
Complex Variables in Classical Hamiltonian Mechanics

In the classical Hamiltonian formalism, the state of a mechanical system is
given by a set of pairs of conjugated variables, of variables {qj , pj}, (j =
1, 2, . . .) referred to as coordinates and momenta, respectively. The equa-
tions of motion are generated with the Hamiltonian function, H({qj , pj}),
by the following axiom

q̇j =
∂H

∂pj
, (1)

ṗj = −∂H

∂qj
. (2)

Some times it proves reasonable to introduce complex variables {aj} related
to {qj , pj} by

aj = (αqj + iβpj) , (3)

where α and β are some complex numbers (which can also depend on j,
but we are not interested here in such a generalization). The equations of
motion then acquire the form

iλȧj =
∂H

∂a∗j
, (4)

with λ = 1/(αβ∗ + α∗β) . That is each pair of real equations (1)-(2) is
replaced with one complex equation (4). One may equivalently use the
complex-conjugated equation −iλȧ∗j = ∂H/∂aj . Here we take into account
that H is real.

Poisson bracket, {A,B}, is a function of coordinates and momenta con-
structed from the two other functions, A({qj , pj}) and B({qj , pj}) by the
following prescription:

{A,B} =
∑

j

∂A

∂pj

∂B

∂qj
− ∂A

∂qj

∂B

∂pj
. (5)

As is seen from (1)-(2)—and this is the most important property of the
Poisson brackets,—for any function of coordinate and momenta, A({qj , pj},
its time derivative during the evolution can be expressed as

Ȧ = {H,A} . (6)

In particular, if {H,A} ≡ 0, then the quantity A is a constant of motion.
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In complex variables, the definition (5) acquires the form

{A,B} = (i/λ)
∑

j

∂A

∂aj

∂B

∂a∗j
− ∂A

∂a∗j

∂B

∂aj
. (7)

Problem A1. Check this. Make sure that {aj , ak} = {a∗j , a∗k} = 0, {aj , a
∗
k} =

(i/λ)δj,k.

Problem A2. (a) Derive and solve complex equation of motion for the system
H = ω|a|2 (harmonic oscillator). (Set λ = 1.—It’s just a matter of units in which
one measures time.)
(b) Derive complex equations of motion for the system of two (non-trivially) cou-
pled oscillators: H = ω1|a1|2 + ω2|a2|2 + γ[(a∗1)

2a2
2 + (a∗2)

2a2
1]. Do not solve it, but

use it to show that the system features the constant of motion N = |a1|2 + |a2|2;
show the same with Poisson bracket technique.

The constant of motion N in the Problem A2(b) is actually related
to some special symmetry of corresponding Hamiltonian. This symmetry—
known as global U(1) symmetry—implies invariance of the Hamiltonian with
respect to global U(1) transformation, which is simultaneously shifting the
phases of all complex variables aj by one and the same angle θ0: aj → eiθ0aj .
If the global U(1) symmetry takes place, then the following quadratic form
of the complex variables

N =
∑

j

|aj |2 (8)

is a constant of motion: {H, N} = 0.

Problem A3. Prove this statement. Hint. Start with noticing that in the limit of
θ0 → 0, the global U(1) transformation reduces to H → H +θ0

∑
j ∂H/∂θj , so that

global U(1) invariance implies
∑

j ∂H/∂θj ≡ 0. Don’t forget about the relation:

∂/∂θ = x ∂/∂y − y ∂/∂x = i(z ∂/∂z − z∗ ∂/∂z∗) , (9)

where z = x + iy = |z|eiθ.

Note. Complex variables {aj} prove very convenient when finding a quan-
tum counterpart of a classical system. In this procedure, known as canonical
quantization, the variables aj and a∗j are simply replaced with annihilation
and creation operators, respectively. The parameter λ now cannot be arbi-
trarily chosen. It is one and the same for all quantum systems, and is noth-
ing else than the Planks’s constant, h̄. Upon the quantization procedure,
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former Poisson brackets turn out to correspond to commutators between
corresponding operators: {A, B} → −(i/h̄)[A,B]. The quantity N in the
quantum system is nothing else than the total number of quanta (particles);
it is conserved by U(1)-symmetric Hamiltonians.

