algebra.

¦ With the rules (1)-(2), complex numbers include the real numbers as
a subset {(x, 0)} with usual real number algebra. This suggests short-hand
notation (x, 0) ≡ x; in particular: (1, 0) ≡ 1.

¦ Complex algebra features commutativity, distributivity and associa-
tivity.

The two numbers, 1 = (1, 0) and i = (0, 1) play a special role. They form
a basis in the vector space, so that each complex number can be represented
in a unique way as [we start using the notation (x, 0) ≡ x]

(x, y) = x + iy . (3)

¦ Terminology: The number i is called imaginary unity. For the complex
number z = (x, y), the real umbers x and y are called real and imaginary
parts, respectively; corresponding notation is: x = Re z and y = Im z.

The following remarkable property of the number i,

i2 ≡ i · i = −1 , (4)

renders the representation (3) most convenient for practical algebraic ma-
nipulations with complex numbers.—One treats x, y, and i the same way
as the real numbers.
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Another useful parametrization of complex numbers follows from the
geometrical interpretation of the complex number z = (x, y) as a point in
a 2D plane, referred to in this context as complex plane. Introducing polar
coordinates, the radius r =

√
x2 + y2 and the angle θ = tan−1(y/x), one

gets
x + iy = r(cos θ + i sin θ) . (5)

¦ Terminology and notation: Radius r is called modulus (and also magni-
tude) of the complex number, r = |z|. The angle θ is called phase (and also
argument) of the complex number, θ = arg(z). Note an ambiguity in the
definition of the phase of a complex number. It is defined up to an additive
multiple of 2π.

Since the modulus of a complex number is nothing else than the magni-
tude of corresponding vector, the standard vector inequalities are applicable:

| |z1| − |z2| | ≤ |z1 + z2| ≤ |z1|+ |z2| . (6)

Parametrization in terms of modulus and phase is convenient for multi-
plication, because if z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2),
then

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)] . (7)

Polar parametrization is also convenient for the division which is considered
below.

Subtraction and division of complex numbers are defined as the opera-
tions opposite to addition and multiplication, respectively. Subtraction thus
simply corresponds to vector subtraction. Division of complex numbers can
be actually reduced to multiplication. But first we need to introduce one
more important operation, complex conjugation. For each complex number
z = x + iy we define its complex conjugate as

z∗ = x− iy (8)

and note that
zz∗ = |z|2 (9)

is a real number. Then for any two complex numbers z1 and z2 the operation
of division can be written as

z1

z2
= |z2|−2z1z

∗
2 . (10)
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The validity of this relation is checked by multiplying the right-hand side
by z2. In modulus-phase parametrization, Eq. (10) reads

z1/z2 = (r1/r2) [cos(θ1 − θ2) + i sin(θ1 − θ2)] . (11)

Problem 1. Establish relations between complex multiplication and inner/outer
vector product: Treating the two pairs, (x1, y1), (x2, y2), as both two vectors in
the xy plane, (x1, y1) = ~a, (x2, y2) = ~b, and two complex numbers, (x1, y1) = a,
(x2, y2) = b, make sure that

~a ·~b = (1/2)(a b∗ + b a∗) , (12)

~a×~b = (i/2)(a b∗ − b a∗) ẑ , (13)

where ẑ is the unit vector along the z-direction.

Functions of a Complex Variable

A complex function w = u + iv of a complex variable z = x + iy is
introduced as a complex-valued function of two real variables, x and y:

w(z) = u(x, y) + iv(x, y) . (14)

Hence, to specify a complex function it is enough to specify two real func-
tions: u(x, y) and v(x, y).

Partial derivatives are defined as

∂w

∂x
=

∂u

∂x
+ i

∂v

∂x
,

∂w

∂y
=

∂u

∂y
+ i

∂v

∂y
. (15)

We now formally define partials ∂/∂z and ∂/∂z∗ as

∂w

∂z
=

1
2

(
∂w

∂x
− i

∂w

∂y

)
,

∂w

∂z∗
=

1
2

(
∂w

∂x
+ i

∂w

∂y

)
. (16)

The idea behind definitions (16) is in the following observation. Suppose
w(z) is specified not in terms of x and y, but in the form of some fi-
nite algebraic expression or infinite series, w(z, z∗), involving z and z∗. In
this expression one can formally replace complex numbers z and z∗ with
two independent real variables: z → a, z∗ → b and arrive at the func-
tion w(a, b). It is easy to see then from (15)-(16) that ∂w(z, z∗)/∂z is

3



equal to ∂w(a, b)/∂a, a → z, b → z∗, and ∂w(z, z∗)/∂z∗ is equal to
∂w(a, b)/∂b, a → z, b → z∗. That is with respect to the operations ∂/∂z
and ∂/∂z∗ the variables z and z∗ behave as independent real variables. This
essentially simplifies calculation of partials. [For example, if w(z, z∗) = zz∗,
then ∂w/∂z = z∗ and ∂w/∂z∗ = z.]

