
Physics 103 - Discussion Notes #3

Michael Rosenthal

Spherical Coordinates
• All of you are used to Cartesian coordinates, which serve as a convenient coordinate system for many physical

problems.

• However, there are a large number of physical situations where the use of cartesian coordinates is extremely
cumbersome, and is it is far more natural to describe our system in what are known as spherical coordinates.

• In Cartesian coordinates, we describe an arbitrary vector a by specifying its components along the three basis
vectors x̂, ŷ, and ẑ.

• It’s important to remember, however, that this vector exists independently of the coordinate system we use to
describe it, and that we can describe the same vector by specifying its components with respect to any three
linearly independent vectors.

• In spherical coordinates, we specify a point vector by giving the radial coordinate r, the distance from the
origin to the point, the polar angle θ, the angle the radial vector makes with respect to the z axis, and the
azimuthal angle φ, which is the normal polar coordinate in the x− y plane.

• We can specify a vector in spherical coordinates as well. Before we do this we need to discuss how we define
our basis vectors in a general coordinate system. In Cartesian coordinates our basis vectors are simple and
unchanging, but in spherical things aren’t quite so simple.

• The basis vector with respect to a certain coordinate direction, â, is the direction the position vector will move
in if we increase the coordinate a while leaving all other coordinates fixed (and normalized to 1 of course).

• If we look at the basis vectors r̂, θ̂, and φ̂ below we see that they agree with this idea.
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• Notice now however, that our basis vectors are now dependent on position. If we move to a different point on
the sphere, our unit vectors will point in a different direction. This is emphatically NOT true in Cartesian
coordinates, where the unit vectors are the same no matter what point we’re describing. This makes some
operations in spherical much more complex than their cartesian counterparts, which we’ll come back to soon.

Spherical Unit Vectors in Terms of Cartesian
• We can explicitly show that the spherical unit vectors depend on position by calculating their components in

Cartesian coordinates.

• To begin, we first must determine how to convert between Spherical and Cartesian coordinates.

• From the above picture, we can see that, in terms of Cartesian coordinates, the spherical coordinates are given
by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

• On the other hand, from the Pythagorean theorem we have

r =
√
x2 + y2 + z2

while from simple trig its easy to see that

φ = tan−1
(y
x

)
θ = cos−1

(z
r

)
= cos−1

(
z√

x2 + y2 + z2

)

• We can use these expressions to convert spherical coordinates into cartesian and vice-versa.

• To determine the spherical unit vectors in terms of cartesian coordinates, we go back to how we defined the
unit vectors. From our definition, we see that we can write

r̂ =
dr
dr∣∣ dr
dr

∣∣
Now in Cartesian the position vector is simply given by

r = xx̂+ yŷ + zẑ

r = r sin θ cosφx̂+ r sin θ sinφŷ + r cos θẑ

so
dr

dr
= sin θ cosφx̂+ sin θ sinφŷ + cos θẑ

and ∣∣∣∣drdr
∣∣∣∣ =√sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos θ2∣∣∣∣drdr
∣∣∣∣ =√sin2 θ

(
cos2 φ+ sin2 φ

)
+ cos θ2∣∣∣∣drdr

∣∣∣∣ =√sin2 θ + cos θ2 = 1
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Thus
r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ

Notice that r̂ depends on the angles θ and φ and thus depends on position, as expected. We can do the exact
same thing to determine φ̂ and θ̂

θ̂ =
dr
dθ∣∣ dr
dθ

∣∣
φ̂ =

dr
dφ∣∣∣ drdφ ∣∣∣

I won’t go through the details of the calculation here - it’s straightforward, though a little tedious. The result
is

θ̂ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ

φ̂ = − sinφx̂+ cosφŷ

Non-Constancy of Unit Vectors
• We now discuss the issues raised by the fact that the spherical unit vectors are dependent on position. Consider

a particle with position vector r, with Cartesian components (rx, ry, rz) . Suppose now we wish to calculate
the velocity of the particle, as we did in the first homework. The answer of course, is simply

v =
drx
dt

x̂+
dry
dt

ŷ +
drz
dt

ẑ

This may seem straightforward, but there’s an extremely important subtlety that many of you are probably
missing. Consider the first term - we need to take the time derivative of rxx̂. Really, this is

