
Some Perspective

The language of Kinematics provides us with an efficient method for describing
the motion of material objects, and we’ll continue to make refinements to it as we
introduce additional types of coordinate systems later on. However, kinematics
tells us nothing about how or why material objects move in the way they do - in
order to answer those questions, we need some sort of physical principle which
tells us how materials bodies interact with each other and how this affects their
motion.

Even today we don’t understand the full extent of these physical principles
- science is always a work in progress, and physics is no exception. Every day,
physics experiments (including ones happening right here at UCSB!) make fur-
ther and further refinements to our understanding of these principles. Because
of this, the “laws” of physics which we will discuss in our course, in particular
Newtonian mechanics, will necessarily be approximations.

However, they are in fact incredibly good approximations. For hundreds
of years, it was believed that Newtonian mechanics was THE correct model
of the universe, capable of describing everything in the material world around
us. While more efficient versions of Newtonian mechanics were later invented
(Lagrangian and Hamiltonian mechanics, which you will learn about next quar-
ter), these were only mathematical modifications which made no fundamental
changes to the underlying physics. Of course, the reason people believed that
Newtonian mechanics was correct was because the predictions it made were so
accurate, no one could perform a sensitive enough experiment which disagreed
with them! The extent to which Newtonian mechanics makes incorrect pre-
dictions could only be determined once experiments were sensitive enough to
be able to detect the detailed structure of the atom, at which point it became
clear that Quantum mechanics was ultimately a more accurate description of
the universe.

The punchline is that so long as we’re not trying to make detailed predictions
about the behaviour of things like atoms, we can safely use Newtonian mechanics
as if it were correct, because we will never know the difference anyways. And
there is a huge advantage to doing just that - the laws of Newtonian Mechanics
are significantly less complicated than those of Quantum Mechanics! There are
also still plenty of applications for Newtonian mechanics - everyday mechanical
objects are still an important part of our lives, and we need efficient tools for
describing how they behave. So with these caveats in mind, let’s start learning
about Newtonian Mechanics.

Forces and Newton’s Laws

As we know from freshman mechanics, Newton’s Laws tell us how an object’s
motion is determined by the forces acting on it. Intuitively, a force on an
object is a sort of “push” or “pull” that an object experiences, and based on
what is currently happening to the object, we have rules that tell us what the
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force acting on the object is. For example, if the object is in a gravitational
field, we have rules which tell us what the force acting on the object should
be (Newton’s Law of gravitation), or if the object happens to be an electron
moving in a magnetic field, we have an equation describing the resulting force
in that case (the Lorenz force law). Ultimately, all of the forces that act on a
body are a result of interactions it experiences with other bodies, and so the
idea of forces is really just a succinct mathematical way to describe how bodies
interact with each other. From your freshman mechanics class, you probably
have a pretty decent intuitive grasp of what a force is, and for the most part, this
intuitive notion will be sufficient for our purposes. Entire books could (and have
been) written on the philosophy of exactly what a “force” is, but this would be
overkill for our course, so we won’t dwell on it now (although Taylor discusses
this matter in slightly more detail than I have, for those of you interested in
reading more).

In particular, the force acting on a body is a vector quantity. It has a
magnitude (roughly speaking, how much we’re pushing on the body), along
with a direction (roughly speaking, where we are trying to push it). When
more than one type of force acts on a body, we say that the net force acting
on it is the vector sum of all of the individual forces. Newton’s Second Law
tells us that the total force acting on a body causes that body to accelerate
according to

~F = m~a, (1)

where m is the mass of the body. The mass of an object is another quantity
which you probably have an intuitive sense of from freshman mechanics, and
we know it is a rough measure of how much an object resists acceleration. It
turns out there are also some philosophical subtleties in defining the mass of
an object, which we won’t dwell on either, but for those that are interested,
Kibble’s textbook has a good discussion of how to handle these issues (section
1.3). Remember that the mass of an object is different from its weight. The
weight of an object is the force that object experiences due to the effects of
gravity. If I take a ball on Earth and move it to the Moon, where the effects
of gravity are weaker, then the weight of the ball will be reduced. But its mass
will stay the same. If I were to take a magnetic ball out into empty space far
from any other bodies, where any gravitational effects are negligible, and study
its reaction to a magnetic force, I would be learning something about its mass.

When there is no force acting on an object, the above equation tells us that
its acceleration is zero, and therefore it will travel with a constant velocity. This
fact, despite following as an obvious consequence of Newton’s Second Law, is
given its own name - Newton’s First Law.

