
Physics 103 Homework 3
Summer 2015

Instructor: Keith Fratus
TA: Michael Rosenthal

Due Date: Friday, July 17th

1. Consider a damped harmonic oscillator subject to a sinusoidal forcing function,

ÿ + 2βẏ + ω2y = sin (γt) .

Solve this differential equation in order to find its particular solution (which was quoted
in lecture).

2. Consider a particle subject to the potential energy function

U (x) = γ cos2 (kx) ,

where γ, k > 0 are positive constants. Assume the particle has an energy E = γ. On
last week’s homework, you computed t (x), the amount of time it took the particle to
travel from x0 = π/2k to some other point π/2k < x < π/k.

(a) Invert this expression for t (x) to find the particle’s motion, x (t). Make a plot of
kx
(
t̃
)
, where

t̃ ≡ k
√

2γ/m t

Scaling the coordinates in this way allows you to make a single plot which covers
all parameter cases. Do you think this type of motion is realistic for a physical
particle? Why or why not?

(b) Notice that we were able to specify the motion of the particle without supplying
the initial velocity - where did the two initial conditions come from in order to
determine this solution?

(c) Extra Credit: For E 6= γ, performing the integral in closed form becomes more
difficult. Use Mathematica to perform the integration numerically and make a
plot of t̃ (kx) for E/γ = 0.5, 0.75, 1, 1.01, 1.1, 1.5 and 5. Notice that the numerical
integration command can be nested within the plot command, so it’s not necessary
to do this as two separate steps. If you flip this plot on its side, you will effectively
have a plot of kx

(
t̃
)
. What is the major qualitative difference between E/γ > 1

and E/γ < 1? Why is this the case? What happens to the qualitative shape of
the plot as E/γ � 1? Physically, why does this behaviour occur?
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3. Consider the driven damped harmonic oscillator, subject to the driving force

f (t) = Floor [5t/2π] ; 0 < t < 2π,

where Floor [x] is the “floor function,” which is equal to the largest integer less than
or equal to x. For example, Floor [1.5] = 1 and Floor [3] = 3. A plot of this forcing
function is shown in the figure below. After the time t = 2π, this driving force repeats
itself periodically.
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(a) Work out the Fourier series coefficients, an and bn, for this driving force, through
n = 5 (you may use a calculator for this). Make a plot of your fifth-order Fourier
series approximation, and compare it with the shape of the driving function. Hint:
Because the function is periodic, you can shift the region of integration when
computing the Fourier coefficients, such that

an =
2

T

∫ T/2

−T/2
f (t′) cos (nλt′) dt′ → 2

T

∫ T

0

f (t′) cos (nλt′) dt′,

and similarly for the sine term.

(b) Use these Fourier coefficients to write down the particular solution to the driven
oscillator under this forcing function. Make a plot of your particular solution for
ω =
√

2 and β = 1.

(c) Extra Credit: Use Mathematica to compute the Fourier expansion of the driving
function through n = 50. Compare this 50th-order approximation with the shape
of the full driving function. Again for ω =

√
2 and β = 1, plot the motion of

the particle. Does the inclusion of the 45 extra terms make a major qualitative
difference to your plot? Now, consider instead the case that ω = 10 and β = 1. In
this case, does it matter if we take n = 50 as opposed to n = 5? You should make
plots for both cases. Why do you think the necessary number of terms depends on
ω?
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4. Prove the derivative property of the Fourier transform,

(̂f (n)) (ν) =
1√
2π

∫ ∞
−∞

dn

dtn
(f (t)) e−iνt dt = (iν)n f̂ (ν) .

for an arbitrary integer n. In order to arrive at this relation, do you need to assume
that the function f (t) has certain boundary conditions? If so, what are they? (By
boundary conditions, we mean the behaviour of f (t) and its derivatives as t → ∞).
Hint: Use integration by parts, and also induction.

5. Consider the piecewise forcing function

f (t) =


t+ 1, −1 < x < 0
−t+ 1, 0 < x < 1,

0, otherwise

This forcing function has the triangular shape shown in the figure below.
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(a) Solve for the particular solution of a damped harmonic oscillator being driven by
this forcing function, using whatever method you deem most appropriate. Hint:
It may be easiest to specify your answer in the form of a piecewise function. Any
integrals which need to be performed can be looked up in a table or computed
using a calculator.