Canonical Transformation

Suppose we have a set of complex canonical variables, {aj}, and would
like to consider another set of variables, {bs}, bs ≡ bs({aj}). How do the
equations of motion look like, if expressed in terms of new variables? The
answer is given by the general relation

iḃs = i{H, bs} =
∑

j

[
∂bs

∂aj

∂H

∂a∗j
− ∂bs

∂a∗j

∂H

∂aj

]
. (10)

The next question is whether it is possible to select new variables in such a
way—independently of the particular form of H—that they would be also
canonical, that is (10) would be actually equivalent to

iḃs =
∂H

∂b∗s
, (11)

for any H. The answer is positive. To arrive at the necessary and sufficient
conditions for the new variables to be canonical we note that basically we
require that

∑

j

[
∂bs

∂aj

∂

∂a∗j
− ∂bs

∂a∗j

∂

∂aj

]
≡ ∂

∂b∗s
≡

∑

j

[
∂a∗j
∂b∗s

∂

∂a∗j
+

∂aj

∂b∗s

∂

∂aj

]
. (12)

Since the differential operators {∂/∂aj , ∂/∂a∗j} are linear independent, Eq. (12)
immediately leads to

∂bs

∂aj
=

∂a∗j
∂b∗s

,
∂bs

∂a∗j
= −∂aj

∂b∗s
. (13)

These are the necessary and sufficient conditions for {bs} to be canonical.

Problem A4. Show that the following two elementary transformations dealing
with only one variable, aj , are canonical.
(a) Shift of the variable: aj → aj + cj , where cj is a complex constant.
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(b) Shift of the variable’s phase: aj → eiϕj aj , where ϕj is a real constant.
(c) Show that the linear transformation bs =

∑
j usj aj is canonical, if and only if

the matrix u is unitary.

A remarkable fact readily following from (13) is that the Poisson brackets
are invariant with respect to the canonical transformation. That is the result
for {A,B} is the same for any set of canonical variables.

Problem A5. Prove this.

Actually, the invariance of the Poisson brackets under some transformation
of variables is a sufficient condition for that transformation to be canonical.
Indeed, noticing that for any quantity A we have

∂A

∂a∗j
= i{A, aj} ,

∂A

∂aj
= i{a∗j , A} , (14)

and requiring that the Poisson brackets be invariant under our transforma-
tion of variables, we immediately arrive at (13):

∂bs

∂aj
= i{a∗j , bs} =

∂a∗j
∂b∗s

, (15)

∂bs

∂a∗j
= i{bs, aj} = −i{aj , bs} = −∂aj

∂b∗s
. (16)

Bilinear Hamiltonian. Bogoliubov Transformation

Given a Hamiltonian function, one can bilinearize it in the vicinity of
its (local) minimum to study the normal modes. The general form of the
Hamiltonian after bilinearization is (each variable is now reckoned from its
equilibrium value—a shift of a variable is a canonical transformation):

H =
∑

ij

(
Aij a∗i aj +

1
2
Bij aiaj +

1
2
B∗

ij a∗i a
∗
j

)
, (17)

where without loss of generality we can assume that (the requirement for
the Hamiltonian to be real and symmetrization)

Aij = A∗j i , Bij = Bj i . (18)

If a Hamiltonian of the form (17) features a (local) minimum at the point
a1 = a2 = a3 = . . . = 0, then it can be diagonalized by linear canonical
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transformation (Bogoliubov transformation),

bs =
∑

j

(usj aj + vsj a∗j ) . (19)

By “diagonalized” we mean that in terms of the new canonical variables
{bs} the Hamiltonian will read

H =
∑
s

Es b∗sbs , (20)

that is will be equivalent to a set of non-interacting harmonic oscillators
(normal modes).