Newton’s second law isn’t very useful unless I start telling you something
about what types of forces can act on an object and how they behave. But
before I start giving examples of forces, Newton’s third law tells us that there
are certain conditions that any valid force must obey. In particular, whenever
two bodies interact, the magnitude of the force exerted on each body is the
same, while the directions of the forces are opposite. This is often stated by
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saying that bodies exert equal and opposite forces on each other. For example,
two bodies with mass will be attracted to each other through gravity, and the
force they exert on each other will be the same in magnitude. The direction
of the force on one body is such that the force points towards the other body,
so that the two forces are opposite in direction. This is sketched in Figure 1.
We’ll have plenty more to say about Newton’s law of gravitation as the course
progresses.

To clarify the difference between the two forces in a force pair, we often
develop a subscript notation. If I have two bodies which I will call A and B,
then the force from body A acting on body B is written ~FA on B. Newton’s third
law then reads

~FA on B = −~FB on A. (2)

From a practical standpoint, Newton’s second law is the one we will make use
of the most in this course, although from a fundamental standpoint, Newton’s
third law is absolutely crucial. It turns out that (as discussed in section 1.3 of
Kibble’s textbook) Newton’s third law is necessary in order to be able to define
the mass of an object, and later in the course, Newton’s third law will play
an important role in the concept of center of mass motion and conservation of
momentum.

Projectile Motion with Air Resistance

To see a concrete example of Newton’s laws in action, let’s revisit the projectile
motion problem we recently studied, but with a slight modification - this time
we will include the effects of air resistance. We’re all familiar with the fact that
if we move very quickly through the air, we feel a force pushing on our bodies.
While this force is typically a result of complicated microscopic interactions
between the molecules in the air and our bodies, it is usually possible to model
the force in a simple form. In many realistic situations, it is accurate to model
the force acting on a body due to air resistance as

~FR = −kvnv̂, (3)

where v is the magnitude of the velocity, v̂ is a unit vector pointing in the
direction of the velocity, n is some integer power, and k is some numerical
constant, referred to as the drag coefficient. The constant k is something which
in principle could be calculated from first principles, and typically depends on
the size and shape of the body in question. As a practical matter, it is often
easiest to simply measure the value of k by doing an experiment on the body.
In either case, we will assume that the parameter k is something that we know
the value of. A free-body diagram for this modified situation is shown in Figure
2.

As we usually do, we’re going to make the approximation that the cup
is a point-like object, which, despite sounding somewhat silly, turns out to
be a surprisingly reasonable assumption, provided that the shape and overall
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Figure 1: Two massive bodies will exert a gravitational force on each other, and
it will obey Newton’s third law. Newton’s law of gravitation is shown at the
bottom.

structure of the block doesn’t change much (later in the course we’ll understand
why this approximation works so well when we discuss the notion of center of
mass).

Let’s consider an example with n = 1, when the drag force can be written
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Figure 2: The various forces acting on a projectile in motion through the air.
Image credit: Kristen Moore

as
~FR = −kvv̂ = −k~v. (4)

If we revisit our projectile motion problem from our discussion of kinematics,
where the material body in question is now subject to the force of gravity and
air resistance, the total force will be

~F = ~Fg + ~FR = m~g − k~v, (5)

where m is the mass of the body, and ~g is the local acceleration due to gravity.
Again, we’ll set up a coordinate system whose x axis is parallel with the ground
and whose y axis points vertically upwards away from the ground. We’ll place
the origin so that it is on the ground, directly below the muzzle of the gun.
This is shown in Figure 3. In our coordinates, the initial location of the bullet
is specified by

~r0 =

(
0
h

)
, (6)

where h is the height of the nozzle of the gun off of the ground. If the gun makes
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an angle of θ with respect to the horizontal, our initial velocity will be

~v0 =

(
v0 cos θ
v0 sin θ

)
, (7)

where v0 is the initial speed of the bullet. The acceleration due to gravity is
given by

~g =

(
0
−g

)
, (8)

where g is approximately 9.8 meters per second squared.

Figure 3: The initial set up of our projectile motion problem, the same as it
was in the previous lecture. Image credit: Kristen Moore

If we now write Newton’s Second Law, ~F = m~a, in terms of components, we
find (

max
may

)
=

(
0
−mg

)
+

(
−kvx
−kvy

)
, (9)

or, (
mr̈x
mr̈y

)
=

(
−kṙx

−mg − kṙy

)
. (10)

The above vector equation is a system of differential equations - the two com-
ponent equations define the coordinates rx (t) and ry (t) in terms of their own
derivatives. In particular, the above system of differential equations is decoupled
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- one equation involves terms that only depend on the x coordinate, while the
other equation involves terms that only depend on the y coordinate. This type
of system is especially easy to solve, since we can treat each equation separately,
without worrying about the other. If we had chosen a drag force with n 6= 1,
this would not have been the case - the higher power of the velocity would have
mixed the two coordinates together in a more complicated way.