(b) Using this particular solution, find the motion of the oscillator as a function of
time, assuming it was at rest right before force started acting, at t = −1. You
should be able to find a closed-form expression in terms of the parameters of the
problem. Using this solution, make a plot for β = 1, and ω = 1, 2 and 5.

6. Check that the Green’s function we found in class for the damped harmonic oscillator
satisfies the appropriate differential equation. Hint: The derivative of the Heaviside
step function Θ (x) is the delta function δ (x). Also, any term being multiplied by a
delta function δ (x) can be evaluated at the point x = 0, since it is zero otherwise.
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7. Consider the nonlinear oscillator described by the differential equation

ÿ + ω2y + εyn = 0,

where 0 < ε� 1.

(a) Using the Poincaré-Lindstedt approach to perturbation theory, find the motion of
the oscillator as a function of time, accurate to first order in ε, for n = 5 and n = 7.
Assume the boundary conditions y (t = 0) = 1 ; ẏ (t = 0) = 0. Make sure that
your equation does not contain any secular terms! How many higher harmonics
are being excited in each case?

(b) Use the short time perturbation technique to find the motion valid through fourth
order in time, for the same boundary conditions above, for n = 5. Do not make
use of the smallness of ε in this part.

(c) Extra Credit: Using the formula

cosn θ =
2

2n

n−1
2∑

k=0

(
n

k

)
cos ((n− 2k)θ),

apply the Poincaré-Lindstedt approach to perturbation theory to find the motion
of the oscillator as a function of time, accurate to first order in ε, for arbitrary
odd powers n (a different identity holds for even powers). Use the same boundary
conditions as above.

8. Derive the resonance condition stated in class,

γ = ωR =
√
ω2 − 2β2.

9. Consider the sawtooth forcing function discussed in lecture. If this forcing function is
applied to an oscillator with β = 0 and ω = 1, solve for the motion of the oscillator in
the limit of very long times. Hint: How many frequency components of the sawtooth
wave do you need to consider in this limit? Why?

10. Consider the first-order, linear differential operator

L =
d

dt
+ α

for α > 0. Consider the Green’s function for this differential operator, which satisfies

LG (t; t0) = δ (t− t0) .

(a) Derive an integral expression for the Green’s Function.

(b) Extra Credit: Solve this integral to show explicitly that

G (t; t0) = e−α(t−t0)Θ (t− t0)

(c) Regular Credit: Check that this Green’s function satisfies the correct differential
equation.
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11. Consider a weakly damped harmonic oscillator subject to a sudden impulse,

ÿ + 2βẏ + ω2y = λδ (t− t0) .

The particular solution in this case is then of course given by the Green’s function

yp (t) = λG (t; t0) =
λ

Ω
e−β(t−t0) sin (Ω (t− t0)) Θ (t− t0)

(a) Write down the most general solution to the particle’s motion, in terms of arbitrary
constants to be fixed by initial conditions.

(b) Assuming that the particle was at rest at equilibrium right before the impulse, find
values for these arbitrary constants in order to determine the motion in this case.

(c) What is the velocity of the particle as a function of time? Does it change contin-
uously?

(d) How much energy is imparted to the particle by the impulse?

12. Consider a damped harmonic oscillator subject to a cosine forcing function,

ÿ + 2βẏ + ω2y = f0 cos (γt) ,

as we discussed in class. In particular, consider the long-time limit, after any transients
have died out.

(a) What is the energy of the oscillator, as a function of time, in this limit? What
does this become equal to when γ = ω? What is it equal to when γ = ωR?

(b) How much work does the driving force perform on the oscillator over the course of
one driving period? How much work does the drag force perform on the oscillator
over the course of one driving period?

13. Extra Credit: Use the method of Fourier transformation to find the most general
solution to

ÿ + 2βẏ + ω2y = f0e
−λ|t|,

where λ > 0 is a constant. You may need to use Cauchy’s residue theorem in order
to perform some of the integrals, which I (or the TAs in the PSR) would be happy to
explain.

Please choose five problems from Set A, and also choose three problems from Set B.

Set A: Problems 1,2,4,8,9,11,12

Set B: Problems 3,5,6,7,10
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