Problem 2. Prove the above-mentioned general property of the operations ∂/∂z

and ∂/∂z∗. Hint. Since the formal rules of complex and real algebras are the same,
the standard differentiating rules are applicable to complex-valued functions when
differentiated with respect to x and y.

Consider the variation, δw, of the function w(z, z∗) corresponding to
z → z+δz, where δz = δx+iδy (and implying z∗ → z∗+δz∗, δz∗ = δx−iδy).
As can be readily checked with the definitions (16),

δw = δz
∂w

∂z
+ δz∗

∂w

∂z∗
. (17)

Problem 3. Check Eq. (17).

Note that while δz and δz∗ essentially depend on each other, the expression
(17) formally looks like they were independent variables.

Relations for partials in modulus-phase parametrization read:

r ∂/∂r = x ∂/∂x + y ∂/∂y = z ∂/∂z + z∗ ∂/∂z∗ , (18)

∂/∂θ = x ∂/∂y − y ∂/∂x = i(z ∂/∂z − z∗ ∂/∂z∗) , (19)

z ∂/∂z = (1/2)(r ∂/∂r− i∂/∂θ) , z∗ ∂/∂z∗ = (1/2)(r ∂/∂r+ i∂/∂θ) . (20)

Problem 4. Prove these relations.

How do we construct complex functions? The simplest way is to take a
real expression involving four arithmetic operations with one (or two) real
numbers a (and b) and replace in it a with a complex variable z (and b with
z∗). A more powerful way is to use a power series.

A very important sub-set of complex functions is formed by functions
that depend only on z, but not on z∗—in the sense that corresponding real
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arithmetic expression (or power series) involves only one variable, a, which
is then replaced with z. Clearly, for all such functions the operation ∂/∂z∗

yields zero.
Examples:

ez =
∞∑

n=0

zn

n!
, (21)

sin z =
∞∑

n=0

(−1)n z2n+1

(2n + 1)!
, cos z =

∞∑

n=0

(−1)n z2n

(2n)!
, (22)

sinh z =
∞∑

n=0

z2n+1

(2n + 1)!
, cosh z =

∞∑

n=0

z2n

(2n)!
, (23)

All the series in (21)-(23) are convergent and the functions are well defined
for any z, coinciding with corresponding real functions at real z. Very im-
portant: The complex functions defined this way feature all the functional
and differential relations characteristic of corresponding real functions, be-
cause (i) these relations are captured algebraically by the power series and
(ii) the real and complex algebras coincide. For example, ez1+z2 = ez1ez2 ,
(ez)n = enz, sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2, ∂ez/∂z = ez,
∂ sin z/∂z = cos z, etc.

Quite amazingly, new functional relations arise.
Examples:

eiz = cos z + i sin z , (24)

cos z =
eiz + e−iz

2
= cosh (iz) , sin z =

eiz − e−iz

2i
= −i sinh (iz) , (25)

cosh z = cos (iz) , sinh z = −i sin (iz) . (26)

Problem 5. Choose any two of these relations and prove them by direct compar-
ison of power series.

With the relation (24), the polar representation of a complex number, Eq. (5),
can be written as

z = reiθ , (27)

after which relations (7) and (11) become most transparent.
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Analytic Functions

We have considered partial complex derivatives. Now we introduce the
notion of a total derivative by the formula

dw

dz
= lim

|∆z|→0

∆w

∆z
, (28)

and immediately realize that in a general case of a complex-valued function
of z, our definition is quite pathological. Indeed, from Eq. (17)

lim
|∆z|→0

∆w

∆z
=

∂w

∂z
+

∂w

∂z∗
lim

|∆z|→0

∆z∗

∆z
. (29)

Now if ∆z = |∆z|eiθ, then ∆z∗/∆z = e−i2θ, and the limit |∆z| → 0 does
not fix the phase θ. The only meaningful situation arises when

∂w

∂z∗
= 0 , (30)

in which case the derivative is well defined and is equal to

dw

dz
=

∂w

∂z
. (31)

The differentiable in the sense of Eq. (28) functions play an extremely
important role. From now on we will be dealing with such functions only.
The requirement (30) necessary (and sufficient, if ∂w/∂z exists) for the
function w to be differentiable is the famous Cauchy-Riemann conditions,
which in the component notation (w = u + iv) read

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (32)

¦ Terminology and notation: If function f(z) is differentiable in the sense
of Eq. (28) at z = z0 and in some region around z0, it is called analytic at
z = z0. If df/dz does not exist at z = z0, then z0 is called singular point. If
f(z) is analytic everywhere in the complex plane, it is called entire function.
To distinguish analytic functions from generic complex-valued functions of
complex variable, we use the notation f(z) for the former and w(z, z∗) for
the latter.
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Some consequences of Cauchy-Riemann conditions:

(i) The curves u(x, y) = c1 and v(x, y) = c2 are orthogonal to each other
(here c1 and c2 are some constants).
(ii) Both u and v are harmonic functions, that is they satisfy Laplace’s
equation:

∇2u = 0 , ∇2v = 0 . (33)

(iii) For the two real vector fields,

A = (u, −v) , B = (v, u) , (34)

one has

∇ ·A = 0 , ∇×A = 0 , ∇ ·B = 0 , ∇×B = 0 . (35)

Problem 6. Show (i)-(iii).