At this point in your physics career, you should have encountered some basic
differential equations at least once before, but we’ll review the basic steps here.
Let’s start with the equation for the x coordinate, which reads

r̈x = − k
m
ṙx. (11)

If we make use of the basic definitions of velocity as the derivative of position,
and acceleration as the derivative of velocity, then we can rewrite this equation
in terms of the velocity and its derivative,

v̇x = − k
m
vx. (12)

In this form, the differential equation in the x direction is a first-order differential
equation for the x coordinate of the velocity. We say that it is a first-order
differential equation because the highest derivative that appears is a first-order
one.

In order to proceed in solving the differential equation, we use a technique
known as separation of variables. The idea is to first rearrange the equation so
that it reads

v̇x
vx

= − k
m
, (13)

with the velocity and its derivative appearing on the left, and the constant terms
appearing on the right. Now, we integrate each side of the differential equation
with respect to time, ∫ t

t0

v̇x
vx

dt′ = − k
m

∫ t

t0

dt′, (14)

where t0 is the initial time (often taken to be zero), and t is some later time
at which we want to know the location (and velocity) of the projectile. The
integral on the right side is trivial to perform, and we find∫ t

t0

v̇x
vx

dt′ = − k
m

(t− t0) . (15)

Now, without prior knowledge of what vx (t) is, we can’t immediately com-
pute the integral on the left side. However, we have a valuable tool at our
disposal - the substitution rule for definite integrals. The substitution rule says
that

v̇x dt
′ =

dvx
dt′

dt′ = dvx, (16)
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which allows us to perform a change of variables in an integral. Using this fact,
we find ∫ vx(t)

vx(t0)

dvx
vx

= − k
m

(t− t0) . (17)

We can now perform the integral over the left side, to find

ln

(
vx (t)

vx (t0)

)
= − k

m
(t− t0) . (18)

If we now take the exponential of both sides, and do a little bit of algebraic
rearrangement, we find that

vx (t) = vx (t0) exp

[
− k
m

(t− t0)

]
. (19)

This equation tells us that the velocity in the x direction decays exponentially
over time, which makes sense, since we expect the retarding force to decrease
the speed of the projectile. Notice that when k = 0, the velocity is constant for
all time, which is exactly what we would expect when there is no drag. We can
rewrite the equation slightly,

vx (t) = vx (t0) exp [− (t− t0) /τ ] , (20)

where
τ ≡ m/k (21)

is known as the characteristic time. The characteristic time gives a rough sense
of how long it takes for the velocity to decay appreciably (more precisely, it is
the time it takes for the magnitude of the velocity to decrease by a factor of
e ≈ 2.718). Notice that when k = 0, the characteristic time is infinity.

The above solution of the differential equation for the x coordinate should
be familiar to you from previous courses. If any of this seems unfamiliar, you
should review ASAP! Notice that if the terms on the right had depended on time
in some specified way, the integral on the right still would have been straight-
forward to perform. For example, if the drag coefficient k were a function of
time, so that k ≡ k (t), the integral over time could have still been computed, so
long as we knew the functional form for k (t). This is why this method is known
as separation of variables - all of the explicit dependence on time is separated to
one side, where all of the explicit dependence on the velocity (and its derivative)
is separated to the other side. While this solution technique is a valuable tool,
it unfortunately only works for first-order equations. We’ll learn how to solve
more general equations later on in the course.

The differential equation for the y coordinate can similarly be written in
terms of the velocity, and, after some rearrangement, takes the form

v̇y

g + k
mvy

= −1. (22)
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We can again proceed by integrating both sides with respect to time, and then
performing a change of variables on the left. This results in the equation∫ vy(t)

vy(t0)

dvy

g + k
mvy

= − (t− t0) . (23)

Solving the integral on the left, we find

m

k
ln

[
mg + kvy (t)

mg + kvy (t0)

]
= − (t− t0) . (24)

With a little bit of algebraic rearrangement, this becomes

vy (t) =
(m
k
g + vy (t0)

)
exp

[
− k
m

(t− t0)

]
− m

k
g, (25)

or, in terms of the characteristic time,

vy (t) = (gτ + vy (t0)) exp [− (t− t0) /τ ]− gτ. (26)

The above equation for the y component of the velocity tells us that at the
initial time, when t = t0,

vy (t = t0) = (gτ + vy (t0)) e0 − gτ = gτ + vy (t0)− gτ = vy (t0) , (27)

exactly as it should. The more interesting case occurs at infinitely long times,
when

vy (t =∞) = (gτ + vy (t0)) e−∞ − gτ = −gτ. (28)

