
Physics 103 - Discussion Notes #2

Michael Rosenthal

• Last week we discussed one infinite series representation of a function - the Taylor series.

• This week we will talk about another such representation, the Fourier Series.

Preliminary Ideas
• Before we discuss Fourier series, we need to discuss three other concepts: even and odd functions, and orthog-

onality of functions.

• A function f is periodic with period T , if for all x in the domain of f

f (x+ T ) = f (x)

• sin (x), cos (x), and tan (x) are all common examples of periodic functions.

• Functions can have many different periods when defined this way, e.g. for the sinusoidal functions T = 2π, 4π,
etc. all obey this definition. The smallest possible period is sometimes called the fundamental period, though
we’ll often just refer to it as the period.

• Any linear combination of periodic functions with period T

f (x) = c1f1 (x) + c2f2 (x) + . . .+ cnfn (x)

is itself periodic with period T

• A function that obeys
f (x) = −f (x)

is called odd, some examples are x, x3, and sinx.

• A function that obeys
f (−x) = f (x)

is called even. Some examples are x2, x4, and cosx.

• A sum of odd functions is itself odd, and a sum of even functions is itself even.

• A product of two odd functions or two even functions is even. A product of an odd function and an even
function is odd.

• If f (x) is even, then it obeys the equation

aˆ

−a

f (x) dx = 2

aˆ

0

f (x) dx

• If f (x) is odd, then it obeys the equation
aˆ

−a

f (x) dx = 0
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• Two functions are orthonormal on the interval [a, b] if

bˆ

a

fm (x) fn (x) dx = δmn

where δmn is the Kronecker Delta function, defined by

δmn =

{
0 m 6= n

1 m = n

• If the above functions integrate to 0, we say they are simply orthogonal.

• One important result we’ll need for Fourier series is that 1√
L

cos
(
mπx
L

)
is orthonormal to 1√

L
cos
(
nπx
L

)
as are

1√
L

sin
(
mπx
L

)
and 1√

L
sin
(
nπx
L

)
, on the interval −L to L. Also, 1√

L
cos
(
mπx
L

)
and 1√

L
sin
(
nπx
L

)
are orthogonal.

Let’s prove this. First consider
L̂

−L

1√
L

sin
(mπx

L

) 1√
L

cos
(nπx
L

)
dx

Using trigonometric identities, one can show that

sin
(mπx

L

)
cos
(nπx
L

)
=

1

2
sin

(m− n)πx

L
+

1

2
sin

(m+ n)πx

L

Plugging this in above gives

1

2L

L̂

−L

sin
(m− n)πx

L
+ sin

(m+ n)πx

L

But this is just the integral of two sine functions over some whole number of periods, which is 0. Thus

L̂

−L

1√
L

sin
(mπx

L

) 1√
L

cos
(nπx
L

)
dx = 0

• Next consider
L̂

−L

1√
L

sin
(mπx

L

) 1√
L

sin
(nπx
L

)
dx

Again using trig IDs we can show that

sin
(mπx

L

)
sin
(nπx
L

)
=

1

2
cos

(m− n)πx

L
− 1

2
cos

(m+ n)πx

L

so the above integral becomes

1

2L

L̂

−L

cos
(m− n)πx

L
− cos

(m+ n)πx

L

If m 6= n then we can make the same argument as above, but if m = n then while the second term will still
integrate to 0, the first will become simply cos (0) = 1. Because the integral ranges over an interval of length
2L, the result of the integral is simply 2L. Thus

L̂

−L

1√
L

sin
(mπx

L

) 1√
L

sin
(nπx
L

)
dx = δmn
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• Finally, consider
L̂

−L

1√
L

cos
(mπx

L

) 1√
L

cos
(nπx
L

)
dx

Again, we can use the trig addition formulas to show that

cos
(mπx

L

)
cos
(nπx
L

)
=

1

2
cos

(m− n)πx

L
+

1

2
cos

(m+ n)πx

L

so with the same arguments as before we have
L̂

−L

1√
L

cos
(mπx

L

) 1√
L

cos
(nπx
L

)
dx = δmn

• Now we are ready to discuss the ideas of Fourier series.

Fourier Series
• Consider a function f (x) which can be written as a sum of trigonometric functions

f (x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
where the coefficients an and bn are yet to be determined.