Eqs. (35) mean that each analytic function gives us “for free” two so-
lutions of E&M static problems (in the case when the problem is invariant
with respect to translations in the z-direction, so that all the fields depend
only on x and y).

Problem 7. Which two E&M problems are solved by the function f(z) = 1/(z −
z0)? (Explain why.)

Problem 8. Which of the following functions of the complex variable z = x+ iy =
reiθ are analytic (almost everywhere except for some special points or lines), and
which ones are not analytic?
(i) f(z) = x2 − y2

(ii) f(z) = x2 + 2ixy − y2

(iii) f(z) = x2 + iy2

(iv) f(z) = iθ + ln r

(v) f(z) = r2(cos θ + i sin θ)
(vi) f(z) = rαeiαθ, where α is some real number.

Problem 9. Calculate df/dz for the analytic functions of the Problem 8, and
∂f/∂z for the rest of them.
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Contour Integrals

Consider a contour C in the complex plane, going from the point za =
xa + iya to the point zb = xb + iyb. [At this point by contour we mean
just a smooth arc. It will be clear, however, that the notion of contour is
easily generalized to a piecewise smooth arc—a continuous curve consisting
of a finite number of smooth arcs.] Without loss of generality, we assume
that the contour is specified in a parametric form with a real parameter t:
z = x(t) + iy(t), t ∈ [ta, tb], z(ta) = za, z(tb) = zb. We introduce the
integral along the contour C the same way one introduces the line integrals:
Divide the interval [ta, tb] into n equal (to be specific) intervals by picking
(n− 1) intermediate points t1, t2, . . . , and define

∫

C
f(z) dz = lim

n→∞

n∑

j=1

f(z(t̃j)) (zj − zj−1) , (36)

where zj = z(tj), t0 ≡ ta, tn ≡ tb, t̃j is any point from the interval [tj , tj+1].
If the limit exists, then the integral is defined and is equal to

∫

C
f(z) dz =

∫ tb

ta
f(z(t)) z′(t) dt . (37)

Eq. (37) reduces the contour integral to two ordinary real integrals and can
be used for practical performing the integration.

Does the integral (36) depend on the particular choice of the parametriza-
tion z(t)? Actually it is independent not only of the parametrization, but—
to a large extent—on the form of the contour, provided the end points are
fixed. Substituting in Eq. (37) u + iv for f and x′(t) + iy′(t) for z′(t), and
taking advantage of definitions (34), we reduce the complex integral to two
line integrals of the real vector fields A = (u,−v) and B = (v, u):

∫

C
f(z) dz =

∫

C
A · dl + i

∫

C
B · dl . (38)

Independence of the parametrization is thus automatically proven. [When
deriving (38) we used the standard relation dl ≡ (x′(t), y′(t))dt, which is
transparent if one interprets dl as the infinitesimal displacement of a point
along the line, t as the time, and, correspondingly, (x′(t), y′(t)) as the veloc-
ity vector.]

Cauchy’s integral theorem. If a function f(z) is analytic throughout
some simply connected region R, then for every closed path C in R the inte-
gral of f(z) around C is zero. The proof readily follows from (38). Applying
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Za

Zb

Za

Zb

Za

Zb

C C
′

⇒⇒

Figure 1: Shifting the integral path.

Stokes’s theorem, we reduce closed-path line integrals to surface integrals
from ∇×A and ∇×B, and from (35) get identical zero:

∫

C
A dl =

∫

Ω
dx dy (∇×A) · ẑ = 0 , (39)

∫

C
B dl =

∫

Ω
dx dy (∇×B) · ẑ = 0 . (40)

Here Ω is the area enclosed by the contour C.

Problem 10. By choosing an appropriate parametrization, evaluate
∫

C
z2 dz,

where the contour C is:
(i) the strait line from the point (0, 0) to the point (1, 0)
(ii) the strait line from the point (1, 0) to the point (1, 1)
(iii) the strait line from the point (1, 1) to the point (0, 1)
(iv) the strait line from the point (0, 1) to the point (0, 0)
Check that—and explain why—the sum of the four integrals equals zero.

In Figs. 1-3 we illustrate how Cauchy’s integral theorem allows one to
manipulate integration contours without changing the integral values. (Two
adjacent paths in opposite directions should be understood as exactly over-
lapping and thus cancelling each other.) Fig. 1 demonstrates a complete
freedom in the absence of “defect” regions. Fig. 2 shows how to treat a
defect region. In Fig. 3 we iteratively use the procedure of Fig. 2 to arrive
at a very important conclusion that an integral over a closed path around
some region containing isolated defect regions equals to a sum of closed-path
integrals around each of the defect regions.
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Za

Zb

Za

Zb

Za

Zb

C

C̃

C
′

⇒⇒

Figure 2: Shifting the integral path across a defect region.