This tells us that in the limit of infinitely long time, the velocity approaches a
constant value, which is known as the terminal velocity. The terminal veloc-
ity is the velocity which is reached when the gravitational force on the falling
projectile precisely balances out the force due to air resistance. To see that this
is so, simply plug the expression for the terminal velocity into the equation for
the force due to drag,

~FRy = −kvy = k
m

k
g = g = −~Fgy. (29)

Now that we have the two velocity components, one property of the projec-
tile’s motion that we can compute is its acceleration. The acceleration is found
by differentiating the velocity, and we find

ax (t) = −vx (t0)

τ
exp [− (t− t0) /τ ] = −k vx (t0)

m
exp [− (t− t0) /τ ] (30)

for the x component. Notice that at t = t0, this expression tells us that

ax (t = t0) = −k vx (t0)

m
, (31)
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which is simply the force due to drag right at the moment that the projectile is
fired. At infinitely long times, the acceleration decays to zero, as it should, since
the velocity is approaching the constant value of zero. For the y component, we
find

ay (t) = − (gτ + vy (t0))

τ
exp [− (t− t0) /τ ] = −

(
g +

k

m
vy (t0)

)
exp [− (t− t0) /τ ] .

(32)
At the initial time, we find

ay (t = t0) = −g − k

m
vy (t0) , (33)

which is simply the acceleration due to gravity and the acceleration due to the
initial drag force. At infinitely long times, the acceleration in the y direction
also decays to zero, since the gravitational and drag forces eventually balance
each other, leading to zero net acceleration. The magnitude of the acceleration
is also a simple calculation, and after a little algebra, we find

a (t) =
√
a2x (t) + a2y (t) =

√(
k

m
vx (t0)

)2

+

(
g +

k

m
vy (t0)

)2

e−(t−t0)/τ . (34)

The magnitude of the acceleration also decays exponentially, approaching zero
at long times.

Projectile Range with Air Resistance

Now that we know the velocity of the projectile as a function of time, we can
find the position of the projectile as a function of time simply by integrating
the velocity. For the x component, we find

rx (t) = rx (t0) +

∫ t

t0

vx (t′) dt′ = vx (t0)

∫ t

t0

exp [− (t′ − t0) /τ ] dt′, (35)

since the initial value of the x component is zero. Computing the integral, we
have

rx (t) = vx (t0) τ
[
1− e−(t−t0)/τ

]
. (36)

Written in terms of the angle at which our projectile is initially pointed,

rx (t) = v0τ cos (θ)
[
1− e−(t−t0)/τ

]
. (37)

At large times, this becomes

rx (t =∞) = v0τ cos (θ)
[
1− e−∞

]
= v0τ cos (θ) . (38)

This tells us that even if the projectile were to travel through the air for infinitely
long times, it would never reach a horizontal position larger than the above
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constant. Intuitively, this makes sense - just like a block sliding on a table
eventually comes to rest, a projectile’s horizontal motion is eventually impeded
by air resistance, and since there are no other forces in the horizontal direction,
it will stay at rest along this direction.

Of course, in a realistic situation, a projectile will generally run into the
ground in an amount of time which is less than infinity, so the horizontal range
of the projectile will be less than the above constant. To find out exactly how
far the projectile will travel, we need to know how long it takes for the vertical
component of the position to reach zero, which indicates that the projectile has
hit the ground. The y component of the position is also found by integrating,
and we have

ry (t) = ry (t0) +

∫ t

t0

vy (t′) dt′ = h +

∫ t

t0

[
(gτ + vy (t0)) e−(t−t0)/τ − gτ

]
dt′,

(39)
which, after integration, yields

ry (t) = h+
[
gτ2 + vy (t0) τ

] [
1− e−(t−t0)/τ

]
− gτ (t− t0) . (40)

Notice that as the time becomes large and the exponential term becomes small,
we have

ry (t→∞) =
[
h+ gτ2 + vy (t0) τ

]
− gτ (t− t0) , (41)

which is just motion with a constant velocity of gτ , as we found earlier. In
order to find the time at which the projectile hits the ground, we need to set
the vertical coordinate of the position equal to zero. Taking t0 = 0 for simplicity,
and writing the initial velocity in terms of the angle of the projectile, this means
that we need to solve the equation

ry (tR) = 0 ⇒ h+
[
gτ2 + v0τ sin (θ)

] [
1− e−tR/τ

]
= gτtR. (42)

Unfortunately, it is not possible to solve the above equation in a simple closed
form. No clever combination of taking logarithms or exponentials will result in
a simple expression for tR. Because of the presence of the exponential term, this
type of equation is known as a transcendental equation, since the exponential is
an example of a transcendental function (a transcendental function is a function
which is not a simple algebraic function of its arguments). However, there are
several ways to find the value of tR, depending on what our needs are.

