
Physics 103 Homework 1
Summer 2015

Instructor: Keith Fratus
TA: Michael Rosenthal

Due Date: Thursday, July 2nd

1. Given two vectors a and b, show that their sum c = a + b satisfies the law of cosines:

c2 = a2 + b2 + 2ab cos θ

where θ is the angle between a and b (Hint: remember that by definition, c2 ≡ c · c).
Using this result, explain why the triangle inequality

|a + b| ≤ |a|+ |b|

is true.

2. The position vector of a particle that moves on a two-dimensional surface, as a function
of time, is given by

r (t) = λR sin (ωt) x̂+R cos (ωt) ŷ,

where λ > 0, R > 0, and ω > 0 are all constants, the first of which is dimensionless,
the second of which has units of length, and the last of which has units of inverse time.

(a) Find the velocity, acceleration, and speed of the particle as a function of time.

(b) Find the angle between the velocity vector and the acceleration vector as a function
of time. In particular, what is this angle at a time t = π/2ω? What does your
expression reduce to when λ = 1?

(c) What type of shape does the particle trace out as it moves through space? Can
you explicitly show that the particle’s trajectory satisfies the defining equation for
this shape?

3. Consider the projectile motion problem from lecture, with linear (n=1) air resistance
included.

(a) How long does it take for the projectile to reach its maximum height? Call this time
duration tM . You should be able to solve this exactly, without any approximations.
You can make use of anything derived in the lecture notes, including the expression
for the velocity as a function of time.
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(b) What is the maximum height itself? Call this maximum height hM . You should
also be able to solve this exactly.

(c) Take your expressions for tM and hM and Taylor expand them in the drag coeffi-
cient, k, out to third order. Do your results make sense for the case that k = 0?

(d) Compared with the result for motion in a vacuum, does air resistance increase or
decrease the time it takes for the projectile to reach its maximum height?

(e) What is the acceleration of the projectile when it is at its maximum height?

4. Consider the equation
λ+ cos (λx) = x,

where λ is some small parameter.

(a) Assume that there is a solution to this equation, xS (λ), which depends on λ and
has a Taylor series expansion

xS (λ) = xS0 + xS1λ+ xS2λ
2 + xS3λ

3 + ...

Find the first three terms in this expansion, using the methods we discussed in
lecture. Does your answer make sense in the limit that λ = 0? You may want to
look up the Taylor series expansion for the cosine function.

(b) Make a plot of the functions f (x) = x and g (x) = λ + cos (λx) for the values
λ = 0.5, 1.5, 2.0, 2.25, 2.5, 7.5. Examine how the two functions intersect each other,
for each value of λ. Based on how the different intersections behave for different
values of λ, do you think the perturbative result you derived in part a might have
some limited range of validity? Why or why not?

5. Consider the projectile motion problem from lecture, with linear (n=1) air resistance
included. We found that the time the projectile hit the ground was defined by the
equation

hk2 +
[
gm2 + φmk

] [
1− e−ktR/m

]
= gmktR

Let’s make the simplifying assumption that the projectile is fired from the ground, so
that h = 0. In this case, our equation can be written

tR =

[
m

k
+
φ

g

] [
1− e−ktR/m

]
When there is no air resistance, we know that the time the projectile hits the ground
is given by

t
(0)
R =

2φ

g

(a) Assume that m = 1 kilogram, φ = v0 sin θ = 100 meter/second, k = 0.01 kilo-

gram/second, and g = 10 meter/second2. What is t
(0)
R in this case?
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(b) If the drag coefficient k is suitably small, then we know that

tR ≈ t
(0)
R ,

with the difference being some small correction. As a result, we should expect that[
m

k
+
φ

g

] [
1− e−ktR/m

]
≈
[
m

k
+
φ

g

] [
1− e−kt

(0)
R /m

]
With this in mind, let’s define the quantity

t
(1)
R ≡

[
m

k
+
φ

g

] [
1− e−kt

(0)
R /m

]
.

Using the numerical values in the problem, along with your value for t
(0)
R , compute

the value of t
(1)
R . How do t

(1)
R and t

(0)
R compare?

(c) Continuing this idea, for a general n, define the quantity

t
(n+1)
R ≡

[
m

k
+
φ

g

] [
1− e−kt

(n)
R /m

]
.

Compute each t
(n)
R , up through n = 6. What is happening to the value of each

successive t
(n)
R ?

(d) The result of a sophisticated computer calculation tells us that, for these parameter
values,

tR ≈ 19.3748,

accurate to this many decimal places. How do the values you found compare with
this quantity?