⇒

C C3

C1

C2

Figure 3: Transformation of the contour around defects.
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Let us do one particular integral:

I(0)
n =

∮

C

dz

(z − z0)n
, (41)

where n is an integer and the point z0 is an interior point with respect to
the closed contour C. (If z0 would be an exterior point, the integral would
be zero in accordance with Cauchy’s theorem. From now on, the direction
on a closed contour is assumed to be anti-clockwise, if the opposite is not
explicitly mentioned.) Since the integral is independent of the particular
form of the contour, we replace C with a circle of the radius r = 1 centered
at the point z0, and use the polar parametrization z = z0 + eiθ, θ ∈ [0, 2π].
With z′(θ) = ieiθ, direct calculation in accordance with Eq. (37) yields:

I(0)
n = i

∫ 2π

0
e(1−n)iθdθ = 2πi δn,1 . (42)

Despite the fact that for any positive integer n the point z0 is singular, the
integral is non-zero only for n = 1.

Now we generalize the integral (41) to the case

In =
∮

C

f(z) dz

(z − z0)n
, (43)

where the function f(z) is analytic on the contour C and within the interior
region bounded by C. As f(z) is analytic, the integral will not change
if the contour C shrinks. Take the circle z = z0 + reiθ and consider the
limit r → 0. Suppose first—and just a little bit later we will show that
this is automatically guaranteed—that the function f(z) has at least n − 1
derivatives. Then the limit r → 0 can be easily taken by replacing f(z) with
the first n terms of the Taylor series, which reduces the integral In to the
sum of integrals I

(0)
m , with the result

∮

C

f(z) dz

(z − z0)n
=

2πi

(n− 1)!
f (n−1)(z0) . (44)

Even more importantly, this relation can actually be read from right to
left. That is for any analytic function the existence of all the derivatives is
guaranteed. The proof is obtained iteratively, staring from n = 1, for which
the existence of derivatives is not required and Eq. (44) reads (Cauchy’s
integral formula)

2πi f(z0) =
∮

C

f(z) dz

(z − z0)
. (45)
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Then one employs (45) to find ∆f = f(z0 + ∆z0)− f(z0):

∆f(z0) =
∆z0

2πi

∮

C

f(z) dz

(z − z0 −∆z0)(z − z0)
, (46)

and to make sure that the limit lim|∆z0|→0 ∆f/∆z0 does really exist and
does correspond to (44). The procedure is then repeated for n = 2, and, by
induction, for any n.

Actually, what we have just demonstrated is that if the function f(z)
satisfies Eq. (45), then it is necessarily analytic. Hence, the Cauchy’s in-
tegral formula is not only a necessary, but also a sufficient condition for a
function to be analytic.

Liouville’s theorem. A bounded entire function is necessarily a con-
stant. Proof: Assume |f | ≤ M . Use (44) for f ′(z):

f ′(z) =
1

2πi

∮

C

f(ξ) dξ

(ξ − z)2
, (47)

with the contour C being the circle of radius R around the point z. Param-
eterize ξ = z + Reiθ. Then

|f ′(z)| = 1
2πR

∣∣∣∣
∫ 2π

0
f(ξ) e−iθ dθ

∣∣∣∣ ≤
1

2πR

∫ 2π

0
|f(ξ)| dθ ≤ M

R
. (48)

Since R can be arbitrary large, we conclude that f ′(z) ≡ 0, and thus f(z)
is a constant.

The fundamental theorem of algebra. Any polynomial Pn(z) =
a0+a1z+a2z

2+ · · ·+anzn, n > 0, an 6= 0, has n complex roots. Comment:
The crucial statement actually is that any polynomial has at least one root,
z = z0. By dividing this root out, Pn(z) = (z−z0)Qn−1(z), one then applies
the statement to the polynomial Qn−1 of the degree n-1, and so forth.

Proof: Suppose Pn(z) has no zero. Then 1/Pn(z) is analytic and bounded
in the whole complex plane. By Liouville’s theorem, it might be only possi-
ble if Pn(z) were a constant, which is not true.

Taylor expansion. If f(z) is analytic everywhere inside a region con-
taining a circle C0 of the radius R0 centered at some point z0, then for any
z inside the circle C0 the function f(z) can be represented as the convergent
Taylor series:

f(z) =
∞∑

n=0

f (n)(z0)
n!

(z − z0)n . (49)
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Comment: The existence of all the derivatives is guaranteed by Cauchy’s
integral formula.
Proof: Write

2πi f(z) =
∮

C0

f(ξ) dξ

ξ − z
. (50)

Employ complex version of the geometric series

1
1 + w

=
∞∑

n=0

(−1)n wn . (51)

[The series is convergent at |w| < 1; the equality is checked by multiplying
both sides by 1 + w.] Then

1
ξ − z

=
1

ξ − z0 + z0 − z
=

1
ξ − z0

1
1 + z0−z

ξ−z0

=
∞∑

n=0

(z − z0)n

(ξ − z0)n+1
. (52)

Convergence is guaranteed by |z− z0| < |ξ− z0| = R0. Substitute the right-
hand side of (52) for 1/(ξ − z) in (50) and take into account (44).