If we are trying to calculate the range of a specific projectile in a real-world
application (say, for calculating the range of a missile on some navy boat),
then a numerical approach is often the best approach. If we specify a particular
numerical value for all of the parameters in the problem (the mass of the projec-
tile, the drag coefficient, the acceleration due to gravity, and the initial position
and velocity), then there are many computer programs which can compute an
approximate value for tR. If we only need to know the range of one specific
projectile, but we need it to a high level of precision, this is often the best
approach - modern computers can perform billions of calculations per second,
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and so can attain very accurate numerical solutions in a short period of time.
You’ll explore how some of these algorithms work in the homework (although I
promise I won’t make you do a billion calculations).

However, in many cases we want to gain a better intuitive understanding
of how the details of the problem vary as we modify or change its parameters.
This might be important, for example, if we were trying to understand how
to modify the parameters of a projectile to ensure that it had the best possi-
ble performance under different circumstances. In this case, a perturbative
approach is typically a better route. In fact, perturbative approaches are so
commonplace in physics that it pays to set aside some time and understand how
exactly they work. We’ll use a perturbative method here to solve our current
projectile problem, although we will see perturbative approaches appear several
more times before the course is through.

When we use a perturbative approach, we first identify some parameter in
our problem which we can think of as being sufficiently “small.” Usually we
choose this parameter so that when the parameter is equal to zero, we know
how to solve the problem in closed form. In our case, the drag coefficient k is a
natural choice for this parameter, since we’ve already seen how to calculate tR
when there is no drag. Next, we assume that the quantity we are trying to find,
in this case tR, is a function of k, tR ≡ tR (k), which has a well-defined Taylor
series expansion in terms of k,

tR (k) =

∞∑
n=0

tRnk
n = tR0 + tR1k + tR2k

2 + ... (43)

This is almost always the case in real-world problems, and we expect it to be
true here - as we slowly add air resistance to the projectile, the range of the
projectile should decrease slightly, due to the effects of drag. The goal of the
perturbative approach is then to identify each of the coefficients which appear
in the Taylor series expansion, one at a time.

To see how this method works, let’s assume that the drag coefficient, k, is
indeed suitably “small” in some sense. Exactly what constitutes “small” can
sometimes be a subtle question, the answer to which is sometimes only clear
after performing the perturbative method. However, it is often the case that
the approach works very well even for fairly large parameter values. So let’s
start by taking our original equation and rewriting it slightly,

h+

[
g
m2

k2
+ v0 sin (θ)

m

k

] [
1− e−ktR/m

]
= g

m

k
tR, (44)

so that the dependence on k is explicit. We’ll also define

φ ≡ v0 sin (θ) , (45)

and multiply both sides by k2, in order to get

hk2 +
[
gm2 + φmk

] [
1− e−ktR/m

]
= gmktR. (46)
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Now, we insert the expansion of tR in terms of k into this equation, to find

hk2 +
(
gm2 + φmk

)(
1− exp

[
− k
m

{ ∞∑
n=0

tRnk
n

}])
= gmk

{ ∞∑
n=0

tRnk
n

}
.

(47)
This expression may not immediately seem like an improvement, since we still
need to solve for a bunch of terms which are in the exponential. However, the
trick is to realize that the exponential function itself also has a Taylor series
expansion, which can be written as

ex =

∞∑
p=0

xp

p!
= 1 + x+

x2

2
+
x3

6
+ ... (48)

Because the small parameter k also shows up inside of the exponential, we can
use this expansion in our equation, to find

hk2 +
(
gm2 + φmk

)(
1−

∞∑
p=0

1

p!

[
− k
m

{ ∞∑
n=0

tRnk
n

}]p)
= gmk

{ ∞∑
n=0

tRnk
n

}
.

(49)
We now have an equation which involves an expansion only in powers of k,
which thus eliminates the issue of the exponential function.

Of course, this expression is still somewhat intimidating looking, especially
with one infinite sum nested inside of the other. The trick to being able to
actually do something with this equation is to remember a theorem about Taylor
series: if two power series expansions are equal to each other, then it must be
true that the individual terms are equal. In other words, if we have

a0 + a1x+ a2x
2 + ... = b0 + b1x+ b2x

2 + ... (50)

then it must be the case that

a0 = b0 , a1 = b1 , a2 = b2 , ... (51)

This means that if we expand out both sides of our equation, we can match
powers of k to determine the coefficients. If we only want a small number of
coefficients, we only need to expand out a few terms. Let’s see exactly how
expanding out both sides of our equation in this way tells us something about
the coefficients.