Before we show how to relate the u and v coefficients to the matrices A
and B, let us first establish their general properties. From the requirement
that the transformation (19) be a canonical we get [differentiate both sides
with respect to aj , a∗j , br, and b∗r and use (13)]:

∑

j

[usj u∗rj − vsj v∗rj ] = δsr , (21)

∑

j

[usj vrj − vsj urj ] = 0 . (22)

Now we would like to make sure that the conditions (21)-(22) are not only
necessary, but also sufficient for the transformation to be canonical. To this
end we prove a useful
Lemma. If coefficients u and v satisfy (21)-(22), then the inverse transfor-
mation is given by

aj =
∑
s

(ũj s bs + ṽj s b∗s) , (23)

where
ũj s = u∗sj , ṽj s = −vsj . (24)

Problem A6. Prove this lemma by substituting aj from (23) into the right hand
side of (19) .

Now when we know how to express a’s in terms of b’s, we just need to make
sure that Eqs. (13) are satisfied. And this is easily seen from (24).

The relations (21)-(22) for the transformation (23) read
∑
s

[ũjs ũ∗ks − ṽjs ṽ∗ks] = δjk , (25)
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∑
s

[ũjs ṽks − ṽjs ũks] = 0 . (26)

With (24) these can be rewritten as
∑
s

[u∗sj usk − vsj v∗sk] = δjk , (27)

∑
s

[u∗sj vsk − vsj u∗sk] = 0 . (28)

Now we obtain the equations for the u and v coefficients. Eq. (20) implies

Esbs =
∂H

∂b∗s
, (29)

which becomes non-trivial if H is expressed in terms of a’s. Differentiating
both sides with respect to aj and a∗j , and taking into account

∂bs

∂aj
≡ usj ,

∂bs

∂a∗j
≡ vsj , (30)

we get

Esusj =
∂

∂aj

∂H

∂b∗s
=

∂

∂b∗s

∂H

∂aj
, (31)

Esvsj =
∂

∂a∗j

∂H

∂b∗s
=

∂

∂b∗s

∂H

∂a∗j
. (32)

Note that here it is legitimate to change the order of operators (∂/∂b)’s and
(∂/∂a)’s, because our transformation is linear and, say, (∂/∂b)’s are just
linear combinations of (∂/∂a)’s:

∂

∂b∗s
=

∑

j

[
∂aj

∂b∗s

∂

∂aj
+

∂a∗j
∂b∗s

∂

∂a∗j

]
=

∑

j

[
ṽjs

∂

∂aj
+ ũ∗js

∂

∂a∗j

]
. (33)

Calculating the derivatives

∂H

∂aj
=

∑

i

[Aij a∗i + Bij ai] , (34)

∂H

∂a∗j
=

∑

i

[Aj i ai + B∗
ij a∗i ] , (35)

and observing that

∂ai

∂b∗s
≡ ṽis = −vsi ,

∂a∗i
∂b∗s

≡ ũ∗is = usi , (36)
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we finally arrive at the system of equations:
∑

i

[Aij usi −Bji vsi] = Es usj , (37)

∑

i

[B∗
ji usi −Aji vsi] = Es vsj . (38)

Using the vector notation

|us〉 = (us,1, us,2, us,3, . . .) , |vs〉 = (vs,1, vs,2, vs,3, . . .) , (39)

and taking into account (18), we write this system as

A∗ |us〉 −B |vs〉 = Es |us〉 , (40)

B∗ |us〉 −A |vs〉 = Es |vs〉 . (41)

We can also write this system in terms of ũ’s and ṽ’s. Introducing the vectors

|ũs〉 = (ũ1,s, ũ2,s, ũ3,s, . . .) , |ṽs〉 = (ṽ1,s, ṽ2,s, ṽ3,s, . . .) , (42)

we have
A |ũs〉+ B∗ |ṽ∗s〉 = Es |ũs〉 , (43)

B |ũs〉+ A∗ |ṽ∗s〉 = −Es |ṽ∗s〉 . (44)

The energies of the normal modes, Es’s, arise as the eigenvalues of the
problem. The relations (21)-(22), which in the vector notation read

〈ur|us〉 − 〈vr|vs〉 = δsr , (45)

〈v∗r |us〉 − 〈u∗r|vs〉 = 0 , (46)

are automatically guaranteed at Er 6= Es.