• Because it is written this way f (x) must periodic with period 2L since all the functions in the above sum are
2L periodic.

• It turns out that almost any function can actually be written in this way! The proof of this is not something
we’re interested in as physicists, nor is the question of when this is or is not possible. Suffice it to say that
essentially all functions we deal with in physics can be written like this.

• We now want to determine the coefficients in the above sum. To do so, first consider integrating both sides of
the above equation from −L to L

L̂

−L

f (x) dx =

L̂

−L

a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
dx

L̂

−L

f (x) dx =

L̂

−L

a0
2
dx

Since the integral of a sinusoidal function over a whole number of periods is 0. Thus we have

a0 =
1

L

L̂

−L

f (x) dx

This gives us a0. To find am, we multiply both sides of the equation by cos mπxL and integrate from −L to L

L̂

−L

f (x) cos
mπx

L
dx =

L̂

−L

a0
2

cos
mπx

L
+

∞∑
n=1

(
an cos

nπx

L
cos

mπx

L
+ bn sin

nπx

L
cos

mπx

L

)
dx

L̂

−L

f (x) cos
mπx

L
dx =

∞∑
n=1

anLδmn

L̂

−L

f (x) cos
mπx

L
dx = amL

3



so

an =
1

L

L̂

−L

f (x) cos
nπx

L
dx

Similarly, to find bn we multiply both sides of the equation by sin mπx
L and integrate from −L to L

L̂

−L

f (x) sin
mπx

L
dx =

L̂

−L

a0
2

sin
mπx

L
+

∞∑
n=1

(
an sin

nπx

L
cos

mπx

L
+ bn sin

nπx

L
sin

mπx

L

)
dx

L̂

−L

f (x) sin
mπx

L
dx =

∞∑
n=1

bnLδmn

so

bn =
1

L

L̂

−L

f (x) sin
nπx

L
dx

• Thus we can now define the Fourier series - a function defined on the interval −L to L has the Fourier series

f (x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
where

an =
1

L

L̂

−L

f (x) cos
nπx

L
dx

bn =
1

L

L̂

−L

f (x) sin
nπx

L
dx

• Notice that by writing the function this way we are making it periodic on the whole real line, with period 2L.
This is called the periodic extension of the function. Let’s see how this works in an example.

Example 1
Calculate the Fourier series for the function

f (x) =

{
−1 x < 0

1 x > 0

on the interval [−π, π].

• Here L = π. Also note that f (x) is odd, so the integral for the an

an =
1

π

π̂

−π

f (x) cos (nx) dx = 0

since the integrand is odd.
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• For the bn on the other hand, we have

bn =
1

π

π̂

−π

f (x) sin (nx) dx

bn =
2

π

π̂

0

sin (nx) dx

bn =
2

πn
[− cos (nx)]

π
0

bn = − 2

πn
[(−1)

n − 11]
π
0

bn =

{
0 n even
4
πn n odd

• Thus the Fourier series is given by

f (x) =
4

π

∞∑
n=1,3,5...

sin (nx)

n
=

4

π

[
sinx+

1

3
sin 3x+

1

5
sin 5x+ . . .

]
• A plot of the function is shown below. Notice that the function itself is not periodic, but by taking L = π

we’ve extended it to be periodic with period 2π

Applications of Fourier Series
• Fourier series show up in a huge number of areas of physics. Perhaps one of the most basic is the solution for

a wave on a string.

• Consider a string of length L, fixed at both ends. By going through the physics of the problem we can show
that we need to solve the wave equation

∂2y

∂x2
=

1

c2
∂y2

∂t2

where c is the velocity that waves on the string travel at. By doing some math that I won’t go into here, we
can show that our solutions take the form

y (x, t) =

∞∑
n=1

sin
(nπx
L

)
(An cosωt+Bn cosωt)

where ω = nπ
L c. But how do we determine the An and Bn? Suppose the string is initially at rest, but has some

initial stretched length given by y (x, 0). Then

y (x, 0) =

∞∑
n=1

An sin
(nπx
L

)
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and

v (x, 0) = ẏ (x, 0) =

∞∑
n=1

ωBn sin
(nπx
L

)
= 0

so we can immediately say that Bn = 0 for all n, but what about An? The equation for y (x, 0) is just the Fourier
series for y (x, 0)! Actually it’s technically the Fourier sine series, but that distinction isn’t really important
for our purposes. We can get the coefficients in the same way we did above, by multiplying by sin