The right side of our equation is easy to expand - it simply becomes

gmk

{ ∞∑
n=0

tRnk
n

}
= gmtR0k + gmtR1k

2 + gmtR2k
3 + ... (52)

For now, let’s expand each side out to third order in k. We’ll see later why this
was a good choice. As for the left side of our equation, a little more care is
required. We want to expand the sums on the left so that we keep all of the
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powers of k that appear up through k3, so that we can match powers on both
sides of the equation. To begin this expansion, let’s notice that

1− ex = 1−
(

1 + x+
x2

2
+
x3

6
+ ...

)
= −

∞∑
p=1

xp

p!
, (53)

since the first term in the sum cancels. Using this, our equation becomes

hk2−
(
gm2 + φmk

)( ∞∑
p=1

1

p!

[
− k
m

{ ∞∑
n=0

tRnk
n

}]p)
= gmtR0k+gmtR1k

2+gmtR2k
3+...

(54)
This means that the quantity on the left we need to expand is

∞∑
p=1

1

p!

[
− k
m

{ ∞∑
n=0

tRnk
n

}]p
=

∞∑
p=1

(−1)
p

p!

kp

mp

{ ∞∑
n=0

tRnk
n

}p
(55)

keeping terms as high as k3.
In order to perform the expansion, we’ll consider the sum over p, one term

at a time. Let’s start with the p = 1 term, which gives

− k
m

{ ∞∑
n=0

tRnk
n

}
= − tR0

m
k − tR1

m
k2 − tR2

m
k3 + ... (56)

Despite the fact that the inside sum over n has infinitely many terms, we only
need to keep the first three, since we are only expanding both sides through k3.
Any additional terms contribute a factor of k4 or higher, which contributes to
a power that we are not interested in matching.

Continuing with the expansion over p, the p = 2 term is

1

2

k2

m2

{ ∞∑
n=0

tRnk
n

}2

=
1

2

k2

m2
( tR0 + tR1k + ... )× ( tR0 + tR1k + ... ) . (57)

The sums inside the parentheses contain infinitely many terms, which then
must be multiplied. While it may seem like carrying out this multiplication is
impossible, the fact that we only want an expansion through k3 means that this
is actually a relatively simple task. First, we notice that because the expression
already contains an overall factor of k2, we only need to expand multiplication
of the parentheses out to order one. If we start to perform the multiplication
by expanding one term at a time, we find

( tR0 + tR1k + ... )× ( tR0 + tR1k + ... ) = (58)

tR0 ( tR0 + tR1k + ... ) + tR1k ( tR0 + tR1k + ... ) + ...

Despite the fact that there are infinitely many terms in this sum, each term
contributes increasingly higher powers of k. If we only want to expand this
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multiplication to first order in k, then we simply take

( tR0 + tR1k + ... )× ( tR0 + tR1k + ... ) = (59)

tR0 ( tR0 + tR1k + ... ) + tR1k ( tR0 + ... ) + ... = t2R0 + 2tR0tR1k + ...

Therefore, if we only want to expand our expression through k3, the only part
of the p = 2 term that we need is

1

2

k2

m2

{ ∞∑
n=0

tRnk
n

}2

=
1

2

k2

m2

(
t2R0 + 2tR0tR1k + ...

)
=

1

2

t2R0

m2
k2 +

tR0tR1

m2
k3 + ...

(60)
Every additional term is at least as large as k4.

The p = 3 term in the sum is given by

−1

6

k3

m3

{ ∞∑
n=0

tRnk
n

}2

= −1

6

k3

m3
( tR0 + tR1k + ... )

3
. (61)

Because the overall pre-factor on this term is already third order in k, the term
in parentheses only needs to be expanded to zero order in k, which simply gives
the constant value t3R0. Therefore, the relevant contribution from the p = 3
term is

−1

6

k3

m3
( tR0 + tR1k + ... )

3
= −1

6

t3R0

m3
k3 + ... (62)

Continuing further, the p = 4 term in the sum is given by

1

24

k4

m4

{ ∞∑
n=0

tRnk
n

}2

=
1

24

k4

m4
( tR0 + tR1k + ... )

4
. (63)

However, this term does not contribute any factors of k which are less than
fourth order, due to the overall factor of k4. Of course, this will also be the case
for every higher power of p. Thus, the only two powers of p which are important
are the first three, which is much less than infinity!

