Physics 103 - Discussion Notes #1

Approximations in Physics
e Almost all physically interesting problems can’t be solved exactly - need to make approximations in order to

solve them!

e In fact, a big part of doing physics is learning to use physical insights from a problem and turn them into
mathematical approximations.

e As Keith says in the notes, there are two main ways to approximately solve problems in physics - perturbatively,
or numerically.

e We'll begin with the perturbative approach, but first we’ll briefly review the concept of Taylor series.

Taylor Series
e Taylor’s Theorem states that most functions (and in this class we’ll almost certainly never deal with functions
that are exceptions) can be expressed as an infinite sum of polynomials
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where (") denotes the nth derivative of the function f.

e ['ve written the formula like this to emphasize that this is a sum of polynomials - don’t let the weird form of
the coefficients distract you from this fact, the ¢, are just numbers.

Quick Example - Taylor Series of ¢’ about a = 0

e You've probably all seen this example at some point, but just as a quick refresher let’s calculate the Taylor
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e In practice we rarely explicitly calculate Taylor series - most problems in physics involve functions whose Taylor
series have been tabulated and can just be looked up. Example include e”, sinz, and In (1 + ), which actually
comes up on your homework.



Some Remarks on Taylor Series

e In physics we never really want to work with full Taylor series - that is, the series with an infinite number of
terms. Instead, we want to deal with only the first few terms in the series and use them as an approximation
to the function.

e This is useful because polynomials are nice - we can easily take their derivatives or manipulate them alge-
braically, so replacing a complicated function by the first few terms in its Taylor series often greatly simplifies
a problem.

e The Taylor series is most accurate close to the expansion point a - the further we go from a the more terms
we need for the same amount of accuracy. (Explain in context of plot below)
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e Just because we can write down the series doesn’t mean the series itself will converge, that is, come closer and
closer to some value. For example consider the geometric series
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If |x| < 1 then the terms get smaller and smaller (since raising a number less than one to a power decreases it),

so it seems like the series might converge (though of course just because the terms get smaller doesn’t mean
the series converges, e.g. the harmonic series). Indeed this is the case, as one can show that
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Thus we can say that ﬁ has a Taylor series given by the geometric series, that is
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which is exactly what we’d get if we applied the above formulae to ——

17— Wwith @ = 0. Note however, that this
formula only holds for |z| < 1 - if this inequality doesn’t hold then the Taylor series no longer converges and
this expansion is no longer useful.

e Note that we can expand about any point a in our series - however, whether or not the Taylor series converges
is dependent on what point we expand about. For instance, if we want to calculate the value of ﬁ at xt = 2.5
we could expand about a = 2 instead of 0 like we did above and the series would converge.

e As a follow-up, while many functions (e.g e, cosx,sinz) converge for all real numbers, there’s often a better
point a to expand about for certain situations. For example, if I want to approximate the value of sin (100.5) I

could in principle do it by expanding sin (z) about a = 0 and taking an extremely large number of terms, but
T’ll get a much better approximation by expanding about a = 100.



Taylor Series in Solving Differential Equations

e You’'ve probably actually already seen one example of using Taylor series to help solve physics problems - if we
write the down the differential equation for the simple pendulum, we get

6 = f%sinﬁ

e This differential equation doesn’t have a nice solution we can write in terms of functions we know. However,
we know that sinf can be written in terms of its Taylor series (which converges for all x)
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e For small x these values decrease very quickly, and so to a good approximation we can ignore all terms but the
first, and write
sinx ~ x

in which case our differential equation becomes

which should be recognizable as the equation that defines SHM.

Taylor Series in Solving Algebraic Equations

e We can also use Taylor series to solve algebraic equations, e.g. solving for the time a projectile spends in the
air in the presence of air resistance. Let’s work with a simpler example: Suppose we want to solve the equation

cos (Az) =z

e In general this equation is not solvable in terms of “nice” functions. However, if we assume that A is “small
enough” we can Taylor expand with respect to A about 0 and keep only the first few terms in the expansion.
That is, we rewrite our solution = as
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where we need to determine the coefficients ¢,,. Our equation now becomes
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e From here we now want to expand sinx in its Taylor series, which gives
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Notice that because we now have a double sum we had to introduce a new index - it would be incorrect to call
both indices n. Calling in the index on the right n is fine since it isn’t affected by what’s on the left.

e This hardly looks like an improvement - in fact it looks like we’ve made the equation considerably more
complicated. However, both sides involve power series expansions in terms of A - and a useful Theorem on
power series says that two power series are equal if and only if their coefficients are equal. Thus we can write
a series of equations for the ¢, by explicitly writing out terms on each side and then setting the coefficients of
like powers of A equal.



e Let’s see how this work in practice - let’s say we wish to go out to fourth order in A\. We explicitly write out
the first few terms in the series
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e In this form it’s much easier to match the coefficients. First, we see that the constant term on the left is 1, and
on the right it’s ¢y, so we immediately have
Co = 1

There is no term of order A on the left, so
C1 = 0

Now we need to worry about squaring out the infinite sum. The only way to get a term of order A\? is from the
first term multiplied by itself, so we have
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For the A3 there is again only one way to get a term of this order from the left - by multiplying ¢\ by co. But
c1 = 0, so this term will drop out. Finally, the A\* term is a bit more complicated. There are now two ways to
get this term from squaring the sum - either from terms of the form cocoA? or from ¢FA2. For the same reason
as above however, the latter will be 0. We also note there will be two of these terms. We now finally have
to take into account the quartic term as well - thankfully we will only be concerned with the first term, coA*.

Bringing this all together gives the equation
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Thus our perturbative solution is
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Numerical Methods

e In contrast to perturbative methods, we can also problems numerically when an exact solution is not possible.
Let’s go back to our pendulum example and discuss how to solve it numerically.

e If we want to solve the simple pendulum numerically we need to know exact values for the parameters in the
problem, in this case we’d need the values of g and £. If we know these numbers a program like Mathematica
can solve the differential equation numerically.

e The advantage here is that this is generally faster - with Mathematica this can be done in about a minute if
you know what you're doing - and we no longer need to make assumptions about the size of 8; this will work
for any 6.



e The disadvantage however, is that we really only gain insight about the problem for the specific values we chose.
We don’t learn anything about how the problem behaves as we change g and ¢ unless we solve the problem
many times for different values of the variables, which can quickly become too computationally expensive,
especially for more complicated equations. For example our perturbative solution tells us that the motion is
approximately simple harmonic for small #, but the numerical solution only tells us the solution looks simple
harmonic if we choose a small initial value of §, and we can’t even be sure that this isn’t just a relic of the
specific values we chose for g and ¢ without solving many times. Even then, we can’t be sure that there isn’t
some combination of the parameters when the motion looks completely different (those of course this isn’t the
case, as the perturbative method tells us).

In Conclusion

e Each method has its pros and cons - think carefully about which will be more helpful given the problem you're
trying to solve.