Problem A7. Make sure that this is the case.

Eqs. (40)-(41) are invariant with respect to the transformation

|us〉 → |v∗s〉 , |vs〉 → |u∗s〉 , Es → −Es . (47)

This means that each solution has its counterpart of the opposite energy.
However, only one solution of the pair is physically relevant. Namely, the
one with

〈us|us〉 − 〈vs|vs〉 > 0 . (48)
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For its counterpart we then have

〈us|us〉 − 〈vs|vs〉 < 0 , (49)

which means that it is impossible to normalize it to unity, in contradiction
with (45).

Problem A8. Consider the one-mode Hamiltonian

H = a∗a +
1
2

[ γ a a + γ∗a∗a∗] . (50)

(a) Show that without a loss of generality (up to a simple canonical transformation)
one may choose γ to be real and positive.
(b) Explore the possibility of solving for the dynamics of this model by Bogoliubov
transformation.
(c) In the region of γ where Bogoliubov transformation is not helpful, directly solve
the equation of motion.

Evolution as a Canonical Transformation

Remarkably, the evolution of a dynamical system can be considered as
a canonical transformation. For the given set of variables {aj} we introduce
another set {bj}, where, by definition, the value of bj is equal to the value of
aj after some fixed period of evolution, t. First we note that the definition is
consistent, because given the particular form of the Hamiltonian, fixed time
period t, and particular initial state {aj}, we unambiguously fix {aj(t)} by
the equations of motion. Hence, each bj = aj(t) can be considered as just
a function of all variables {aj}, the particular form of the function being
related to the form of the Hamiltonian and the time period t. Now we
make sure that our transformation is canonical. It is enough to do it in the
limit t → 0, because then the case of finite t can be viewed as just a chain
of infinitesimal canonical transformations. Assuming that t is arbitrarily
small, from the equation of motion we have

bj = aj − it
∂H

∂a∗j
+O(t2) , (51)

and, correspondingly,

∂bj

∂ak
= δjk − it

∂2H

∂ak∂a∗j
+O(t2) , (52)
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∂bj

∂a∗k
= −it

∂2H

∂a∗k∂a∗j
+O(t2) . (53)

To check that the relations (13) do really take place (up to the terms ∼ t2),
we note that

∂

∂bj
=

∂

∂aj
+O(t) . (54)

Problem A9. Finish the proof.

If the Hamiltonian is bilinear, then the evolution equation is linear. Corre-
spondingly, {aj(t)} is related to {aj(0)} by a linear transformation, which
can be written in the vector notation, |a〉 ≡ (a1, a2, a3, . . .), as

|a(t)〉 = U(t) |a(0)〉+ V (t) |a∗(0)〉 . (55)

Here U and V are some time-dependent matrices the form of which is defined
by the Hamiltonian only—not by the initial state |a(0)〉. The above-proven
theorem states that the transformation (55) is canonical. But the linear
canonical transformation is nothing else than the Bogoliubov transforma-
tion. Hence, the evolution of a system with bilinear Hamiltonian is given by
time-dependent Bogoliubov transformation.
Problem A9. Suppose some bilinear Hamiltonian is diagonalizable by the Bogoli-
ubov transformation (19). Express the matrix elements Ujk(t) and Vjk(t) in the
equation (55) in terms of Bogoliubov matrices, usj and vsj , and eigenvalues, Es.

Problem A10. In the case of a single-mode system with a bilinear Hamiltonian,
Eq. (55) reads

a(t) = U(t) a(0) + V (t) a∗(0) , (56)

where U(t) and V (t) are some functions of time. Find U(t) and V (t) for the Hamil-
tonian (50) of the Problem A8.