Taking our expressions for the p = 1, p = 2 and p = 3 terms and combining
them together, we find that the infinite sum on the left side of our equation can
be expressed as

∞∑
p=1

(−1)
p

p!

kp

mp

{ ∞∑
n=0

tRnk
n

}p
(64)

= − tR0

m
k − tR1

m
k2 − tR2

m
k3 +

1

2

t2R0

m2
k2 +

tR0tR1

m2
k3 − 1

6

t3R0

m3
k3 + ...

= − tR0

m
k +

(
1

2

t2R0

m2
− tR1

m

)
k2 +

(
tR0tR1

m2
− 1

6

t3R0

m3
− tR2

m

)
k3 + ...

All of the terms that appear after the ellipses are at least fourth order in k.
Despite the appearance of an infinite sum, the number of terms we need to
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worry about is actually fairly small, all things considered. Using this expression
for the sum, our original equation now reads

hk2 −
(
gm2 + φmk

)(
− tR0

m
k +

(
1

2

t2R0

m2
− tR1

m

)
k2 +

(
tR0tR1

m2
− 1

6

t3R0

m3
− tR2

m

)
k3
)

+ ...

(65)

= gmtR0k + gmtR1k
2 + gmtR2k

3 + ...

Finally, our original equation is starting to look simpler. The last thing we need
to do is perform the multiplication on the left side, and then match powers of k.
When we multiply out the terms on the left side, there will be some powers of k4

which appear. However, we can also ignore these, since we are only matching
the first few powers of k. If we expand out these terms and ignore the k4

contributions, we find

hk2 − gm2

(
− tR0

m
k +

(
1

2

t2R0

m2
− tR1

m

)
k2 +

(
tR0tR1

m2
− 1

6

t3R0

m3
− tR2

m

)
k3
)
(66)

− φm
(
− tR0

m
k2 +

(
1

2

t2R0

m2
− tR1

m

)
k3
)

+ ...

= gmtR0k + gmtR1k
2 + gmtR2k

3 + ...

At last, we now have an expansion of our equation, on both sides, which is
valid through k3.

Matching powers of k now gives us three equations. The first one comes
from matching first-order powers on both sides, and it reads

gmtR0 = gmtR0. (67)

This equation is certainly consistent, although it isn’t exactly very interesting.
So let’s move on to the second equation, which is more interesting.

Matching powers of k2, we find

h+ gmtR1 −
1

2
gt2R0 + φtR0 = gmtR1, (68)

or simply

h− 1

2
gt2R0 + φtR0 = 0. (69)

This is a quadratic equation for tR0, and in fact it is exactly the same equa-
tion that we found when we neglected air resistance . This is exactly
what we want, because our expansion in powers of k tells us that when there is
no air resistance, we should have

tR (k = 0) =

∞∑
n=0

tRn (0)
n

= tR0. (70)
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In other words, tR0 is precisely the result we get when there is no drag. Solving
this quadratic equation gives the same result as before,

tR0 =
φ+

√
φ2 + 2gh

g
. (71)

The third equation is the one which yields new information about the effects
of air resistance. Matching powers of k3, we find

−gm2

(
tR0tR1

m2
− 1

6

t3R0

m3
− tR2

m

)
− φm

(
1

2

t2R0

m2
− tR1

m

)
= gmtR2, (72)

or, after a little rearrangement,

(φ− gtR0) tR1 +
g

6m
t3R0 −

φ

2m
t2R0 = 0. (73)

Since the term tR1 only appears linearly in this equation, some simple algebra
immediately yields

tR1 =
(3φ− gtR0)

(φ− gtR0)

t2R0

6m
. (74)

We now have an explicit expression for tR1 in terms of the parameters of the
problem (remember that tR0 has its own expression in terms of the parameters
of the problem, which we found previously). With this knowledge, we can now
write

tR (k) = tR0 + tR1k + ... = tR0 +
(3φ− gtR0)

(φ− gtR0)

t2R0

6m
k + ... (75)

where tR0 is given by

tR0 =
φ+

√
φ2 + 2gh

g
. (76)

Despite looking slightly complicated, we have now achieved our goal of finding
an explicit expression for tR, which is valid to first order in the drag coefficient
k. If the drag coefficient is small enough, so that the force due to air resistance
is not too strong, this should be a reasonably good approximation for the value
of tR.