(e) The method we’ve developed here is an example of a root-finding algorithm - it
is a numerical approach for trying to find better and better approximations to
the solution of an equation. Many different types of root-finding algorithms exist,
and deciding on which algorithm best suits a particular equation can be a very
involved subject. The method we have developed here is somewhat primitive, and
most computer software makes use of more advanced techniques. However, it still
gives us a sense as to how a computer, which is capable of doing many numer-
ical calculations very quickly, might be able to find the solution to an equation.
Comparing this method with the perturbative technique we developed
in class, what do you think are some pros and cons of each method?

(f) Extra Credit: Use Mathematica on the computers in the Physics Study Room

to write a For Loop that finds the first 100 terms in the sequence of t
(n)
R values.

How quickly do the values approach the “exact” result given above? Print out
your Mathematica notebook and attach it to your homework.
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6. Consider again the projectile motion problem from lecture, with linear (n=1) air resis-
tance included. This time, however, imagine that we are standing at the base of a hill,
firing the projectile towards the incline. This is shown in the figure below. The red line
represents the inclined hill, which we will assume is a straight line passing through the
origin, making an angle β with the horizontal. All of the other details of the problem
are the same as they were in class.

(a) Find an equation that defines the time, tH , when the projectile runs into the hill.
You can use all of the results already derived in the lecture notes. Hint: What is
the equation that defines the shape of the hill?

(b) Accurate to first order in the drag coefficient k, solve for the time tH . Hint: With
some clever thought, this problem involves very little work!

7. In class, we used the Taylor series expansion

1

gm+ φk
=

1

gm

(
1

1 + φ
gm
k

)
=

1

gm
− φ

g2m2
k +

φ2

g3m3
k2 + ...
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when we were deriving the range of a projectile subject to air resistance. However, the
Taylor series expansion for this particular function only converges when

φ

gm
k < 1 ⇒ k <

mg

v0 sin θ
.

This means that values of k which violate this inequality can no longer be considered
“small” enough for our perturbative result to be accurate. Considering the physics of
the problem, explain qualitatively why mg appears in the numerator of this equation,
and why v0 sin θ shows up in the denominator.

8. Consider a projectile fired straight upwards into the air, starting from the ground.
Since there is no motion in the horizontal direction, this is effectively a one-dimensional
problem. For simplicity, we’ll refer to the height of the projectile simply as y (t), and
the velocity simply as v (t). Additionally, assume that the projectile is subject to the
drag force

FR = −kv4v̂,
in addition to the usual force of gravity. That is, the air resistance acting on the
particle is proportional to the fourth power of velocity.

(a) First consider the motion of the projectile right after it is fired, when it is travel-
ling upwards. What is the total force on the projectile? Hint: Be careful when
considering the sign of the drag force!

(b) Find a differential equation for y (t) when the particle is travelling upwards. Then,
convert this to a differential equation for v (t).

(c) Using the chain rule for derivatives, we have

v̇ =
dv

dt
=
dy

dt

dv

dy
= v

dv

dy
,

Use this fact to convert your differential equation into an expression of the form

dv

dy
= f (v) ,

where f (v) is some function of v. This change of variables for the differential
equation lets us consider the velocity of the projectile as being a function of its
height, v (y), rather than a function of time. In some applications this form of the
differential equation is much more useful, as we’ll see shortly.

(d) As long as the projectile is travelling upwards, its velocity should steadily decrease
as its height increases - the larger the height, the smaller the velocity. Because of
this, we expect that v (y) should be an invertible function of y, so that the inverse
function y (v) also exists. In this case, the inverse function theorem tells us that
we can write

dv

dy
= f (v) ⇒ dy

dv
=

1

f (v)
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Writing the differential equation in this way, solve the differential equation for
y (v), assuming that the initial velocity is v0.

(e) Setting v = 0 in the equation you just found, what is the maximum height, yM , of
the projectile? Notice that we never had to explicitly find y (t) in order to
answer this question. This is where the magic of the change of variables pays
off.

(f) Repeat these steps for the downward motion of the projectile, finding the function
y (v) as it is falling from its maximum height. Be careful that you have the correct
sign for the drag force! Also, remember that in this case, the initial velocity is
zero, since the projectile comes to rest at its maximum height.

(g) By setting y (vg) = 0 in the above equation you found, find the velocity vg of the
projectile right before it crashes back into the ground. You should be able to solve
this exactly, without any approximations.
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