We have shown that Taylor series is convergent until the contour C0 hits
some singular point. If this happens, the maximum possible radius of C0 is
called radius of convergence (at the point z0). Inside the radius of conver-
gence, the power series unambiguously defines the analytic function f(z).
Picking up some other point, z1, within the circle of convergence at the point
z0, we can construct another circle of convergence, now at the point z1. Gen-
erally speaking, some parts of the new circle go beyond the previous circle
and extend the region where our function is analytic and is unambiguously
defined by its Taylor series. If we iterate this procedure—known as analytic
continuation with power series—until we cover all the complex plane except
for some regions of singularities, we can face a peculiar phenomenon: If the
region of analyticity is multiply connected due to the presence of singular-
ities, our analytically continued function can prove multi-valued, because
of topologically different ways of going around the singularities. This leads
to the notion of branches, branch points, branch cuts, and Riemann surfaces.

Suppose the region of analyticity of f(z) includes an annulus centered
at some point z0. In this case a generalization of the Taylor expansion—
Laurent series—will work.

Laurent series. If f(z) is analytic in the annulus R1 ≤ |z − z0| ≤ R0

(including the boundaries) centered at the point z0, then for any inner point
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of the annulus the following convergent expansion—Laurent series—is valid

f(z) =
∞∑

n=−∞
an(z − z0)n , (53)

where
an =

1
2πi

∮

C0

f(ξ) dξ

(ξ − z0)n+1
, n ≥ 0 , (54)

an =
1

2πi

∮

C1

f(ξ) (ξ − z0)−(n+1) dξ , n < 0 , (55)

and the contours C0 and C1 are the circles of the radii R0 and R1, respec-
tively (centered at the point z0).
Proof: Start with

2πi f(z) =
∮

C

f(ξ) dξ

ξ − z
, (56)

where C is some contour within the annulus, surrounding the point z. Con-
tour C can be modified into two contours, C0 and C̄1.—See Fig. 4. The
contour C̄1 coincides with the contour C1, but has the opposite direction.
Hence, we get the integral along C1 with the opposite sign. The integral
along the contour C0 is the same we dealt with in the case of Taylor expan-
sion. It generates the terms with n ≥ 0. Note that now we cannot replace
the integrals (54) with the derivatives since the derivatives are not defined
at the point z0.

To expand the integral along C1 we once again resort to the convergent
geometric series

1
ξ − z

=
1

ξ − z0 + z0 − z
=

1
z0 − z

1
1 + ξ−z0

z0−z

=
∞∑

m=0

(z0 − ξ)m

(z0 − z)m+1
. (57)

Convergence is guaranteed by |z − z0| > |ξ − z0| = R1. This leads to the
terms n = −(m + 1) < 0 .

In view of Cauchy’s integral theorem, the contours C0 and C1 in Eqs. (54)-
(55) can be replaced with topologically equivalent ones (and, in particular,
with each other, since the two are topologicaly equivalent). Correspondingly,
we can now combine Eqs. (54)-(55) into one relation valid for all n’s:

an =
1

2πi

∮

Γ

f(ξ) dξ

(ξ − z0)n+1
, n = 0,±1,±2, . . . , (58)

with Γ any contour topologically equivalent to C0 and C1.
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Z0

Z

Z0

Z

⇒

⇓

Z0

R1

R0

C

C̄1

C0

Z

Figure 4: The contours C, C0, and C̄1.

Residue Calculus

As is illustrated in Fig. 3, the closed-contour integral is equal to the sum
of elementary integrals around singular regions. In most of the practically
important cases these regions are nothing else than isolated points which are
called poles. Around each such pole z

(p)
0 the function f(z) can be expanded

into convergent Laurent series, f(z) =
∑∞

n=−∞ a
(p)
n (z − z

(p)
0 )n Then, in ac-

cordance with (41)-(42), the integral over small contour—surrounding only
given pole z

(p)
0 —is equal to the constant 2πi a

(p)
−1. Hence, we see that the

problem of evaluation of contour integrals with isolated singular points is
reduced to finding a−1 at each pole.

¦ Definition: For each pole z
(p)
0 of the function f(z) corresponding coef-

ficient a
(p)
−1 is called residue and is denoted as Res[f(z(p)

0 )].
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We thus have
∮

C
f(z) dz = 2πi

∑
p

Res[f(z(p)
0 )] , (59)

where the sum is over all the poles inside C.
Now our goal is to formulate practical rules for calculating residues. The

rules are quite simple in the case of finite-order poles.
¦ Definition: The pole is of the order m, if corresponding Laurent expansion
starts with finite n = −m. If m = 1, the pole is called simple (and very
soon we will see why).

Suppose z0 is the pole of the order m:

f(z) =
∞∑

n=−m

an(z − z0)n . (60)

Consider the function

g(z) = (z − z0)mf(z) =
∞∑

s=0

as−m(z − z0)s . (61)

We see that g(z) is analytic—the only suspicious point z0 is now well be-
haved. Hence, the series (61) is the Taylor series for the function g(z), so
that each coefficient is related to corresponding derivative g(s)(z0). We are
interested in s = m− 1, since it yields a−1:

Res[f(z0)] =
g(m−1)(z0)
(m− 1)!