Stability of Equilibrium Solution

By equilibrium solution of the equation of motion we mean the solution
which does not evolve in time: ∀s, ȧs ≡ 0. This immediately implies that
the equilibrium solution corresponds to such a point, {a(0)

s }, in the space of
variables {as}, where

∀s :
∂H

∂as
=

∂H

∂a∗s
= 0 (at as = a(0)

s ) . (57)
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We will also refer to the equilibrium solution as equilibrium point. Eq. (57)
means that the equilibrium points are the points of extremal behavior of the
Hamiltonian. In particular, the previously discussed points of local minima
are the equilibrium points.

At the equilibrium point {a(0)
s }, a natural question arises of what hap-

pens if the state of the system is slightly perturbed. The general way of
answering this question is to expand the Hamiltonian in the vicinity of the
equilibrium in terms of the shifted variables as → as − a

(0)
s (assuming that

their absolute values are small enough). The resulting Hamiltonian is of the
bilinear form (17), with

Aij =
∂2H

∂ai ∂a∗j
, Bij =

∂2H

∂ai ∂aj
(at as = a(0)

s ) . (58)

Linear terms of the expansion are zero because of Eq. (57) and the constant
term is of no interest.

The equation of motion for the Hamiltonian (17) is

i
∂

∂t
|a〉 = A |a〉+ B∗|a∗〉 . (59)

Since this is a linear equation, its general solution can be written as a sum
of elementary solutions (the necessity of the term with complex conjugated
ω comes from the term with complex conjugated a)

|a〉 = e−iωt|f〉+ eiω∗t|g〉 . (60)

Substituting this into (59) and separating the terms with e−iωt and eiω∗t,
which are linear independent at Reω 6= 0, we get

A |f〉+ B∗ |g∗〉 = ω |f〉 , (61)

B |f〉+ A∗ |g∗〉 = −ω |g∗〉 . (62)

If Reω = 0, we write
|a〉 = eλt|f〉 , (63)

and obtain
A |f〉+ B∗ |f∗〉 = iλ |f〉 . (64)

The form of the system of equations (61)-(62) is the same as that of (43)-(44).
And this is not a coincidence.—In the case when ω’s are real the elemen-
tary solutions (60) correspond to the normal modes found by Bogoliubov
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transformation. If at least one of the frequencies ω is not real, then the equi-
librium state is dynamically unstable with respect to small perturbations.
There will be a mode (with Imω > 0) that will be increasing exponentially.

But how does one derive the existence of Imω > 0 from the fact of
existence of a complex ω? Why is it impossible to have Imω < 0 for all
complex ω’s? Actually, this follows from the fact that the evolution of the
system can be viewed as the Bogoliubov transformation. Suppose we have
some complex ω = ω0 + iλ:

|a(t)〉 =
{
e−iω0t|f〉+ eiω0t|g〉

}
eλt . (65)

On the other hand, inverting the Bogoliubov transformation (55), we have

|a(0)〉 = Ũ |a(t)〉+ Ṽ |a∗(t)〉 , (66)

where, in accordance with (24),

Ũ = U † , Ṽ = −V T . (67)

Combining (65) and (66), we get

|a(0)〉 =
{
e−iω0tŨ |f〉+ eiω0tŨ |g〉+ eiω0tṼ |f∗〉+ e−iω0tṼ |g∗〉

}
eλt . (68)

The left-hand side of Eq. (68) is t-independent, while the right-hand side
contains the global exponential factor eλt. Hence, either Ũ , or Ṽ , or both
should contain the compensating factor e−λt. But then, by Eq. (67), the
same factor should be present in U , or V , or both. Hence, there should exist
an elementary solution containing this factor.

Apart from the dynamic instability, when the solution grows exponen-
tially, there can also be a statistical instability. In the case of statistical
instability, all ω’s are real, but not all of them are positive. The Hamilto-
nian thus can be diagonalized by the Bogoliubov transformation, and the
dynamics within the bilinear Hamiltonian is just the superposition of os-
cillating normal modes. However, in a typical real situation, when there
are higher order terms in the Hamiltonian (say, an interaction with a heat
bath) the amplitudes of all the normal modes will be gradually drifting to
higher and higher values, since this leads to the increasing entropy without
violating energy conservation: The positive contribution to the total energy
from the positive-E modes is compensated by negative contribution from
the negative-E modes.
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