Of course, with this value for tR, we can finally return to our original goal
of finding the range of the projectile. The horizontal range of the projectile is
found by evaluating the x coordinate at the time tR,

R = rx (t = tR) = v0τ cos (θ)
[
1− e−tR/τ

]
. (77)

Now, before we rush to plug in our value of tR, let’s remember that our original
constraint equation was given by

ry (tR) = 0 ⇒ h+
[
gτ2 + φτ

] [
1− e−tR/τ

]
= gτtR. (78)
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If we rearrange this constraint equation slightly, it becomes

1− e−tR/τ =
gτtR − h
gτ2 + φτ

. (79)

Using this in the expression for the horizontal range, we find

R = v0τ cos (θ)

[
gτtR − h
gτ2 + φτ

]
= v0 cos (θ)

[
gmtR − hk
gm+ φk

]
. (80)

Using our result for tR, we finally arrive at

R = v0 cos (θ) {gm+ φk}−1
{
gmtR0 − hk + g

(3φ− gtR0)

(φ− gtR0)

t2R0

6
k

}
. (81)

We now have an approximate expression for the range of the projectile, in
terms of all of the parameters of the problem. However, there is actually one
more simplification we can make. Notice that our final answer contains the term

{gm+ φk}−1 =
1

gm+ φk
. (82)

This is not a simple algebraic function of k, and in fact the Taylor series expan-
sion of this expression contains infinitely many powers of k,

1

gm+ φk
=

1

gm
− φ

g2m2
k +

φ2

g3m3
k2 + ... (83)

This means that in fact, we can write our expression for the range as

R = v0 cos (θ)

{
1

gm
− φ

g2m2
k +

φ2

g3m3
k2 + ...

}{
gmtR0 − hk + g

(3φ− gtR0)

(φ− gtR0)

t2R0

6
k

}
.

(84)
Since the second bracket term, the one involving tR, is only expanded out to
first order in k, it doesn’t really make sense to keep the first bracket term to a
higher order either. If we multiply the two bracket terms together, and ignore
any term which is higher than first order in k, we find

R = v0 cos (θ)

{
tR0 +

(
(3v0 sin (θ)− gtR0)

(v0 sin (θ)− gtR0)

t2R0

6m
− v0 sin (θ)

gm
tR0 −

h

gm

)
k

}
,

(85)
where, as before,

tR0 =
v0 sin (θ) +

√
v20 sin2 (θ) + 2gh

g
. (86)

This is our final expression for the horizontal range of the projectile, as an
approximation to first order in k.
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The last thing we should do before wrapping up this subject is make sure
that our perturbative answer makes sense. When k = 0, we have

R (k = 0) = v0 cos (θ) tR0 = v0 cos (θ)
v0 sin (θ) +

√
v20 sin2 (θ) + 2gh

g
, (87)

which is exactly what we found when we neglected air resistance. We can also
get an intuitive sense for how the drag affects the motion of the projectile by
considering the slightly simpler case when h = 0 (when the projectile is fired
from the ground). In this case,

tR0 =
2φ

g
=

2v0 sin (θ)

g
, (88)

and thus

tR1 =
(3φ− gtR0)

(φ− gtR0)

t2R0

6m
= −2

3

φ2

mg2
= −2

3

v20 sin2

mg2
. (89)

The expression for the range in this case simplifies to

R (h = 0) =
2v20 sin (θ) cos (θ)

g

{
1−

(
4v0 sin (θ)

3mg

)
k

}
. (90)

When there is no drag, the overall term in brackets is simply equal to one. We
see now that the effect of drag is to reduce the range slightly, since when k 6= 0,
the term in brackets is slightly less than one. While this may have been obvious
to us, we can now see in more detail exactly how the range is reduced. Perhaps
the most striking effect we see is that once air resistance is introduced, the range
of the projectile is no longer independent of the mass - the smaller the mass,
the more important the first-order correction is. Of course, this agrees with
our common intuition that, for a given shape and size, less massive objects are
affected by air resistance more strongly. We also see that the reduction in range
increases as the initial velocity increases, which makes sense, as the drag force
increases with increasing velocity. Similarly, the effects of air resistance also
become more important as gravity becomes weaker. Interestingly, the reduction
in the range also depends on the initial firing angle.

It may seem as though this was a lot of work to get an answer which is
only approximately correct. However, if you become a professional physicist,
this type of calculation will become very familiar to you. Despite what some
textbook homework problems may lead you to believe, the vast majority of
problems which show up in physics cannot be solved in a simple, closed form.
In order to make any kind of progress, it is almost always the case that we
need to make some sort of approximation, like the one we have made here. In
fact, this type of approach is so common in physics that it might be accurate
to say that Taylor series are THE most important tool in all of physics (or, as
some people say, the most important physicist was a mathematician, and his
name was Taylor). With this in mind, it’s good to get some practice with these
methods as soon a possible, because they will show up over and over again in
your future physics courses, especially if you go to graduate school.
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