d

dt
(rxx̂) =

drx
dt

x̂+ rx
dx̂

dt

Now we come to what makes Cartesian coordinates so useful, apart from their conceptual simplicity - x̂ is not
a function of time, even if the particle is changing position. None of the Carteisan unit vectors are dependent
on position, and therefore aren’t dependent on time. This is not true of e.g. r̂, as we showed earlier. Since r̂
is dependent on position if the particle is moving then r̂ is time dependent. With this in mind, let’s calculate
the velocity of a particle in spherical coordinates. The position vector is now given simply by

r = rr̂

so

v =
dr

dt

v = ṙr̂+ r ˙̂r

v = ṙr̂+ r

(
dr̂

dr

dr

dt
+
dr̂

dθ

dθ

dt
+
dr̂

dφ

dφ

dt

)
v = ṙr̂+ r

(
0 + (cos θ cosφx̂+ cos θ sinφŷ − sin θẑ) θ̇ + (− sin θ sinφx̂+ sin θ cosφŷ) φ̇

)
v = ṙr̂+ r

(
θ̂θ̇ + φ̇ sin θφ̂

)
We can do a similar calculation for the acceleration - it proceeds exactly as with the velocity, so it’s straight-
forward but again rather tedious. When the dust settles we get

a = r̂
(
r̈ − rφ̇2 sin2 θ

)
+ θ̂

(
rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ

)
+ φ̂

(
rφ̈ sin θ + 2rθ̇φ̇ cos θ + 2ṙφ̇ sin θ

)
• The fact that the unit vectors are not constant means there are other subtleties when working in spherical

coordinates as well. For instance when integrating vector function in Cartesian coordinates we can take the
unit vectors outside the integral, since they are constant. This is no longer the case in spherical! Often it’s
better to convert your unit vectors back to Cartesian before attempting to do any integration.
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Line and Volume Integrals in Spherical Coordintes
• Let us now determine the line elements in spherical coordinates - that is how much a particle moves when we

infinitesimally displace it in one of the coordinate directions. To begin with, if we infinitesimally displace an
object in the r̂ the change in position is just dr

dlr = dr

Now clearly this does not work in the θ̂ direction, since dθ doesn’t have units of length - instead if we increment
the θ coordinate of the position vector, the particle moves by a distance

dlθ = rdθ

Incrementing the φ coordinate does something similar, but we now have to take into account that the relevant
radius is no longer just r, but the projection of r into the x− y plane, r sin θ. This gives

dlφ = r sin θdφ

And thus a general line element is given by

dl = drr̂+ rdθθ̂ + r sin θdφφ̂

and the volume element is given by

dV = dlrdlθdlφ = r2 sin θdrdθdφ

DO NOT forget this when doing integrals in spherical coordinates! Doing so will give you nonsensical results
when performing triple integrals in spherical coordinates.

Grad, Curl, Divergence and Laplacian in Spherical Coordinates
• In principle, converting the gradient operator into spherical coordinates is straightforward. Recall that in

Cartesian coordinates, the gradient operator is given by

∇T =
∂T

∂x
x̂+

∂T

∂y
ŷ +

∂T

∂z
ẑ

where T is a generic scalar function. Thus, to calculate e.g. the x̂ component of the gradient, we would simply
employ the chain rule

∂T

∂x
=
∂T

∂r

∂r

∂x
+
∂T

∂θ

∂θ

∂x
+
∂T

∂φ

∂φ

∂x

and so on for the y and z components. Unfortunately, this method is extremely tedious, and it would take
an extremely long time to calculate the gradient this way, not to mention the Laplacian, which is even more
complex. Fortunately, there exist more sophisticated methods to treat general system of coordinates, from
which we can obtain the gradient much more quickly. I won’t go into these methods in detail here, but
Griffiths’ Introduction to Electrodynamics has a nice treatment in Appendix A. Instead I will simply quote the
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result for the gradient, as well as the curl, divergence, and Laplacian in spherical

∇T =
∂T

∂r
r̂+

1

r

∂T

∂θ
θ̂ +

1

r sin θ

∂T

∂φ
φ̂

∇ · v =
1

r2
∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ
∂φ

∇× v =
1

r sin θ

[
∂

∂θ
) (sin θvφ)−

∂vθ
∂φ

]
r̂+

1

r

[
1

sin θ

∂vr
∂φ
− ∂

∂r
(rvφ)

]
θ̂ +

1

r

[
∂

∂r
(rvθ)−

∂vr
∂θ

]
φ̂

∇2T =
1

r2
∂

∂r

(
r2
∂t

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

r2 sin2 θ

∂2T

∂φ2

where vr is the r̂ component, vθ is the θ̂ component, and vφ is the φ̂ component.
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