. (62)

This formula is especially simple in the case of m = 1: Res[f(z0)] = g(z0).

We thus have the following prescription for residue calculation:

(i) Define the order m of the pole .
(ii) Introduce g(z) = f(z)(z − z0)m.
(iii) Calculate Res[f(z0)] in accordance with (62).

In the vast majority of practical cases one deals with simple poles arising
from first-order zeroes in denominators, when the function f has the form
f(z) = p(z)/q(z). Clearly, in these cases:

Res[f(z0)] =
p(z0)
q′(z0)

. (63)
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C

Figure 5: Closing the contour in the upper half-plane.

Example 1. Rational polynomial function. Consider the integral

I =
∫ ∞

−∞
dx

1 + x2
. (64)

It can be formulated as a contour integral by closing the path with a semi-
circle of radius R →∞ in either upper or lower half-plane, as the contribu-
tion from the semi-circle scales like 1/R → 0. We thus have [for definiteness,
we close the path in the upper half-plane, Fig. 5]:

I =
∮

C

dz

1 + z2
=

∮

C

dz

(z − i)(z + i)
= 2πi Res[f(i)] = π . (65)

Comment: In the upper half-plane there is only one (simple) pole, z = i.
Corresponding function g(z) is 1/(z + i), so that Res[f(i)] = 1/2i.

This example is readily generalized to an arbitrary rational polynomial
function of the form P (x)/Q(x), where P and Q are polynomials.

Problem 11. Evaluate

I =
∫ ∞

−∞

dx

(x2 + 1)(x2 + 4)
. (66)

Jordan’s lemma for Fourier transform. Consider the Fourier transform

I =
∫ ∞

−∞
f(x) eikxdx . (67)

Assumptions:
(i) k > 0,
(ii) f(z) is analytic in the upper half-plane, except for finite number of poles,
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(iii) lim|z|→∞ f(z) = 0 (within the upper half-plane).
Under these assumptions, the path can be closed by an infinite semicircle in
the upper half-plane (Jordan’s lemma.)
Proof: Consider the contour integral IR along the semicircle of the radius R
in the upper half-plane (k > 0 for definiteness). In the polar parametriza-
tion,

IR =
∫ π

0
f(Reiθ) eikR cos θ−kR sin θiReiθdθ . (68)

|IR| ≤ RMR

∫ π

0
e−kR sin θdθ = 2RMR

∫ π/2

0
e−kR sin θdθ , (69)

where MR = max{|f(Reiθ)|}, 0 ≤ θ ≤ π. Now we note that at θ ∈ [0, π/2]:
sin θ ≥ θ/2004, and thus

|IR| ≤ MR
2 · 2005

k

(
1− e−

πkR
2·2005

)
→ 0 (at R →∞). (70)

The case of k < 0 is absolutely analogous to the case k > 0, up to replacing
’upper half-plane’ with ’lower half-plane’.

Example 2. Sine/cosine with polynomial. The integral (a > 0)

I =
∫ ∞

−∞
cos kx

x2 + a2
dx = Re

∫ ∞

−∞
eikx dx

x2 + a2
=

∮

C

eikz dz

z2 + a2
=

π

a
e−a|k| . (71)

is done in accordance with generic prescription of the Jordan’s lemma: The
path is closed in the upper(lower) half-plane for positive(negative) k. The
poles are at z = ±ia. Note that the symbol Re is not necessary here, because
the term with sin kx is zero by symmetry. We write it only to give the idea
of how to proceed in a general case: For real f(x) one writes:

∫
f(x) cos kx dx = Re

∫
f(x) eikx dx (72)

∫
f(x) sin kx dx = Im

∫
f(x) eikx dx . (73)

Problem 12. Evaluate
I =

∫ ∞

−∞

cos ax

(x2 + b2)2
dx . (74)

Example 3. Consider the integral (once again a > 0)

I =
∫ ∞

−∞
x sin kx

x2 + a2
dx . (75)
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While we can easily do it by Jordan’s lemma, it is more elegant and instruc-
tive to reduce it to the previous one by differentiating trick, illustrating the
utilization of free parameters (sometimes it is reasonable to introduce these
parameters even if they are not present in the original expression)

I = − ∂

∂k

∫ ∞

−∞
cos kx

x2 + a2
dx = sign(k)π e−a|k| . (76)

Trigonometric functions. Consider

I =
∫ 2π

0
f(sin θ, cos θ) dθ . (77)

This integral can be viewed as the polar parametrization of the contour
integral

I = −i

∮

C0

f
(
(z − z−1)/2i, (z + z−1)/2

) dz

z
, (78)

where C0 is the unit circle centered at z = 0. Indeed, parameterizing our
contour as z = eiθ, θ ∈ [0, 2π], we get dz = ieiθdθ = iz dθ, z− z−1 = 2i sin θ,
z + z−1 = 2 cos θ, which immediately transforms (78) into (77).