(
mπx
L

)
and

integrating. We now only integrate from 0 to L, because that’s the domain we’re interested in.
L̂

0

y (x, 0) sin
(mπx

L

)
dx =

∞∑
n=1

L̂

0

An sin
(mπx

L

)
sin
(nπx
L

)
dx

But the sine function is orthogonal on this interval as well, as we can easily show, and we get
L̂

0

y (x, 0) sin
(mπx

L

)
dx =

∞∑
n=1

An
L

2
δmn

An =
2

L

L̂

0

y (x, 0) sin
(nπx
L

)
dx

So using Fourier series we can determine the position of the string at all later times!

Complex Fourier Series and the Fourier Transform
• It turns out there is nicer way to write the Fourier series if we allow the coefficients to be complex.

• I won’t go into the details here, suffice it to say that using Euler’s Formula

eiθ = cos θ + i sin θ

we can write the Fourier series of a function as

f (x) =

∞∑
n=−∞

cne
inπx
L

where the cn are now in general complex numbers, and are given by

cn =
1

2L

L̂

−L

f (x) e
inπx
L dx

Note that ncan now be both positive and negative, rather than just positive.

• This form is useful because it allows us to define the Fourier transform. To proceed, let’s rewrite the above
expression as

f (x) =

∞∑
n=−∞

cne
inπx
L ∆n

where ∆n = 1 is just the spacing between integers. Now define

k ≡ πn

L

∆k ≡ π∆n

L
and

A (k) =

√
2πLan
π

This turns our Fourier series into
f (x) =

∑
k

A (k)√
2π

eikx∆k
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• Now consider the case that L → ∞. In this limit ∆k becomes infinitesimally small, so the sum over discrete
values turns into an integral

f (x) =
1√
2π

∞̂

−∞

A (k) eikxdk

This function defines f (x) in terms of the Fourier transform of the function A (k). This is often referred to as
the “backwards transform.” Again, one can show, though we won’t here, that A (k) is given by

A (k) =
1√
2π

∞̂

−∞

f (x) e−ikxdx

• Like the Fourier series, the Fourier transform has applications in a huge number of physics problems. One
example is a wave traveling on a string. Because the string no longer has fixed length, it turns out we need to
consider the Fourier transform to solve the behavior of the wave, and not the Fourier series.

The Dirac Delta Function
• We now shift gears and discuss the Dirac delta function. One way to motivate this is to consider the mass

density of a point particle. Suppose we have a particle centered at the origin with mass m - what is the mass
density of the particle? It should satisfy the condition that

ˆ

D

ρ (x) dx =

{
m if D contains the origin
0 else

But what kind of function obeys this condition? The answer is the Dirac delta function, which can be defined
via

δ (x) =

{
0 x 6= 0

∞ x = 0

and
∞̂

−∞

δ (x) dx = 1

The most useful property of the delta function is that it “picks up” the value of our integrand at some point if
we integrate over all values of x, that is

∞̂

−∞

f (x) δ (x− a) dx = f (a)

∞̂

−∞

δ (x− a) dx = f (a)

since the integrand is zero at all values of x except x = a. Returning to our example of mass density, we see
that we can write the density of the particle as

ρ (x) = mδ (x)

which has the properties we discussed above. Again, the delta function shows up in a large number of physical
situations, and is an invaluable tool for a physicist.

Fourier Transform of the Dirac Delta Function
• Finally, consider the Fourier transform of the Dirac delta function

A (k) =
1√
2π

∞̂

−∞

δ (x− x0) e−ikxdx

A (k) =
1√
2π
e−ikx0
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• But Fourier transforms act in pairs, so this implies that the reverse must be true as well, that is the Fourier
transform of the complex exponential is given by

f (x) =
1√
2π

∞̂

−∞

A (k) e−ikx0eikxdk =
1√
2π

∞̂

−∞

A (k) eik(x−x0)dk =
δ (x− x0)√

2π

• This is another extremely useful result that comes up frequently in physics.
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