Example 4. Rational trigonometric function (a > |b|)

I =
∫ 2π

0

dθ

a + b cos θ
= −2i

∮

C0

dz

2az + b(1 + z2)
=

2π√
a2 − b2

. (79)

Note that only one of the two poles finds itself inside the circle C0.

Problem 13. Evaluate

I =
∫ π

0

dθ

(a + cos θ)2
(a > 1) . (80)

Example 5. This particular example illustrates a rather generic trick when
one employs an observation that for a given function there exist two special
paths, C1 and C2, such that the integrals along them differ by just a complex
factor. Consider

I =
∫ ∞

−∞
eax

1 + ex
dx =

∫

C1

eaz

1 + ez
dz (0 < a < 1) , (81)
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2πiC2

C1

Figure 6: The paths C1 and C2.

where path C1 is along the x-axis. We introduce another path, C2, by
shifting C1 in the y-direction by 2πi and changing the path direction to the
opposite, Fig. 6. Parameterizing C2 as z = x + 2πi, we easily see that

∫

C2

eaz

1 + ez
dz = −e2πaiI . (82)

Combining C1 and C2 into one closed path C (by adding two paths at
infinity that do not contribute to the integral), we get

(1− e2πai) I =
∮

C

eaz

1 + ez
dz , (83)

and can readily find I by doing the contour integral in the r.h.s.

Problem 14. Perform this integration.

Problem 15. Use the two-contour trick for

I =
∫ ∞

0

dx

1 + xn
. (84)

Hint. Consider the contour z = re2πi/n, r ∈ [0,∞).

Principal Values. Dispersion relations

Consider the principal value problem

I = P
∫ ∞

−∞
f(x)

x− x0
dx , (85)

where the function f(z) is analytic in the upper (just for the sake of def-
initeness) half-plane, except for some singular points, and |f | → 0 on the
semicircle of the radius R, as R →∞. If not for the singularity at the point
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z = x0, we would immediately close the path with infinite semicircle. There
is a generic trick of handling problems like that. It is the regularization of
the denominator. We note that

P
∫ ∞

−∞
f(x) dx

x− x0
= lim

δ→0

∫ ∞

−∞
(x− x0)f(x) dx

(x− x0)2 + δ2
= lim

δ→0

∮

C

(z − x0)f(z) dz

(z − x0)2 + δ2
.

(86)
That is we circumvent the problem of singularity at the expense of taking
limit in the final expression. Note: This trick is a rather powerful tool. Later
on it will lead us to the notion of a generalized function.

Then we do some elementary complex algebra:

z − x0

(z − x0)2 + δ2
=

z − x0

(z − x0 − iδ)(z − x0 + iδ)
=

z − x0 − iδ + iδ

(z − x0 − iδ)(z − x0 + iδ)

=
1

z − x0 + iδ
+

iδ

(z − x0 − iδ)(z − x0 + iδ)
. (87)

The second term in the r.h.s. introduces two simple poles, z = x0 ± iδ,
of which only the pole z = x0 + iδ (without loss of generality, we choose
δ > 0) is inside the contour and thus contributes to the integral, with the
residue f(x0 + iδ)/2. In the limit of δ → 0, this term kills the contributions
of all the poles of the function f(z), if any; because each residue will be
proportional to δ. Hence, the total contribution from the second term will
be just πif(x0). The first term in the r.h.s. of (87) produces only one pole,
z = x0 − iδ, outside the contour C, which means that while summing up
all the residues inside the contour C we have to ignore this pole. The final
answer reads:

P
∫ ∞

−∞
f(x)

x− x0
dx = πi f(x0) +

∮

C

f(z)
z − x0 + iδ

dz . (88)

Here we use a convenient notation: The symbol δ implies taking the limit
δ → +0. From the practical viewpoint, the only effect of +iδ in Eq. (88) is
to notify us that we have to ignore the singularity at the point z = x0 when
calculating residues.

Also true is the following relation:

P
∫ ∞

−∞
f(x)

x− x0
dx = −πi f(x0) +

∮

C

f(z)
z − x0 − iδ

dz . (89)

Indeed, now the pole at z = x0 + iδ is inside the integration contour. In the
limit δ → 0 the residue at this pole equals 2πif(x0) and we see that (89)
coincides with (88).
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If f(z) is well behaved in the lower half-plane, we simply have to change
in (88)-(89) the way we close the path—from the upper to the lower half-
plane.

Finally, instead of (88)-(89) we may adopt the following symbolic rela-
tion:

P
∫ ∞

−∞
f(x)

x− x0
dx = P

∮

C

f(z)
z − x0

dz , (90)

where the symbol P in front of the contour integral means that we always
include the pole z = x0 inside the integration contour (no matter in which
half-plane we close the path), but (!): the residue at this pole is taken with
the factor 1/2.

Note an interesting fact following from Eq. (88). If the function f(x) is
real, then the function f(z) must have singularities in the upper half-plane,
because otherwise the r.h.s. of (88) would be imaginary while the l.h.s. is
real.

Dispersion relations. There is one important for applications particular
case of Eq. (88). Suppose f(z) is analytic everywhere in the upper half-
plane. Then the contour integral is zero and we get

f(x0) = − i

π
P

∫ ∞

−∞
f(x)

x− x0
dx . (91)

Written in components, f = u + iv, this formula expresses u through an
integral of v and vice versa (Kramers-Kronig dispersion relations):

u(x0) =
1
π

P
∫ ∞

−∞
v(x)

x− x0
dx , (92)

v(x0) = − 1
π

P
∫ ∞

−∞
u(x)

x− x0
dx . (93)

Problem 16. Evaluate ∫ ∞

−∞

sin kx

x
dx . (94)

Note that the symbol P is not necessary here, since the zero of denominator is
compensated by the zero of numerator. This does not mean, however, that one
cannot use (88) or (91)!

Problem 17. Evaluate

P
∫ ∞

−∞

cos kx

(x− x0)(x2 + 2)
dx and P

∫ ∞

−∞

sin kx

(x− x0)(x2 + 2)
dx . (95)
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Non-Integer Powers and Logarithm. Branch Cuts

Non-integer power and logarithm of a complex number are defined by
the following (quite intuitive) rules (below z = reiθ):

za = ra eiaθ , (96)

ln z = ln r + iθ . (97)

These definitions contain some ambiguities associated with arbitrariness of
choosing θ. Indeed, the choice of the phase of the complex numbers involves
an arbitrary starting angle θ0 ∈ [0, 2π) and the integer M counting the
multiples of 2π:

θ0 + 2πM ≤ θ < θ0 + 2π(M + 1) . (98)

The angle θ0 defines the line z = reiθ0 , r ∈ [0, ∞), on which the logarithm
and non-integer powers are ill defined. This line is a branch cut. The integer
M introduces some extra ambiguity—multi-valuedness of the function. For
example, if a = 1/2, the number of different values is 2; if a is irrational,
this number is infinite. For the logarithmic function, each M enters in the
form of the term i2πM and thus always changes the value of the function.
In practice, the choice of the position of the branch cut angle θ0, as well as
the choice of particular branch (that is the choice of M) are the matters of
convenience.

Problem 18. Show that for a given choice of the branch and the branch cut po-
sition, the power and logarithmic functions are analytic everywhere except for the
branch cut. Hint: Calculate ∂/∂z∗.

The existence of the branch cuts of the power and logarithmic functions
proves very useful for evaluating some integrals. Consider

I =
∫ ∞

0
f(x) xa dx , (99)

where the function f(x) is real and non-singular at any real x, and the
function f(z) is well-behaved meromorphic function.
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C+

C
−

C

Figure 7: Working with a branchcut.

¦ Terminology: Meromorphic function is the function which is analytic
everywhere in the complex plane except for some isolated poles. By “well-
behaved” we loosely mean that the integral over the infinite circle of the
radius R (centered at z = 0) tends to zero as R →∞.

Let us fix the definition of the power function (96) by choosing phase θ ∈
[0, 2π). The branch cut corresponds to z = x, x ∈ [0, ∞). We introduce—
see Fig. 7—two contours, C+ and C−, defined parametrically as z = x± iδ,
x ∈ [0,∞), where δ > 0 is an arbitrarily small number. We assume that the
contour C+ goes along the x-axis in the positive direction above the branch
cut, while the contour C− goes along the x-axis in the negative direction
below the branch cut. At δ → +0:

∫

C+

f(z) za dz = I ,

∫

C−
f(z) za dz = −ei2πa I . (100)

The minus sign is due to the opposite direction. Combining the two contour
integrals into one closed-path integral by closing the path at infinity, we
arrive at the formula

∫ ∞

0
f(x)xa dx =

1
1− ei2πa

∮

C
f(z) za dz . (101)

A similar case is the integral

I =
∫ ∞

0
f(x) dx , (102)

with the same assumptions concerning the function f . We fix the definition
of logarithmic function (97) by choosing θ ∈ [0, 2π) and consider the fol-
lowing integrals along the contours C+ and C− defined above (in the limit
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δ → +0): ∫

C+

f(z) ln z dz =
∫ ∞

0
f(x) ln x dx (103)

∫

C−
f(z) ln z dz = −

∫ ∞

0
f(x) ln x dx − 2πi

∫ ∞

0
f(x) dx . (104)

If we sum up (103) and (104), the logarithmic integrals in the right-hand
sides remarkably cancel each other. By closing the integration path at in-
finity we obtain

∫ ∞

0
f(x) dx =

i

2π

∮

C
f(z) ln z dz . (105)

Note. When calculating residues for contour integrals (101) and (105) we
should not forget about the particular choice of the phase, θ ∈ [0, 2π), in
Eqs. (96) and (97).

Problem 19. Evaluate ∫ ∞

0

xa

(1 + x)2
dx . (106)

Problem 20. Evaluate ∫ ∞

0

dx

(x + 2)(1 + x)2
. (107)
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